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A linear response framework for quantum
simulation of bosonic and fermionic
correlation functions

Efekan Kökcü 1 , Heba A. Labib 1, J. K. Freericks 2 & A. F. Kemper 1

Response functions are a fundamental aspect of physics; they represent the
link between experimental observations and the underlying quantum many-
body state. However, this link is often under-appreciated, as the Lehmann
formalism for obtaining response functions in linear response has no direct
link to experiment. Within the context of quantum computing, and via a linear
response framework, we restore this link by making the experiment an inex-
tricable part of the quantum simulation. This method can be frequency- and
momentum-selective, avoids limitations on operators that can be directly
measured, and canbemore efficient than competingmethods. As prototypical
examples of response functions, we demonstrate that both bosonic and fer-
mionicGreen’s functions canbeobtained, and apply these ideas to the studyof
a charge-density-wave material on the ibm_auckland superconducting quan-
tum computer. The linear response method provides a robust framework for
using quantum computers to study systems in physics and chemistry.

Quantum computers are showing promise as quantum simulators of
many-body physics, with the hope of being able to further our
understanding of complex interacting systems. In order to realize this
promise, a key task is to compute response functions for a prepared
many-body state. They represent the experimentalmeasurements that
are performed on the physical realizations of such systems, and
computing them via simulation is a critical step in connecting to
experiments and building an understanding of the physics they con-
tain. Examples of experiments that measure response functions are
neutron scattering, optical spectroscopy, and angle-resolved photo-
emission spectroscopy (ARPES), which measure the spin-spin corre-
lation, current-current correlation, and single-particle Green’s
function, respectively1,2. The first two are bosonic correlation func-
tions, while the latter is a fermionic correlation function. Both of these
contain valuable information — both have direct links to experiments,
and in addition the electronic Green’s function is a key ingredient in
hybrid-classical algorithms such as dynamical mean field theory3–8.

In all cases, correlation functions involve expectation values of the
form hAðtÞBðt0Þi; the particulars ofA andB are set by the experiment or
desired quantity. For example, in many condensed matter scattering

experiments bothA and B have definite momentum, i.e. a sum of local
operators; in contrast, scanning probe microscopy makes use of
purely local operators. This means that there is significant variation in
A and B, and in turn the need for a comparable freedom in evaluating
these on the quantum computer.

There are several existing techniques for computing correlation
functions on quantum computers. Primary among these are methods
based on the Hadamard test circuit, which rely on time evolution of a
given state9–16; other methods (most of which rely on the Lehmann
formalism1,17) include variational approaches18–22, spectral
decomposition23–25, and linear systems of equation solvers26. Each of
these has their own advantages and disadvantages, based on the par-
ticular quantum algorithms and hardware at hand. Moreover,
extending beyond simple local unitary A and B comes with the cost of
additional resources and increased error in the calculations.

In this work, we outline a method for calculating correlation
functions based on a linear response framework that is in direct cor-
respondence to experiments, as schematically illustrated in Fig. 1. The
quantum state is driven with an applied field B with specific temporal
and spatial structure, and the response of the system to that field A is
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measured as a function of space and time. The proportionality
between the field and the response then yield the desired correlation
function(s).

The linear response framework enables using generic operatorsA
andB (such as linear combinations) in the correlation functionwithin a
single quantum circuit, which has several downstream advantages. (i)
Many correlation functionsmaybeobtained at the sametime,with one
quantum circuit. (ii) Relying on a single quantum circuit avoids com-
pounding errors inpost-processing. (iii) Tailored excitations, e.g. those
that focus on a particular energy or momentum range of the correla-
tion function can be made. (iv) No ancilla qubits are needed. While
more complex operators are also possible within the competing fra-
meworks such as the Hadamard test, as it will be mentioned further, it
comes at a significantly large additional cost.

