
Article https://doi.org/10.1038/s41467-024-47778-4

WindSeer: real-time volumetric wind
prediction over complex terrain aboard a
small uncrewed aerial vehicle

Florian Achermann 1 , Thomas Stastny1 , Bogdan Danciu 1,
Andrey Kolobov2, Jen Jen Chung 1,3, Roland Siegwart1 &
Nicholas Lawrance 1,4

Real-time high-resolution wind predictions are beneficial for various applica-
tions including safe crewed and uncrewed aviation. Current weather models
require too much compute and lack the necessary predictive capabilities as
they are valid only at the scale of multiple kilometers and hours –much lower
spatial and temporal resolutions than these applications require. Our work
demonstrates the ability to predict low-altitude time-averaged wind fields in
real timeon limited-computedevices, fromonly sparsemeasurement data.We
train a deep neural network-basedmodel, WindSeer, using only synthetic data
from computational fluid dynamics simulations and show that it can suc-
cessfully predict real wind fields over terrain with known topography from just
a few noisy and spatially clustered wind measurements. WindSeer can gen-
erate accurate predictions at different resolutions and domain sizes on pre-
viously unseen topography without retraining. We demonstrate that the
model successfully predicts historical wind data collected by weather stations
and wind measured by drones during flight.

Accurate modelling of the wind is crucial for applications such as wind
farm layout optimization (WFLO) or safe crewed and uncrewed avia-
tion. The energy generated by wind turbines is proportional to the
cubic power of the wind speed; thus, micrositing turbines relies on
accurate flow models1. Adverse wind poses a challenge for crewed
aviation close to the ground at airports with challenging surrounding
terrain, such as Madeira International Airport2. Finally, winds in
mountainous regions can easily exceed 10ms−1, a speed comparable to
the normal cruise speed of small uncrewed aerial vehicles (sUAVs)3,4,
resulting in poor tracking of the planned flight path5. If an sUAV knew
the wind in advance, it would be able to plan its path so as to avoid
areas of unfavorable winds and high turbulence6.

Chaotic fluid-dynamic effects due to local steep terrain result in
large spatial variations of wind around complex terrain7 that require
models with high spatial resolution to capture faithfully. Numerical

weather prediction (NWP) can accurately model only relatively large-
scale wind patterns, with resolutions on the order of kilometers8.
Computational fluid dynamics (CFD) simulations generate high-
resolution wind flows around terrain at smaller scales, on the order
of meters or less, but require knowing well-defined boundary condi-
tions reflecting theoverall weather situation9,10. Bothof these classesof
simulation-based methods numerically solve the underlying system of
partial differential equations (PDEs). Because of this, they are com-
putationally expensive, taking compute times on the order of hours,
and do not provide real-time wind field estimates. Onsite wind mea-
surementswith a Doppler Lidar11 ormeasurementmasts9,10,12–14 provide
real-time wind information, but at a limited resolution and a high
setup cost.

A broad categoryofmethods relevant to our targeted near-terrain
wind prediction setting is data assimilation. Data assimilation
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approaches combine models (such as traditional CFD solutions) with
observations to refine prediction based on observed data.
Optimization-based methods such as expectation maximization and
variational methods use a cost function (generally a metric between
the model prediction and observation values) to adapt a model to
integrate noisy and sparse observations15. Extensive previous work in
the NWP domain has focused on temporal (4D-Var) methods that
select initial conditions of a model simulation in order to best match
temporally and spatially distributed observations16–18. However, while
assimilation methods can be relatively fast computationally, they
require high amounts of input observation data19, extensive prior
model solutions (such as CFD runs covering the complete area of
interest with multiple wind speeds and directions)20–22, and/or
mesoscale models to act as input boundary conditions23. These data
and computation requirements are generally unsuitable for online
estimation on-board an sUAV due to limited storage and compute that
sUAVs tend to carry.

AI-based methods have been used to accelerate the computa-
tion of flow fields by assisting or replacing numerical PDE-based
solvers in different settings. Examples include modelling fluid flows
for visual rendering24,25 and replacing CFD simulations in aero-
dynamic shape optimization26–30. However, these models rely on
privileged information, such as boundary conditions and consider
much simpler geometries compared to the topography of complex
terrain. Super-resolution flow analysis closely aligns with our
approach, yet previous studies in this field assume complete, uni-
form coverage of measurements over the entire region31–34. They
either exclusively investigate two-dimensional flows31–33 or require
dense low-resolution data31,33,34. Various deep neural network

(DNN)-based approaches demonstrated weather prediction at a
global scale, essentially replacing NWP with much faster compute
time in the order of seconds35–38. But the resolution of these models,
on the order of kilometers, is too low to accurately model the wind
around complex terrain.

In this work, we presentWindSeer, an approach for predicting the
volumetric time-averaged wind and turbulence in real-time at meter-
scale based on the topography and sparse, noisy wind observations
without needing bulky specialized equipment or assuming access to
privileged information. WindSeer’s ability to predict real wind stems
from its encoder-decoder convolutional neural network (CNN) archi-
tecture trained offline using synthetic flow data generated by com-
putationally expensive steady-state Reynolds-averaged Navier–Stokes
(RANS) CFD simulations. The CFD simulations are run offline over real
terrain patches that are available from web services39,40. The core
contribution of our method is in training WindSeer to produce CFD-
like predictions from only sparse, in-situ observations – without
requiring privileged information such as global boundary conditions.
Access to these boundary conditions would be equivalent to measur-
ing the wind along the full boundary of the prediction region, which is
simply not available in real-time, nor at the requiredmeter-scale. Once
trained, our network-based prediction approach allows for fast,
constant-time inference with limited computational and storage
resources. An overview of our wind prediction pipeline is presented in
Fig. 1 as well as Supplementary Movie 1. We evaluated WindSeer in a
series of experiments, whose results show WindSeer’s ability to make
accurate dense wind and turbulence predictions based on local noisy
windmeasurements, across a wide range of spatial resolutions without
retraining the model.

Fig. 1 | Overview of the wind prediction pipeline. A First we generate labelled
flows utilizing a CFD simulation. B Then WindSeer is trained with measurements
along randomly sampled piecewise linear trajectories to predict the dense flow.

C During deployment the wind estimates from the UAV or wind measurement
towers together with the known topography serve as the input to WindSeer.
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Results
We evaluated WindSeer in a sequence of increasingly challenging
experiments to demonstrate its real-time wind prediction capabilities:
1. Wedemonstratedonheld-outCFD-simulatedflows thatWindSeer

is expressive enough to represent the complex flow patterns
around real terrain. We analysed several network training
approaches on this dataset as it provides dense labels with a
wide array of topographies.