We demonstrate the power of the linear response framework by
applying it to the study of a two model systems. The first is a proto-
typical charge density wave system — the Su–Schrieffer–Heeger
model27. We use the two fermionic methods with a momentum-
selective field to obtain the electronic spectrum as would bemeasured
by ARPES on IBM quantum hardware, and on a noisy simulator to
compare the linear-response method to the Hadamard-test method.
We next use the bosonic method and frequency selectivity to obtain
the density-density response function of the same model system, as
would be measured by momentum-resolved electron energy loss
spectroscopy (M-EELS). Finally, we demonstrate the use of the tech-
nique for interacting models and compute the spectrum (retarded
Green’s function) of the 1DHubbardmodel. Thesedevelopmentsmake
significant inroads to being able to use near-term quantum computers
in real-world applications.

This work also has impact on classical computing; the approach
described below allows for one to compute response functions by
simply running time evolution on a classical computer which avoids
the need to compute vertex corrections by solving a Bethe–Salpeter-
like equation, as needed with conventional approaches2. While our
work has existing analogs for bosonic correlation functions28–31, to the
best of our knowledge the fermionic correlation functions have not yet

been explored in this realm. Our work here does not focus on this
classical application, but it should be clear that the approach devel-
oped here can be directly applied more broadly.

Results
To set the stage for our discussion, we will briefly outline the details of
the Hadamard test9 approach for obtaining correlation functions,
which underpins several of the currently used methods10–16 on near
term quantum hardware, and shares the most characteristics with the
linear response framework. The other methods are either
variational18–22, or are not amenable to near-term quantum
hardware23–25.

Figure 2 illustrates the circuit structure used for the Hadamard
test. Tomeasure 〈ψ∣A(t)B∣ψ〉withHadamard testmethod, oneneeds to
applyA and B in a controlled fashion, i.e. apply them only if the ancilla
qubit is in ∣1i state. It is efficient to do so when A and B are unitary
operators that are local in qubit space, but when they are not, further
resources are needed.

As an example, consider a correlation function in which the
operator A is a linear combination of n Pauli strings where n is the
number of qubits,A=

Pn
i = 1ζ iX i, andB is still local and unitary. One can

calculate this correlation function within this framework in two ways.
The first way is to run several circuits to obtain correlation functions
〈ψ∣Xi(t)B∣ψ〉, and post-process the results. Further, we show that this
approach is not quantum hardware noise-robust, and generates sig-
nificantly more error compared to our (second) method. In addition,
the number of shots required for this method scales with the number
of local operators in the operators. It is simply because to ensure an
error threshold ϵ for a linear combination of n terms, one must set the
error for each term to ϵ/n. This in the end leads to a number of shots
Nshot =Oðn2=ϵ2Þ per term, scaling quadratically with the system size.
The second way is to implement the Linear Combination of Unitaries
(LCU)32, to apply A directly on the state. For the case where A is not
unitary, the LCU becomes a probabilistic algorithmwith a success rate
that decreases exponentially with the system size n. This can be cured
for the case where the operator is unitary by Oblivious Amplitude
Amplification, but at the cost of significantly increased circuit depth33.

The correlation functions we consider are of the form
hAðtÞBðt0Þ±Bðt0ÞAðtÞi — the amplitude of the operatorA at time t given
that B acted on the system at time t0. The operators can be chosen to
be local in position or momentum space to obtain spatial information
about the system. The amplitudes are substracted in the case of
bosonic correlation functions, whereas they are added in the case of
fermionic correlation functions. Both can be calculated via the linear
response method that we present here. We will first describe the
formalism for bosonic correlation functions and describe how to apply
momentum and frequency selectivity. Then, we describe two different
ways to apply the linear-response formalism to calculate fermionic
correlation functions for Hamiltonians that conserve particle count
parity (maintain even or odd numbers of electrons). In what follows,
we assume the existence of a pure or mixed state of interest on the
quantum computer, which was prepared for example via variational
approaches or adiabatic state preparation. In addition, we assume
access to a method to implement evolution under both time-

Fig. 1 | Linear response method. We establish an equivalence between the
experimental measurement of a response function and an ancilla-free quantum
simulation under a time dependent Hamiltonian that includes the perturbative
excitation h(t)B. Following excitation, the system is evolved underH0, and A is
measured. The functional derivative of A(t) = 〈A(t)〉 with respect to hðt0Þ yields the
retarded response function shown in thefigure. Thedata shown is taken fromFig. 3.

Fig. 2 | Hadamard test circuit structure. for obtaining the real and imaginary parts
of the correlation function 〈ψ∣Y1(t)X3∣ψ〉. If the final rotation is Rx (Ry), the real
(imaginary) part is measured.
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independent and time-dependent Hamiltonians. There are many
choices for both; the complexities of these methods and others are
detailed elsewhere34.

Bosonic (commutator) correlation functions
The methodology employs the standard results from linear response
in many-body physics (see e.g. refs. 2,17 and 1), as we develop below.
We are interested in the expectation value of the operator A(t) mea-
sured in a prepared many-body state ∣ψ0

�
and time-evolved in the

Hamiltonian plus the applied (Hermitian) field; h(t)B that is,
HðtÞ=H0 +hðtÞB. Then, A(t) is given by

AðtÞ= hψ0jUðtÞyAUðtÞjψ0i ð1Þ

UðtÞ= T te
�i
R t

ts
H0 +Bhð�tÞ½ �d�t , ð2Þ

where U(t), in Eq. (2), is the time ordered exponential for time evolu-
tion with respect to the time-dependent Hamiltonian plus field, and ts
is the starting time such that t > ts, and hðt0Þ=0 for all t0< ts. Expanding
A(t) with respect to h(t), we find

AðtÞ=
Z

dt0χRðt,t0Þhðt0Þ+Oðh2Þ: ð3Þ

Here, χRðt,t0Þ is defined to be the functional derivative of A(t) with
respect to hðt0Þ. Using Eqs. (1) and (2), we obtain

δAðtÞ
δhðt0Þ

����
h=0

= � iθðt � t0Þ hψ0j AðtÞ,Bðt0Þ½ �jψ0i, ð4Þ

where we have AðtÞ : = eitH0Ae�itH0 . The θ-function arises because in
Eq. (2) the integration region on the time ordered exponents is limited
to �t values that are smaller than t. Since H0 is time independent, the
response function χRðt,t0Þ only depends on the time difference t � t0.
Fourier transforming from time to frequency, and using the convolu-
tion theorem, yields

AðωÞ= χRðωÞhðωÞ+Oðh2Þ: ð5Þ

Thus, if the amplitude of the signal h(t) is chosen to be small enough,
thehigher-order termscanbeneglected and the response function can
be calculated as a simple ratio in the frequency basis. Precisely how
small the amplitude should be can be found in SI, and will be
mentioned in the following sections.

One might be interested in the response function centered in a
specific frequency interval and want to improve the signal-to-noise
ratio of the calculation. This is achieved by choosing the frequency
support of h(t) to be most concentrated within the desired frequency
interval.

Similarly, by choosing A and B as operators with definite
momentum, we can directly calculate the response function in the
momentum basis. For example, for creation of a magnon with
momentum k we can pick B=

P
re

ikrXr + H.C. =
P

r2 cosðkrÞXr , where
Xr is Pauli Xmatrix applied on the rth site. In general,B =∑rζrσrwill be a
linear combination of non-commuting Pauli strings. In that case, the
signal can be implemented via 1st order Trotter-Suzuki approximation

e�ihðtÞBΔt =
Y
r

e�ihðtÞΔtζ rσr +Oðh2Þ: ð6Þ

For further error analysis, see SI. We can use a similar form for A as we
use forB, but since it is directlymeasured (rather than appearing in the
time evolution), this can simply be achieved with multiple circuits.
However, if H0 is translation invariant, a single circuit is sufficient to

calculate the response function χR in momentum space for a given
momentum value, because it satisfies

χRk,k 0 ðt � t0Þ= δk,k 0χRk,kðt � t0Þ; ð7Þ

that is, it is diagonal in momentum. This property is purely a result of
translational invariance: momentum is always conserved. and thus
unless k = k0, the amplitudes must be zero, leading to Eq. (7).