2. Wedemonstrated the ability ofWindSeer topredict realwinddata
using measurements gathered from masts as part of large-scale
measurement campaigns over different terrains across
Europe9,10,12–14, thereby validating both the complete pipeline
and our approach of usingCFDas a teachermodel. These datasets
offer goodspatial coveragewithmeasurement fromdifferentflow
regions.

3. On data from several multi-sUAV flights overmountainous terrain
we illustrate WindSeer’s ability to predict the time-averaged wind
when using noisy onboard wind measurements as input. These
input measurements were subject to high noise due to the
uncertainty of the estimated sUAV’s pose and errors in the airflow
sensing, all of which complicated the prediction problem faced by
WindSeer.

4. Finally, we showed WindSeer’s real-time prediction capability on
flight-grade hardware.

WindSeer model
WindSeer is a CNNwith four-channel input. The input is composed of
a binary mask indicating cells containing input measurements, the
terrain model stored as a distance field, and the sparse horizontal
wind speed measurements (two channels). Note that vertical wind
speed measurements are not an input to the model, since weather
stations typically measure only the horizontal wind and the vertical
wind is not observable with a standard fixed-wing sUAV sensor set. In
Supplementary Note 3 we show empirically that adding vertical wind
as an input, if it were available, has a limited impact on prediction
quality. The percentage of observed cells in the input data varies
across experiments ranging from 3.5 × 10−6 % to 0.1%, thus WindSeer
always operates on highly sparse observations.

The four-channel output of WindSeer has the same spatial
dimension and resolution as the input. The first three channels contain
the three-dimensional volumetric time-averaged wind prediction
(Wx,Wy,Wz) and the fourth channel contains the turbulence kinetic
energy (TKE) prediction — a metric for the strength of the turbulent
velocity fluctuations in thewind field that is proportional to the sumof
the variances in each dimension. Thus, the prediction contains prop-
erties (Wz, TKE) that are not available as input measurements.

Experiment group 1: predicting CFD-simulated flows
We evaluated WindSeer on held-out CFD-simulated flows. The dense
label data allowed for evaluation over the full domain, thus evaluating
the influence of different measurement locations as well as qualita-
tively characterizing the prediction quality. We used CFD-simulated
flows over previously unobserved terrains and sampled the input
measurements and noise from the same distributions as observed
during training.

Three terrain and input pairs together with the prediction error
cloud are shown in Fig. 2A, B. While the highest prediction errors
occurred either close to the ground or on the lee side of the terrain,
this trend is mitigated by the fact that, due to practical considerations
such as payload configuration and safety, the operating altitude for
sUAVs is typically over 50m above ground level41,42 and the wind tur-
bine hub heights are typically higher than 80 m above ground43. The
distribution of the average normalized prediction errors over all non-
terrain cells over the full test set is displayed in Fig. 2C in blue. When
scoring the network output only above an altitude of 46m themedian

relative velocity norm error reduces from 14.5% to 11.5% and the
median relative TKE error from 11.2% to 8.3%. The high correlation
values (Pearson correlation coefficient) in the voxel-wise comparison
of the prediction to the CFD labels shown in Fig. 2D show that Wind-
Seer can qualitatively capture the different flow regimes. The bias
(average error) is close to zero for all channels and the root mean
squared error (RMSE) is also low compared to the overall magnitude.
Together, this underlines WindSeer’s prediction quality. The scatter
density plots for the terrains presented in Fig. 2A (1) and (3) are
available in Fig. 3.

We evaluated three individual terrains in more detail (Fig. 2A) to
assess the sensitivity of the prediction quality to the sampled input
data locations. For each terrain we randomly sampled 2000 trajec-
tories and evaluated the prediction error (Fig. 2C) green). No noise or
bias was added to the input data in this experiment to focus solely on
the impact of the trajectory location. Whenever the input data was
sampled in regions where the model could not predict the prevailing
flow well, e.g. the lee side of the hill (Fig. 2A) (3b)), WindSeer per-
formed poorly. If such a region is large enough, multi-modal error
distributions can be observed as seen in Fig. 2C (3) where prediction
failed for input wind samples on the right (lee) side of the hill.

The CFD-simulated flows are computed on a finer grid close to
terrain to account for the high spatial variation of the flow in these
regions. Interpolating the flow to the coarser fixed-size grid of Wind-
Seer, as visible in Fig. 1A), leads to a loss of information and flow
artifacts close to the ground. Such confounding factors make learning
these low-altitude flows especially challenging, offering an explanation
for the performance difference between predicting the low-altitude
and high-altitude winds. However, the experiments with the real wind
data show that the wind close to the ground can be accurately mod-
elled if the grid resolution is increased.

Experiment group 2: evaluation on wind measurement cam-
paign datasets
We evaluated WindSeer on real time-averaged wind data available
from three published measurement campaigns. The long measure-
ment periods allow filtering out short-term effects such as wind gusts
and reduces the overall measurement noise, enabling an evaluation of
WindSeer with clean input wind measurements over larger-scale
domains.

The in-situ wind and TKE measurements were collected via wind
velocity sensor suites (sonic or cup anemometers) mounted on masts
providing data from 2m to 100m altitude above ground level14. For
each terrain, varyingwindflowdirections andmagnitudes are available
from different measurement periods (Fig. 4). The terrain in these
campaigns varies in complexity and size – from the 11m high Bolund
hill (Fig. 4A)9,10 to the gently-sloped 116 m high Askervein hill
(Fig. 4C)12,13. Both Bolund and Askervein have limited vegetation while
the Perdigão region in Portugal represents themost complex test case
with two lightly-forested parallel ridges roughly 300m high (Fig. 4E).

The varying geometric extents of the sites together with the low
altitude windmeasurements required a larger grid size (384 × 384 × 192
instead of 643 cells) paired with higher resolution to obtain meaningful
predictions. Accordingly, the grid resolutions were increased 2 × , 4 × ,
and 30 × for the Perdigão, Askervein, and Bolund terrains, respectively.
These changes in the prediction grid were enabled by the fully con-
volutional architecture of WindSeer and the distance field representa-
tion of the terrain that indirectly provides the cell size and resulted in
around 100× sparser input data compared to the training density.

We compared WindSeer against an averaging baseline (AVG) that
assumes the wind and TKE are constant and predicts the average of all
measurements over the full domain. This is a widely accepted
assumption for sUAV flights5,44,45, moreover, the state of the art in
planning large-scale missions relies on NWP forecasts that remain
constant at the spatial resolution of the mission46. Each method
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predicted the wind based on the measurements from a single mast,
yielding an ensemble of predictions for each wind case, while mea-
surements from the remaining masts were used to validate the
predictions.