Momentum and frequency selectivity allow us to immediately
focus the signal we obtain from the quantum computer into desired
ranges of momentum or frequency. This frequency selectivity is not
easily performedwith the Hadamard test35,36. Moreover, implementing
amomentum selective operator can only be achieved via costly circuit
modifications such as LCU. To avoid this, other approaches require
each real space pair (r1, r2) to be measured separately with indepen-
dent circuits; these are then Fourier transformed to obtain a momen-
tum response function. On a noisy device, errors from the different
circuits measurements can lead to both structured and unstructured
noise (see Supplementary Note 2), reducing the precision of the final
result. In the following sections, we show thatmomentumselectivity in
our approach significantly reduces noise in the measured signal.

In short, the procedure to obtain the correlation function
〈ψ0∣[A(t),B]∣ψ0〉 is as follows:
1. Evolve ∣ψ0

�
with the perturbed Hamiltonian HðtÞ=H0 +hðtÞB

during the time where h(t) is finite. h(t) should be a small field in
order to ensure the simulation is in the linear response regime.

2. Continue to evolve with the unperturbed Hamiltonian H. The
maximum length of time needed is set by the desired minimum
energy resolution.

3. At each time of interest t, measure A(t) = 〈A(t)〉.
4. Fourier transform A(t) to A(ω) and divide by h(ω) to obtain χ(ω),

thus performing the (numerical) functional differentiation.

Fermionic (anti-commutator) correlation functions
The most important fermionic correlation function is the retarded
electronic Green’s function given by

GRðri, t; rj , t0Þ= � iθðt � t0Þhψ0jfciðtÞ, cyj ðt0Þgjψ0i, ð8Þ

where ci and cyj are the fermionic annihilation and creation operators at
r = ri and rj, respectively. Note that Eq. (8) is the correlation function
with respect to a singlemany-body state ∣ψ0

�
. For the Green’s function

atT =0 in standardmany-body theory ∣ψ0

�
is the ground state. Atfinite

temperatures the expectation value has to be additionally averaged
over a thermal distribution of states, which can be achieved via
classical averaging of eigenstates37–39 or by going over to a density
matrix representation32,40–45. The formalism below is applicable for any
of these cases.

The functional derivative method does not directly carry over,
because it requires adding a Grassman number valued field, which
cannot be easily realized in a numerical simulation. This has thus far
limited the potential of ancilla-free methods to bosonic correlation
functions only35,36. To overcome this, we introduce two com-
plementary approaches. The first uses an auxiliary operator P which
anti-commutes with B, while the second uses simple post-selection.

First, we discuss a method based on the use of an auxiliary
operator.We consider the fermionic version of Eq. (4), and denote this
by Gðt,t0Þ :

Gðt, t0Þ= � iθðt � t0Þ hψ0j AðtÞ,Bðt0Þ� �jψ0i: ð9Þ

In order to produce an anticommutator, we introduce an addi-
tional operator P which satisfies the following properties
1. P∣ψ0

�
= s∣ψ0

�
with s ≠0.

2. {B(t),P} = 0 for all times t.
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3. ½H0,P�=0, or P has no time dependence.

With these properties, it is straightforward to show that

Gðt, t0Þ= i
s
θðt � t0Þ hψ0j AðtÞPðtÞ,Bðt0Þ½ �jψ0i: ð10Þ

This is of the form of Eq. (4) with A(t) replaced by A(t)P(t); therefore,
the bosonic linear response method can be directly used.