For each wind case we averaged themetrics over the ensemble of
predictions and report the absolute errors of the wind magnitude,
vertical wind, and TKE in Table 1. In most cases WindSeer out-
performed the averaging baseline (AVG). In the other cases, the wind

Fig. 2 | CFDexperiment.ATerrain and inputwindmeasurements (red arrows)with
their respective prediction error.BHigh prediction errors can be observed close to
the ground or on the lee side of the terrain. C Wind and turbulence prediction
performance on the CFD dataset over the full test set containing 4764 samples
(blue) and with 2000 random trajectories for the three different terrains shown in
(A). While most of the terrains result in uni-modal error distributions (1,2), more
complex ones can have a second mode for samples from a complex flow region,

indicated by the red box in (3). Boxes extend from the first to the third quartiles of
data. Median is indicated by a line and mean by a star. Whiskers extend to the
extrema data inside 1.5 times the interquartile range beyond the first and third
quartiles. Outliers (outside the whiskers) are individually plotted.D Density scatter
plots (N = 643) comparing the label and the predictions for each predicted property
using the terrain and input pair presented in (A) (2). Source data are provided as a
Source Data file.
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direction usually aligned with the ridge/terrain, causing only small
variations across the measurements of the different masts. The aver-
age predictionerrors ofWindSeer are 17%, 43%, and 39% lower than the
baseline for the velocity magnitude, vertical wind and TKE
respectively.

To assess whether WindSeer can predict flow trends well, we also
report the correlation between the wind predictions and measure-
ments inTable 1. The correlation for theAVGbaseline is undefined, due
to the constant, location-invariant wind prediction. Averaged over all
cases, WindSeer yielded strong positive correlations for all metrics
suggesting that it was able to predict the observed trends well, such as
up- and downdrafts, high wind and turbulence, thus providing a
valuable contribution to planning safer and more efficient sUAV tra-
jectories or WFLO.

In Fig. 5A–C we compare the measurements to the WindSeer
predictions. Analogous to the previous experiment we use the wind
measurements from one mast as input resulting in 32 predictions for
the Bolund [8 masts and 4 wind cases], 182 predictions for the Asker-
vein [14 masts and 13 wind cases], and 9120 predictions for the Per-
digão campaigns [38 masts and 240 wind cases (one hour averaged
data for ten different days [2017-05-09, 2017-05-11, 2017-05-12, 2017-
05-16, 2017-05-18, 2017-05-20, 2017-05-26, 2017-06-02, 2017-06-03,
2017-06-08)]. Overall, the low bias and RMSE together with the high

correlation demonstrate that WindSeer handles different wind condi-
tions well. The best predictions are obtained for the simpler Askervein
terrain and the errors grow with increasing terrain complexity. In
general themodel under-predicts the downdrafts in the wind fields for
the Bolund and Perdigao cases (Fig. 5A, C) but the Askervein experi-
ment (Fig. 5B) shows that WindSeer is capable of representing strong
downdrafts.

For the Bolund hill a study of different CFD simulation was con-
ducted and the speed up errors for one wind direction (239°) are
reported10. The average speedup prediction error for WindSeer is
20.3%while the best performing RANS-CFDmodels achieve an error of
15% butwith runtimes in the order of hours. Themodelswith a runtime
of less than 15min have errors of 26.5% to 32.4%, comparable to our
averaging baseline with error 33.5%.

The RANS CFD simulations compute the time-averaged solution
of the Navier-Stokes equation, thus WindSeer is trained to operate on
these static flows. However, in the realworld, wind changes constantly.
The Perdigão campaign provides measurements as 5min averages
allowing us to compare the performance of WindSeer operating with
high- and low-frequency data as shown in Fig. 5D. Averaged over a day,
the performance is consistent across the two time windows with
slightly better results using the hourly averages. One exception is the
large difference in the correlation scores observed between 06:00 and

Fig. 3 | CFD experiment.Density scatter plots (N = 643) comparing the label and the predictions for each predicted property using the terrain and input pair presented in
Fig. 2A. Panel (A) corresponds to case (1), B to case (3a), and C to case (3b).
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Fig. 4 | Measurement campaigns experiment. The mast locations and elevation
maps for the Bolund (A), Askervein (C), and Perdigão (E) campaigns. The tower
positions are colored by the average prediction error when using that specificmast
as the input to predict the wind. In the Askervein and Perdigão cases some masts

did not provide a valid measurement for that experiment. (B, D, F) show the wind
directions for the different experiments for each terrain. Source data are provided
as a Source Data file.
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10:00, a timeperiod characterizedby lowwindmagnitudes and rapidly
changing wind direction as evident from the TSE04 tower measure-
ments. These dynamic conditions do not match the RANS CFD simu-
lation offering an explanation for the poorer prediction performance
on the 5-minute averaged data compared to the hourly averages that
filter out these unsteady flow features.

In Fig. 4 the masts are colored by the averaged wind magnitude
error of the WindSeer prediction when using the measurements from
that respective mast as inputs. Lighter colors indicate input measure-
ment mast locations that yieldedmore accurate predictions. In Fig. 5D
we show the prediction errors and correlation using the TNW11 and
V01 tower data in addition to the averaged errors over all tower

Table 1 | Real world wind results

S [m/s] W [m/s] TKE [m2/s2]

AVG WindSeer AVG WindSeer AVG WindSeer

Terrain Case ϵ ϵ ρ ϵ ϵ ρ ϵ ϵ ρ

Bolund 90 1.80 1.58 0.72 0.85 0.58 0.50 1.91 1.33 0.58

239 2.80 2.50 0.68 0.66 0.34 0.76 2.67 1.68 0.86

255 3.24 2.47 0.82 0.85 0.44 0.72 3.43 2.12 0.82

270 3.77 2.79 0.85 0.95 0.51 0.78 5.14 3.43 0.73

Askervein TU25 2.58 2.39 0.65 1.10 0.37 0.90 0.61 0.41 0.89

TU30A 1.14 0.98 0.62 0.41 0.26 0.58 1.38 0.72 0.42

TU30B 1.80 1.46 0.73 0.51 0.41 0.64 2.82 1.40 0.23

TU01A 3.26 2.83 0.77 1.41 0.52 0.91 1.89 1.06 0.85

TU01B 3.24 2.74 0.79 1.37 0.48 0.92 1.64 0.98 0.87

TU01C 3.55 3.08 0.78 1.23 0.45 0.92 1.17 0.72 0.90

TU01D 4.21 3.71 0.79 1.26 0.47 0.93 1.62 1.17 0.93

TU03A 5.29 4.70 0.78 1.74 0.64 0.93 2.04 1.31 0.98

TU03B 4.90 4.41 0.77 1.54 0.54 0.92 1.82 1.21 0.90

TU05A 1.91 1.89 0.62 0.76 0.31 0.89 1.73 0.99 0.40

TU05B 1.18 1.00 0.79 0.31 0.26 0.48 1.40 0.63 0.04

TU05C 0.93 0.93 0.66 0.34 0.25 0.58 1.09 0.43 0.14

TU07B 3.42 3.27 0.70 1.59 0.49 0.90 2.44 1.85 0.40

Perdigão 2017-05-09 13:30–13:35 2.91 2.27 0.82 0.85 0.57 0.53 - - -

17:10:17:15 4.41 3.33 0.48 1.22 0.88 0.35 - - -

17:00–18:00 3.06 2.37 0.77 0.80 0.56 0.50 - - -

Perdigão 2017-05-12 01:00–02:00 2.82 2.31 0.76 0.52 0.42 0.45 - - -

17:00–18:00 2.76 2.23 0.81 0.70 0.57 0.57 - - -

19:45–19:50 1.15 0.90 0.71 0.21 0.16 0.57 - - -

Perdigão 2017-05-16 07:00–08:00 1.58 1.16 0.65 0.27 0.27 0.67 - - -

11:40–11:45 0.85 0.77 0.51 0.33 0.27 0.22 - - -

12:40–12:45 0.86 0.75 0.48 0.29 0.22 0.30 - - -

20:00–21:00 1.35 0.97 0.68 0.22 0.31 0.21 - - -

Perdigão 2017-05-18 14:35–14:40 2.14 1.82 0.70 0.41 0.36 0.33 - - -

20:00–21:00 1.54 1.08 0.84 0.17 0.19 0.12 - - -

22:00–23:00 1.52 1.13 0.74 0.17 0.17 0.42 - - -

Perdigão 2017-05-20 03:15–03:20 3.59 2.63 0.61 0.41 0.55 0.30 - - -

10:00–11:00 2.20 1.84 0.71 0.51 0.42 0.46 - - -

12:20–12:25 1.93 1.71 0.66 0.58 0.43 0.45 - - -

Perdigão 2017-06-08 00:00–01:00 2.68 1.87 0.69 0.35 0.38 0.44 - - -

12:40–12:45 1.20 0.90 0.77 0.31 0.22 0.46 - - -

14:00–15:00 2.49 1.77 0.82 0.74 0.42 0.58 - - -

All campaigns 2.50 2.07 0.71 0.72 0.41 0.59 2.05 1.26 0.64

Chasseral Flight 1 0.61 0.85 0.33 0.54 0.38 0.95 - - -

Flight 2 0.57 0.77 0.48 0.50 0.32 0.80 - - -

Flight 3 0.53 0.71 0.37 0.49 0.30 0.84 - - -

Oberalp Flight 1 0.56 0.82 −0.46 0.54 0.33 0.78 - - -

Gotthard Flight 1 0.99 1.13 0.33 0.21 0.18 0.88 - - -

All flights 0.65 0.86 0.21 0.46 0.30 0.85 - - -

Absolute prediction errors (ϵ) and correlation between themeasurements andpredictions (ρ) for the velocitymagnitude (S), vertical wind component (W), and turbulence kinetic energy (TKE) on the
measurement campaign datasets and flight experiments of WindSeer compared to the averaging baseline (AVG). The best performing model for each case is highlighted bold. Note that the AVG
baseline does not offer correlations as it produces a constant signal.
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predictions. Consistent with the findings from our previous experi-
ments, using measurements from the hill top or the upwind side
generally resulted in lower-error predictions thanmeasurements from
the lee side, nevertheless, the correlation is consistently high.

In each campaign themasts were arranged alongmultiple straight
lines enabling us to qualitatively assess whether the models could
capture expected flow trends along these lines. We selected cases
where thewind and the linedirection areparallel, as themeasurements

Fig. 5 | Measurement campaign results.Measured wind compared to the pre-
dictions aggregated over all predictions for the Bolund (A, 32 predictions [4
experiments, 8 masts]), Askervein (B, 182 predictions [13 experiments, 14 masts]),
and Perdigão (C, 9120 predictions [240 experiments, 38 masts]) campaigns. In (D)
the evolution of the prediction error and correlation of the wind norm S for

WindSeer (WS) using the 5min and 1 h averaged data together with the measure-
ments from the TSE04 tower as a reference are shown. We show the results
aggregated over all the 38 predictions using the different masts as input and the
scores using only the TNW11 and V01 tower data for the prediction. Source data are
provided as a Source Data file.
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show higher variation in these scenarios, and present the WindSeer
and baseline predictions in Fig. 6. Refer to Fig. 4 for the wind direction
and the mast locations. For each method and case we show three
predictions using themeasurements fromdifferentmasts as the input.
The error bars forwind speedmeasurements report the 1σuncertainty.

WindSeer successfully predicted the speed changes and up-/
downdrafts unless themeasurement tower was located on the lee side
of a hill, e.g. Bolund: M8, Askervein: ANE40, Perdigão: V01/TNW07.
Wherever TKE measurements were available, WindSeer predicted TKE
trends well. WindSeer struggles to predict flow patterns not observed

Fig. 6 | Measurement campaign results. Predictions and measurements along
characteristic lines with a constant height for a Bolund hill case (A), Askervein hill
case (B), and two Perdigão cases (C, D) with the baseline averaging method (AVG)
and WindSeer (WS). Three predictions using different input masts are shown for
each model and experiment. The asterisk * indicates that no measurement was

available for that respective mast at the queried height and the closest one was
picked. The uncertainty of the measurements is displayed by the standard devia-
tion of the rawhigh-rate data. In (D) themeasurements indicate a rotor between the
two ridges, aflowpatternnot present in the training data. Thus,WindSeer struggles
to accurately represent the flow for the towers TNW06-TNW10.
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during training, such as a lee side rotor which occurs when flow
detaches on the downwind side and causes a recirculating pattern
(Supplementary Note 1). Such a case is shown in Fig. 6D.

Experiment group 3: Predicting the wind along sUAV
trajectories
We evaluated WindSeer on noisy, local wind measurements collected
by multiple fixed-wing sUAVs. This mirrors the targeted use case of
WindSeer and challenges it with high input noise levels due to real
sensor noise and short term wind effects such as gusts or turbulence.