WhenGðt,t0Þ is the retarded electronicGreen’s function Eq. (8), the
assumptions are satisfied by the parity operator for Hamiltonians that
preserve particle parity; this covers a vast class of Hamiltonians of
interest in quantum chemistry, condensed matter physics and quan-
tum field theory. If the Hamiltonian of interest conserves the parity of
the electron number, then the parity operator P = Z1Z2. . . Zn satisfies
second and third conditions, where we use the spin representation
(obtained after Jordan-Wigner transformation) to represent the parity
operator. The fermionic operators, ci and cyi , in their spin representa-
tion, have a Jordan-Wigner string attached46; that is, they are com-
posed of i − 1 consecutive Z operators followed by a X ± iY:

ci =Z0Z 1 . . .Zi�1
Xi � iY i

2
=

~Xi � i~Y i

2
ð11Þ

cyi = Z0Z 1 . . .Zi�1
Xi + iY i

2
=

~Xi + i~Y i

2
: ð12Þ

In this case both ci and cyi anticommute with the parity operator
P = Z1Z2. . . Zn, which satisfies the second condition. With this, Gðt,t0Þ
canbe obtained bymeasuring Eq. (10) upon replacingAwith ~XiP (and/
or ~Y iP) and B with ~Xj (and/or ~Y j).

While the requirements on P may seem restrictive, particle num-
ber parity conserving Hamiltonians form a large class containingmany
systems of interest. First, it covers any particle number conserving
system such as molecules and condensed matter systems such as
Hubbardmodel; all terms of these Hamiltonians have equal number of
creation and annihilation operators (cyi cj , cyi c

y
j crcs, . . .). In addition to

these systems, this method of auxiliary operator works for Hamilto-
nians that contain pair creation/annihilation terms such as cicj, cyi c

y
j .

These clearly do not conserve particle number; however, these terms
generate or destroy even number of particles, leading to the con-
servation of the particle number parity operator. Similar terms are
present in the effective theories for superconductivity.

We can choose h(t) and B to have frequency and momentum
selectivity in the sameway as we did for bosonic correlation functions.
Thus, we can directly calculate the fermionic Green’s function in
momentum space,

GRðk, t; k0, t0Þ= � iθðt � t0Þhψ0jfckðtÞ, cyk0 ðt0Þgjψ0i, ð13Þ

by selecting A as a Fourier combination of ~XiP (and/or ~Y iP) with
momentum k, and B as a Fourier combination of Xj (and/or Yj) with
momentum k0, and forming the appropriate linear combination to
select the desired c/c† terms. Similarly, by choosing an appropriate
frequency support for h(t), we can calculate GR in a desired
frequency range.

We next turn to a post-selection method to obtain fermionic
single-particle Green’s functions.When the desired anti-commutator is
the single-particle Green’s function (Eq. (8)) for a particle number
conserving Hamiltonian, i.e. ∣ψ0

�
is an N-particle wave function, a

powerful alternate approach exists. A complete derivation is shown in
the supplementary material; we outline the salient parts here. Let us

specify our perturbing field as

B=
X
m

αm
~Xm =

X
m

αm cm + cym
� �

: ð14Þ

Position ormomentum selectivity can be imposed by the choice of αm.
Starting from a wavefunction with N particles and evolving with
H0 +hðtÞB, the system will be in a superposition of the N − 1, N, and
N + 1 particle sectors to linear order in h(t). For clarity, let us choose
h(t) = ηδ(t) where η≪ 1 and δ(t) is a Dirac delta pulse. This choice is not
necessary, we can choose h(t) more generally to achieve frequency
selectivity. In order to measure the Green’s function we apply a rota-
tion about y (or x) to enable measurement of c1 ± c

y
1 on the first qubit,

which generates N − 2 and N + 2 particle states as well. Denoting ∣Φy
M

�
(or ∣Φx

M

�
) as theM particle component of this final state, the state right

before the measurement with y rotation is

∣Ψy�= ∣Φy
N�2

�
+ ∣Φy

N�1

�
+ ∣Φy

N

�
+ ∣Φy

N + 1

�
+ ∣Φy

N + 2

�
,

and with y↔ x for the x rotation case. The ∣ΦxðyÞ
M

E
components of the

final state are not normalized, and in fact their norms give the prob-
ability to observeM particles. These components can be separated via
post selection, and quantities such as hΦy