We flew multiple fixed-wing sUAVs simultaneously in the Swiss
Jura (Chasseral) and the Swiss Alps (Oberalppass and Gotthardpass).
The flight plans for each sUAV consisted of multiple circular loiter
patterns. We generated the sparse input from the point-cloud of
measurements to WindSeer by binning the observations along the
flight path from one sUAV into the discretized prediction grid and
averaging all measurements falling in a single cell. We used the native
training grid size and resolution with the grid center at the first
observed sUAV position estimate.

We first evaluatedWindSeer on time-averaged data, similar to the
previous experiment group with the static masts, to reduce the noise
and sensitivity to sensor calibration on the input measurements. We
generated this data by averaging the measurements over one loiter
pattern to a single wind measurement. The observations from the
different sUAVs and multiple loiters enabled us to compute the aver-
age prediction error and the correlation for each flight experiment.We
present the error metrics for all flights in Table 1. For the wind mag-
nitude, the baseline outperforms WindSeer which also only yields a
slightly positive correlation averaged over all flights. Nevertheless, the
high correlations and significantly lower errors for the vertical wind
compared to thebaseline indicate thatWindSeer canbetter predict the
locations of dangerous downdrafts, as well as favourable updraft
regions, based solely on wind measurements taken from one sUAV.

We further evaluated WindSeer in a sequential time-windowed
manner using the wind data from a 120 s window to predict the wind
along the flight trajectory for the next window. The corresponding
predictions for the test flight are displayed in Figs. 7, 8. Note that the
prediction between successive windows can be discontinuous due to
the different measurements used by WindSeer. The model was able to
accurately predict the magnitude difference in the vertical wind
between the two sUAVs for all Chasseral flights. It slightly under-
predicted the downwind on the lee side for the validation sUAV, which
canbe explained by the generally worseperformanceof themodels on
the lee-side wind predictions, as shown in the previous experiments.

Although the measurements were averaged over time the noise
due to wind gusts and measurement errors was comparable to the
variation of the measured wind magnitude as outlined in Supple-
mentary Note 4. Thus, the averaging already offered a good baseline
prediction of the wind magnitude. As the wind on the vertical axis
varied much more between the different sUAVs and throughout a
flight, WindSeer could predict these variations and outperform the
baseline.

The Oberalppass and Gotthardpass are especially challenging
prediction terrains, as they exhibit large altitude changes (1500m)due
to valleys and peaks within 4 km of our flight locations. High sur-
rounding peaks can cause high gust levels, explaining the high varia-
tion in themeasuredwind. Furthermore, terrain outside the prediction
area can significantly influence the wind features observed in the val-
ley. In contrast, our CFD simulation setup for generating theWindSeer
training data was limited to well-defined inflow conditions and a
domain size of 1.5 km× 1.5 km, which did not allow simulating the flow
over multiple large scale mountains or ridges. Thus, during training
WindSeer did not observe such complex wind flows, explaining the
performance difference between the Chasseral and Oberalppass/Got-
thardpass flights.

WindSeer inference time
We evaluated prediction times of WindSeer on an NVIDIA Jetson Orin
AGX, a light-weight and low-power single-board computer, to show
real-time performance on sUAV flight-grade hardware. The average
inference times over 100 runs on a 643 and 384 × 384 × 192 prediction
domain were 0.021 ± 0.002 s and 3.577 ± 0.015 s respectively. Mixed-
precision inference reduced the inference times to 0.021 ± 0.005 s and
1.700 ±0.005 s. These inference times show that WindSeer is capable
of low-latency wind predictions over large domains with limited
compute to quickly recalculate predictions in response to new
measurements.

Discussion
In this work, we have proposed an approach to train a CNN, WindSeer,
for predicting low-altitude time-averaged wind and TKE around com-
plex terrain in real-timebased on sparse andnoisywindmeasurements
and known topography. We trained WindSeer solely on simulated
steady-state RANS CFD flows over terrain patches from Switzerland
and evaluated it on held-back CFD data and real wind measurements.
In the first experiment on previously unobserved CFD solutions we
demonstrated that WindSeer is capable of replicating the dense flows
based on sparse and noisy observations with high accuracy (median
relative error below 10%).

In the next experiments we demonstrated zero-shot sim-to-real
transfer by evaluating WindSeer on real wind measurements without
retraining. On the historic measurement campaign datasets we
showed that WindSeer was able to reconstruct real wind flows of dif-
ferent scales, at up to 30 times higher resolution than the training data.
This corresponds to larger prediction domains containing up to 108
times more cells than those used for network training and to much
sparser input data compared to training. The distance field repre-
sentation enabled this multi-resolution property of WindSeer as it
provided a sense of scale to the model. In summary, this allows for
customized prediction grids to suit various scenarios based on the
necessary resolution and extent.

Finally, the performance of WindSeer on the flight data is com-
parable to the average baseline assumption, with less accurate pre-
dictions of the horizontal wind but superior performance when
predicting the vertical wind, which is the key factor when assessing the
safety and efficiency of flight plans. The flight data exhibits much
higher measurement noise due to the noise of the low-cost sensors
used to estimate the sUAV pose and wind. Therefore, until better wind
sensing is available on sUAVs, we envision the onboard deployment of
WindSeer by using the weather data from nearby weather stations.

Previous work has shown the ability of DNNs to predict fluid flows
for well-defined geometries paired with well-known inflow
conditions26–28,47,48. We demonstrated the capability of DNNs to work
with sparse and noisy input data on realistic complex terrain. This
enables real-time wind prediction using data that is feasible to
obtain aboard an sUAV. The sparsity of the input data (0.19% down to
3.5 × 10−6 %) exceeds previous research of sparse-to-dense DNNs that
usually assume denser data around 0.75%49,50, 0.2%51, or 6.5 × 10−3%52.
In these previous examples the sparse input data was distributed over
the whole prediction domain while in our case we showed WindSeer
still performs well even if the samples are located within a spatially
constrained sub-region.

Limitations and future work
Training domain. In our data generation pipeline we restricted the
CFD simulation domain to 1.5 km× 1.5 km based on the initial
assumption that the large scale NWP would be used in the network
input (Supplementary Note 2). This domain size restricted the terrain
to mostly contain one single major geographical feature such as a
mountain or a ridge. Therefore the current CFD training data does
not contain samples that include wind phenomena such as lee-side
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rotors, which arise in the presence of multiple mountains/ridges. A
larger simulation domain in the order of 10 km× 10 km could allow a
better representation of such complex flows and possibly increase
the wind prediction performance for complex terrains inside
mountain ranges. A biased sampling strategy when composing the
input could also help to solve the sample imbalance problem by

exposing the network to more examples from the lee-side flow
regime during training.