M jΦy
Mi and hΦy

M jcyi cijΦy
Mi can

be measured within the M particle sectors. In Supplementary Note 3,
we show that the following linear combinations of those quantities
yield the desired Green’s functions:

hΦy
N�1jΦy

N�1i+ hΦy
N + 1jΦy

N + 1i=
1
2
+ η

X
m

αmRe G >
1mðtÞ � G<

1mðtÞ
� 	

=
1
2
+ η

X
m

αmReG
R
1mðtÞ

ð15Þ

hΦy
N jcy1c1jΦy

Ni+ hΦy
N + 1jΦy

N + 1i=
1
2
+ η

X
m

αmRe G >
1mðtÞ+G<

1mðtÞ
� 	

ð16Þ

hΦx
N�1jΦx

N�1i+ hΦx
N + 1jΦx

N + 1i=
1
2
+ η

X
m

αmIm G >
1mðtÞ � G<

1mðtÞ
� 	

=
1
2
+ η

X
m

αmImGR
1mðtÞ

ð17Þ

hΦx
N jcy1c1jΦx

Ni+ hΦx
N + 1jΦx

N + 1i=
1
2
+η

X
m

αmIm G >
1mðtÞ+G<

1mðtÞ
� 	

ð18Þ

where the fermionic Green’s functions are1,

G<
ijðtÞ = ihψ0jcyj ð0ÞciðtÞjψ0i

G >
ij ðtÞ = � ihψ0jciðtÞcyj ð0Þjψ0i
GR
ijðtÞ = � iθðtÞhψ0jfciðtÞ,cyj ð0Þgjψ0i:

ð19Þ

While this is limited to particle-conserving Hamiltonians, this is a
relatively mild restriction as all fermionic Hamiltonians that do not
have superconducting terms (pair-creation and pair-annihilation)
satisfy this restriction.

Error analysis and scalability
In SupplementaryNote 6,we analyze threedifferent sources of error for
a time local signal h(t) = ηδ(t) in detail: non-linear excitations, Trotter
error for the driving field eiηB, and the statistical error coming from
measurement. To ensure that the non-linear contribution is smaller
than ϵNL, the signal amplitude should be chosen as η=OðϵNL=jjBjj2jjAjjÞ,
where ∣∣.∣∣ is the spectral norm. We further show that 1st order Trotter
error is OðϵNLα1

commðBÞ=jjBjjrÞ where r is the number of Trotter steps
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used to apply eiηB, and α1
comm is defined in ref. 47 Theorem 1. Finally, the

statistical error of measurement is OðjjAjj2jjBjj2=ϵNL
ffiffiffiffiffiffiffiffiffiffiffi
Nshot

p
Þ, where

Nshot is the sample size, or number of shots.
If the operators A and B are linear combinations of Poly(n) Pauli

strings where n is the number of qubits or the system size, and
assuming the coefficients do not dependonn, we find that the spectral
norms ∣∣A∣∣, ∣∣B∣∣ and the commutative norm α1

commðBÞ scale poly-
nomially with the system size, which lead to a requirement of
Nshot =OðPolyðnÞ=ϵ2NLϵ2measÞ number of shots to keep the measurement
error less than ϵmeas. Thus, the method is scalable for various cases
including momentum definite response functions.