Temporal wind variation. Changing the CFD simulation from a time-
averaged RANS solution to a time-varying model such as large eddy
simulation (LES) or a mesoscale weather prediction, such as the WRF

Fig. 7 | sUAV flight experiment. Prediction results and flight paths for two flight
tests: Chasseral (A–C) and Oberalppass (D–F). The predictions along a slice are
shown for theAD4 andZD6models (B, E).C,F Show the slidingwindowpredictions

of the ZD6 WindSeer variant along the flight paths using the data from EZG A as
input. Every 120 s a prediction is made using the wind data from the previous
window.
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model53, could have multiple advantages. First, the DNN could be
trained using the time-varyingwind data to construct the input but still
predict the time-averaged solution. This could result in the model
learning wind gust characteristics and thus increase robustness to
noisywind estimates from the sUAV. Second, amodel could be trained
to predict the time-varying flow representing wind gusts and short
term weather evolution in the predicted wind. However, whether the
information from the noisy measurements is sufficient to uniquely
determine the flow state still needs to be carefully analyzed. Depend-
ing on the sparsity of the data there are likely to be multiple possible
flow solutions matching the observations. Further, time varying
methods like LES require significantly more computational resources
than RANS solvers, further increasing the cost of generating training
data54.

Fluid flow assumptions. Currently the CFD simulations used to train
WindSeer model the air as an incompressible fluid with uniform tem-
perature. By including temperature differences in the compressible
fluid and terrain the CFD simulation could model complex flow phe-
nomena such as thermals55, updrafts caused by temperature variations
on the ground, or mountain waves56,57, which are large scale oscilla-
tions of the wind direction and magnitude behind large ridges. How-
ever, simulating these phenomena would require far more input data
and ultimately we would still need to verify whether these simulations
provide realistic flows that reflect the true airflow characteristics.

Wind estimation. Our current wind sensing setup onboard the sUAV is
prone to calibration errors and noise resulting in relatively large wind
estimation errors. Alternative sensors, such as a five-hole probe58

Fig. 8 | sUAV sliding window predictions. Additional sliding window predictions of the ZD6 WindSeer variant along the flight paths for the second (A) and third
(B) Chasseral flights and the Gotthardpass flight (C) using the data from EZG A as input. Every 120 s a prediction is made using the wind data from the previous window.
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paired with an improved calibration procedure or better sensor pla-
cement could improve the wind estimates.

Methods
Overview
We developed a pipeline (Fig. 1) to train and deploy a CNN, WindSeer,
that predicts the dense time-averaged wind and turbulence around
complex terrain. The network training consists of two steps: First we
generated a dataset of dense flows over terrain patches from Swit-
zerland using a RANS CFD solver (Fig. 1A). We then trained WindSeer
using the label flows to simulate local wind measurements along ran-
domly generated piecewise-linear trajectories, robustifying the pre-
dictions by adding noise to the measurements along the trajectories
(Fig. 1B). The trained WindSeer was evaluated on (i) held back CFD-
simulated flows on previously unobserved terrains, (ii) real wind data
gathered in measurement campaigns9,10,12–14, and (iii) real wind data
measured by multiple sUAVs around mountainous terrain.

CFD wind data
We generated flow data over real terrain patches with a pipeline based
on the open source solver OpenFOAM59,60 with the steady-state RANS
model and the popular k− ϵ two-equation turbulence closure61. The
automated pipeline ingests terrain patches and outputs the time-
averaged flow solutions for multiple wind speeds62. We extracted 563
terrain patches each with an extent of 1.5 km× 1.5 km from the GeoVite
service (https://geovite.ethz.ch/), which provides access to the swis-
sALTI3D digital elevationmap (DEM) for Swiss researchers, with a lateral
resolution of 0.5m, recently also available on ArcGIS (https://elevation.
arcgis.com/arcgis/rest/services/WorldElevation/Terrain/ImageServer).
The terrain patches exhibit at least one sidewith near-constant elevation
allowing us to simulate a formed boundary layer flow (logarithmic
profile) entering into the domain from that face. Some terrains allowed
for multiple flow directions leading to 866 terrain/flow direction pairs.
The vertical extent of the simulation domain was three times the height
difference of the terrain with a lower bound of 1100m minimizing the
boundary effects on the flow. Each case was simulated with up to 15
different wind speeds if the automatic meshing succeeded, resulting in
7361 executed CFD runs. We initialized the subsequent simulation for
the higher wind speed cases with the previous solution to speed up
computation. Only solutions that met a required optimization tolerance
were accepted as fully converged solutions, which was the case in 92.9%
of the runs. We enhanced our dataset with one zero-velocity flow for
each terrain that had at least one converged CFD simulation, resulting in
a total of 7285 flows.

The CFD solutions are computed on an automatically generated
irregular mesh with OpenFOAM’s SnappyHexMesh utility. We resam-
pled each case up to a height of 1100 m to a regular 91 × 91 × 96 grid
resulting in a resolution of 16.5m horizontally and 11.5m verti-
cally (Fig. 1A).

Data augmentation
Generating CFD flows is a computationally and labor-intensive task. For
reference, our 7361 CFD runs required 9168 h CPU compute time (782 h
creating themeshes and 8386 h solving the flow, average compute time:
1.25 h). Unfortunately, deep networks are notoriously data-hungry and,
for a complex modeling problem such as wind prediction, would typi-
cally require orders of magnitude more training data to achieve good
performance. In computer vision, image augmentation methods are
widely used when training deep CNNs63. Thesemethods aim to improve
the quality and size of the datasets when only limited data is available to
prevent the networks from over-fitting. In this work, we showed, for the
first time, that geometric transformations canbe applied toCFD flows to
augment the WindSeer training data.

We randomize the locations of terrain features andflowdirections
by generating 643 subdomains sampled fromeach full 91 × 91 × 96 grid.

The subdomains are constructed by sampling from a range of rota-
tions and origin translation offsets inside the full domain. In a first step
the horizontal shift and a rotation around the z-axis are sampled from
bounded uniform distributions to ensure that the shifted and rotated
642 subdomain is fully contained within the full 912 domain. Then in a
second step the vertical shift is sampled from a triangle distribution
with lower limit and mode of 0 and an upper limit of 32. Smaller
vertical offsets are favoured to focus on the complex flow regions
closer to the terrain. The flow data is linearly interpolated to the
coordinates of the subdomain grid, which is the same spatial resolu-
tion as the full grid.

Input and label composition
The input to WindSeer consists of four volumetric channels, one of
which corresponds to the terrain encoding T created as a Euclidean
distance transform with zeros inside the terrain. That representation
propagates the terrain information over the full domain and even
allows us to include terrain features outside of the domain if they are
accounted for in the distance field calculation. The remaining three
channels include the sparse and noisy horizontal wind measurements
(Ux,in,Uy,in) and a binary mask B indicating cells containing measure-
ments. Previous work has shown the value of providing binary input
masks to CNNs handling sparse input data64,65.

Measurements from weather stations or realistic flight scenarios
only cover a small percentage of the prediction volume along a con-
nected path, e.g. a 30 s flight segment with our sUAV covers approxi-
mately 20 cells at the default grid resolution. Consequently, for a
practical onboard wind prediction scenario, we expect the available
inputwinddata to bevery sparse and thus construct our network input
to reflect this sparsity. We create the input based on the augmented
dense flow by creating a mask and then selecting the measurements
based on the mask. We emulate the characteristics of an sUAV flight
path by filling the mask along sequential randomly-selected piecewise
linear segments with a length of 3 to 500 cells.

Noise is added to the sampled wind data in order to account for
fluctuations in the wind and sensor errors that are not captured by the
RANS CFD simulations. Two types of disturbance are added, white
Gaussian noise (sampled i.i.d. at each measurement from N 0,σ2

g

� �
)

and measurement bias (sampled from U �0:1,0:1ð Þ and applied to all
measurements). The first has the purpose of simulating noise due to
sensormeasurements66, while the latter simulates the effects of sensor
miscalibration. The standard deviation for the Gaussian noise σg itself
is drawn from a uniform distribution: σg ∼U 0,0:1ð Þ, simulating differ-
ent noise levels. All the noise values are scaled with the mean wind
velocity for each sample in the training set to have coherent noise
levels from low to high velocity samples. Note that noise is only added
to the training inputs and not to the CFD ground truth labels used to
compute the network training losses.

The sparse input implies that for most cells in the input wind
velocity channels (Ux,in,Uy,in) the values are undefined since they do
not contain a measurement. We test and evaluate two approaches to
filling the missing information. The first naïve approach simply places
zeros in all voxels without a measurement. This results in large gra-
dients of the input for high magnitude wind. The second approach
uses the per-channel-average of all measurements as the fill value
resulting in a smoother input and propagating the information over
the whole domain.

The labels are constructed by stacking the four volumetric
channels corresponding to the three-dimensional predicted velocity
(Ux,out,Uy,out,Uz,out) aswell as the TKE at each cell from the CFD ground
truth flows.

Model training
The wind prediction model is an encoder-decoder CNN with skip
connections based on the U-Net architecture67. TheWindSeer encoder
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is composed of single 3D convolutions with kernel size 3 and reflection
padding to preserve the size. Using skip connections, the information
at each depth is relayed to the decoder before utilizing a max-pooling
layer with kernel size of 2 to down-sample the feature map. The ori-
ginal domain size is restored by pairing the information from the skip
connection with a nearest-neighbor up-sampled featuremap followed
by two 3D convolutions with kernel size 4. This decoder structure
removes checkerboard artifacts sometimes experienced when using
an encoder-decoder CNN68. Each convolution, except the final one, is
followed by the nonlinear ReLu layer with negative slope 0.169.

Amajority of the cells in thewind speed input channels contain no
measurements. Our first approach was to set the values of all these
cells to zero. However, this resulted in a network overfitting to the
number of observed cells and didnot generalize to larger domains and
different resolutions as demonstrated in Supplementary Note 3. In the
end, we ended up filling the unobserved cells with the average of all
measurements per channel which results in a smoother input and
helps to propagate the information over the full domain.

A scaled versionof themean squared error (MSE) loss is applied to
train the model balancing the loss L( ⋅ ) between the samples and
channels:

L X ,Y ,Nð Þ= 1
N

X
c

Xc � Yc

Ŷ c

 !2

, ð1Þ

whereX is the networkprediction, Y the label flow, Ŷ c the label average
per channel of the non-terrain cells, and N the number of non-terrain
cells. Normalizing the error by the average label value balances the loss
for flows of different magnitudes. Without accounting for the number
of terrain cells in the loss, a sample with a high ratio of terrain cells
would not contributemuch to the overall loss. Thus, scaling according
toNprevents these cases frombeing underrepresented in the training.

Themodel is trainedusing theAdamoptimizer70 for 3000epochs.
The initial learning rate of 1.0 × 10−5 is quartered every 700 epochs.

Measurement campaign datasets
Each of the three measurement campaign datasets that we used for
evaluation are publicly available but require some preprocessing to
enable direct comparison with our wind prediction outputs. We con-
vert the data from the different file formats for each measurement
campaign to the same gridded format that we use to store the CFD
solutions. Each experiment provides terrain data as well as wind
measurements collected using static masts equipped with airflow
sensors at various heights. The terrain is discretized by querying the
rawdata usingbilinear interpolation in the center of the respectivecell.
The location of each measurement is converted into the cell
coordinates.

WindSeer predicts the wind using the measurements from one
mast. The measurements are filled into the corresponding cell and
averaged in case of multiple measurements in one cell. The predic-
tions, which are obtained with trilinear interpolation at the sensing
locations, are then compared to the measured wind. CNNs allow for
variable input sizes, a trait we exploit to predict at a higher spatial
resolution for domains with smaller length scales (see Bolund Hill
below) at an increased domain size of 384 × 384 × 192 cells. Since the
terrain is represented as a Euclidean distance field, this givesWindSeer
a senseof the grid resolution and thus the scale of the flow, enabling us
to predict the wind at different scales.

The error bars for Fig. 6 are calculated using error propagation
from the standard deviations of each axis if not reported for the
magnitude71.

Bolund hill. The data for the Bolund hill experiment containing time-
averaged wind velocities and TKE measurements is publicly available

(https://www.bolund.vindenergi.dtu.dk/blind_comparison). As Bolund
hill exhibits only a small elevation change of 11m, the default predic-
tion resolution is not sufficient to account for its near-ground mea-
surement locations. As mentioned above, we exploit the multi-scale
property of WindSeer and increase the resolution of the prediction
grid thirty-fold resulting in a domain∼ 211m× 211m wide and∼ 73m
tall, giving a correspondinghorizontal resolutionof0.55mand vertical
resolution of 0.38m.

Askervein hill. While a digitized version of the Askervein hill topo-
graphy is available (https://zenodo.org/record/4095052) the wind and
TKE measurements had to be manually extracted from the field
report12. We selected 13 runs measuring the turbulent wind, where the
data frommost towers is provided (in certain runs data is not reported
for all towers). Themeasurements are averaged over one- to four-hour
intervalswith varyingflowmagnitudes anddirections. Thedomain size
of 1584m× 1584m wide and 552m tall results in a four-fold resolution
increase.