For many response functions the operators A and B are intensive
quantities, and thus are normalized accordingly with the system size.
In turn, their operator norm and hence the response function’s max-
imumpossible value is 1. When α1

commðBÞ=0 the Poly(n) term vanishes,
and Nshot =Oð1=ϵ2NLϵ2measÞ, completely independent of the system size.
For spin systems where excitations of the response function are linear
combinations of commuting local variables, this leads to a better result
compared to the Hadamard test, which has a quadratically scaling
number of shots with the system size.

However for response functions such as momentum-definite
single particle fermion Green’s functions, because none of the Pauli
strings in B commute with each other, α1

commðBÞ=OðnÞ, and
ϵNL =Oðr=nÞ. In Supplementary Note 7, and as discussed in ref. 48, we
observe that the theoretical error bounds are loose and lead to higher
resource estimates than required. As such, even r = 1 might be suffi-
cient to achieve good results, although the theoretically estimated
number of shots can also be made independent of the system size by
choosing the number of Trotter steps r = n.

Green’s function of the SSH model
We demonstrate the linear response approach by calculating the fer-
mionic Green’s function as would be measured by ARPES (angle-

resolved photoemission spectroscopy). We study a minimal model for
a charge density wave known as the Su–Schrieffer–Heeger (SSH)
model — an N-site 1D spinless free fermionic chain with nearest-
neighbor bond-dependent hoppings (see Fig. 3a) — in the limit where
the lattice distortion is static,

H0 = �
X
hi,ji

Vnn + �1ð Þiδ=2
h i

cyi cj � μ
X
i

cyi ci : ð20Þ

For finite δ this model exhibits a charge density wave, with a gap
proportional to δ.

To reduce our quantum computing resource needs, we apply a
number of simplifications particular to this example. First, we address
the issue of ground state preparation. Normally to calculate the single
particle Green’s function for this model, one should first generate the
ground state of the model. There are numerous methods to generate
the ground state or an approximate ground state for a given model34.
The Green’s function then can be calculated by our linear response
method. Since our purpose here is to demonstrate our algorithm, we
adjust the chemical potential to μ = −5 so that the ground state is the
trivial no particle state. To be clear, our method can calculate the
response function on any state. But for that response function to be a
Green’s function, the state must be the ground state.

The second simplification is made in the operators we measure
and apply, i.e. A and B. We use a momentum-selective instantaneous
(and thus broadband) driving field coupled to the particle creation and
annihilation operators that act on all the sites i,

B=
X
i

cosðkriÞ ci + c
y
i

h i
, ð21Þ

with a pulse h(t) = ηδ(t), where we used η =0.04. Because the ground
state contains no particles, this operator is equivalent to

Fig. 3 | Electronic Green’s function for the Su–Schrieffer–Heeger (SSH) model.
a Lattice and hopping structure of the SSH model. b Compressed linear response
method quantum circuit run on ibm_auckland (For system and calibration details,
see SupplementaryNote 5).XY indicates a rotation aboutXX followedbyYY, or tobe
more explicit, it is expðiθðXX + YY ÞÞ= expðiθXX Þ expðiθYY Þ. We find the angles of
each gate by the algebraic compression method given in50,51. c Fermionic correla-
tion function Lk ðtÞ= 2 Re Gk ðtÞ for δ =0 using the commutator method. Data for

other values of δ are available in the Supplementary Note 1. d Normalized power
spectrum jLk ðωÞj2. e–g Normalized false-color plots of jLk ðωÞj2 for δ = {0, 0.4, 0.8}.
Green dashed lines indicate the expected bounds of the gap, and the red lines the
analytically obtained spectrum. h, i Normalized false-color plot of post-selected
hΦy

0jΦy
0i and hΦy

1 jΦy
1 i, respectively (see text for definition). The projected norms

contain the same spectral information as Lk ðωÞ.
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B � P
i cosðkriÞXi, which is much simpler to implement, because all