Perdigão. The Perdigão dataset consists of multiple measurement
posts of different heights ranging from 10m up to 100m across the
valley or along the ridges (https://perdigao.fe.up.pt/). We used the five
minute averages and tilt corrected measurements that were recorded
throughout themeasurement campaign andwe consider data from six
different days in our evaluation. The tower positions were not stored
with sufficient precision in the dataset requiring us tomanually correct
the positions.We extracted the topography of the hills from theWorld
Elevation Terrain layer provided by Esri using ArcGIS. Perdigão
required the largest prediction domain size, 3168m× 3168mwide and
1104m tall, showcasing thewindprediction performance at double the
original resolution.

Inference time experiments setup
We ran the inference time experiments on an Orin AGX, a low power,
light weight (623 g including the carrier board and heatsink) and small
scale (105mm× 105mm×60mm) single-board computer that can be
carried by a small scale sUAV. We set up the Orin AGXwith the Jetpack
5.1 software kit that includes CUDA 11.4 and cuDNN 8.6.0 and installed
PyTorch 2.0. During the evaluation we ran the Orin in the maximum
power mode (60 W) using all 12 CPU cores.

sUAV flight tests
We used three Multiplex EasyGlider4 airframes equipped with the
Pixhawk 4 autopilot72 using the high quality ADIS16448 inertial mea-
surement unit (IMU) and the u-blox M9N GNSS module for autono-
mous navigation. We configured the main height source of our
modified PX4 autopilot73 to the GPS height and use the barometric
pressure as a fallback. An extension to the guidance law adjusting the
airspeed ensured safety during strong wind conditions5. We used a
custom designed pitot tube with the Sensirion SDP31 differential
pressure sensor and Hall sensor airflow vanes to enablemeasuring the
3Dwind vector. Refer to Supplementary Note 4 for more details about
the airflow sensing setup and calibration procedure.We used a ground
station computer with QGroundControl to control and navigate the
sUAV. While the default PX4 state estimator could be extended to
estimate the 3Dwindwe opted for an offline flight path reconstruction
(FPR) pipeline using an iterated extended Kalman filter (see a similar
problem definition in74). The offline FPR pipeline allowed us to gen-
erate high quality estimates for validating our approach and to adjust
the estimation pipeline post flight.

We gathered wind data from flights at three test sites in Switzer-
land. The first test site at Chasseral is one of the most topographically
isolatedmountains in Switzerland and is located in the Jura mountains
(47° 07’ 38” N, 7° 02’ 47” E, 1548 m above mean sea level (AMSL)). The
other test sites are locatedon the ridges of theOberalppass (46° 39’ 24”
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N, 8° 40’ 21” E, 2069mAMSL) andGotthardpass (46° 34’ 17”N, 8° 33’ 33”
E, 1960m AMSL) in the Central Swiss Alps. These were chosen to
evaluate the prediction performance for domains surrounded by
complex terrain. The spatial constraints allowed for two sUAVs to
simultaneously collectwinddata atOberalppass andGotthardpass and
three sUAVs at Chasseral. The sUAVs were flown simultaneously in
circular loiter patterns with a radius of 100m leading to lateral
separation between the planes of up to 800 m and measurements in
different flow regimes. We planned the flights based on NWP forecasts
ensuring good flight (no precipitation, fog or clouds) and stable wind
conditions (wind magnitude below the cruise speed of 10ms−1, direc-
tion and magnitude near-constant over multiple hours).

We use two modes to convert the raw wind estimates to the
WindSeer input. In the first mode we generated the input by averaging
the measurements over one loiter pattern to generate a single wind
estimate. This time-averaged data, similar to the averaged data in the
measurement campaigns with staticmasts, helped to reduce the noise
and sensitivity to sensor calibration on the input measurements. The
observations from the different sUAVs and multiple loiters enabled us
to compute the average prediction error and the correlation for each
flight experiment to see if the flow trends are well predicted. In the
second mode the input is composed of the wind data from a 120 s
window of one sUAV to predict the wind along the flight path within
the next 120 s window for both the input (itself) and the validation
sUAVs. This sequential time-windowed setup allowed us to qualita-
tively evaluate the WindSeer performance along the flight paths. A
high-resolution elevation map provided by SwissTopo40 was used to
construct the terrain for the WindSeer input.

Error metrics
In our experiments, we use a range of metrics to evaluate the perfor-
mance of WindSeer. Aside from commonly used metrics such as MSE,
RMSE, Pearson correlation coefficient (r) and bias, in this section we
define the less common error metrics used in this work.

In the CFD experiments we compute the relative error ϵrel for a
property P over all non-terrain cells as follows:

ϵrel =
1

Nwind

X
Nwind

k PWindSeer � PCFD k
k PCFD k , ð2Þ

where Nwind is the number of non-terrain cells, and ∥ ⋅ ∥ indicates ℓ2-
norm. This ensures the metric is not skewed by the number of terrain
cells in a sample as there the error is not defined. The properties we
report are the TKE and velocity magnitude (ℓ2-norm of a 3D wind
vector (u, v,w)).

The averaged speedup error ϵspeedup as presented in Bechmann
et al.10 is defined as the average of the speedup error RS over all mea-
surements:

ϵspeedup =
1
N

X
N

k RS k : ð3Þ

The speedup error is the difference of the predicted fractional
speedup ΔSp and the measured fractional speedup ΔSm for that loca-
tion:

RS = 100 ΔSp � ΔSm
� �

: ð4Þ

The fractional speedup ΔS is computed as the velocity difference at a
certain location to a reference speed normalized by the reference
speed:

ΔS=
szagl � s0, zagl

s0, zagl
, ð5Þ

where szagl is the speed at the mast location and s0,zagl is the reference
speed at the sameheight above ground zagl. These speeds caneither be
predictions from WindSeer (in the case of Sp) or measurements (Sm).

Data availability
The processed CFD data and real campaign and sUAV flight measure-
ments are available at https://projects.asl.ethz.ch/datasets/doku.php?
id=nature_2024_windseer and the ETH Research Collection75: https://
www.research-collection.ethz.ch/handle/20.500.11850/658323. The
underlying data for the figures and tables can be either obtained in the
Source Data file or step by step instructions in Supplementary Note 5
on how to extract the data are provided. Source data are providedwith
this paper.

Code availability
The code is available on github: https://github.com/ethz-asl/WindSeer
or Zenodo76: https://doi.org/10.5281/zenodo.10844690.
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