Pauli strings within it are 1-qubit operators, and commute with each
other, therefore avoiding Trotter error. We measure A=X0 = c0 + c

y
0

which is local in position, and includes all momentum modes. Due to
momentum conservation, measuring any eXi would lead to the same
result, but we choose A= eX0 =X0 to minimize the weight of the
measured Pauli string (and thus reduce measurement noise49). By
measuring X0 we obtain

LkðtÞ= � ih0j X0ðtÞ,
X
i

cosðkriÞXi

" #
j0i : ð22Þ

In the frequency basis, this becomes (see Supplementary Note 4 for
details)

LkðωÞ= GkðωÞ+Gkð�ωÞ*: ð23Þ

In general, tomeasure Gk(ω), one should isolate the spectrum ofLkðωÞ
from Gk(−ω)

*, which requires measuring A = Y0 as well. However, since
μ = −5, for this model the single particle energies are manifestly posi-
tive, and the interference between Gk(ω) and Gk( −ω) is negligible.
Thus, jLkðωÞj2 tracks the quasi-particle peaks in Im GkðωÞ, and
measuring LkðωÞ is sufficient to obtain the single-particle spectrum.

We performed the calculation on the 27-qubit ibm_auckland
superconducting quantum computer (for system and calibration
details, see Supplementary Note 5) for an N = 8-site chain, which has
allowed momentum values k = 2π

N j, j 2 0 . . . 7f g. Since the driving field
B is symmetric in k, both k and − k are obtained at the same time. We
used a compressed free fermionic evolution, which is discussed in
detail in refs. 50,51 and further simplified into the circuit in Fig. 3b (see
Supplementary Note 4 for details). Figure 3c shows the raw data for
LkðtÞ with δ =0 at each unique k; the data was obtained from
ibm_auckland via the parity operator method. The power spectrum is
shown in Fig. 3d–e. While the data from the quantum computer
appears quite noisy, in the frequency regime of interest there is only a
single peak present in the Fourier transform, illustrating the remark-
able strength of a momentum-selective probe, which picks out the
single energy at eachmomentum, togetherwith Fourierfiltering. Upon
increasing δ (Fig. 3f, g), a gap opens up in the spectrum (time traces
and Fourier power spectra are available in the supplementary mate-
rial). The spectrum for δ =0.4 is noisier than the other two, which we
attribute to machine noise from those particular measurements. In
panels h and i, we plot the norms of 0- and 1- particle components of
the state right before the measurement, i.e. hΦy

0jΦy
0i and hΦy

1 jΦy
1 i,

where ∣Φy
M

�
is defined above Eq. (15). Both methods faithfully repro-

duce the power spectrum, with slightly higher levels of noise for post-
selection on N = 1.

For each k and δ shown in Fig. 3 we collected 3 data sets with
8000 shots each, yielding 24,000 shots total per curve.We did not use
read out error mitigation, however we incorporated dynamical
decoupling and Pauli twirling as implemented in the qiskit_research
package52. The raw and calibration data are shown in the supplemen-
tary material.

In order to further underscore the power of the momentum-
selective linear response approach, we compare its effectiveness to a
position-selective linear response andHadamard testmethods in Fig. 4
on a noisy simulator with one/two qubit noise of 1% and 10%, respec-
tively. Compared to themomentum-selective linear responsemethod,
the position-selective one is noisier, but without particular structure.
The Hadamard test, on the other hand, exhibits streaks that arise from
leakage of signal fromonemomentum to the others. There are twokey
reasons for the differences seen in the figure. First, both position-
selective and Hadamard test methods involve excitations at each
position (Xi in the figure). These must be combined in the post-
processing with a Fourier transform. But, because a Fourier transform

relies on constructive/destructive interference between signals, and
we are performing this on noisy data, the interference is not perfect,
which leads to leakage between momentum channels. When the cir-
cuits to be run for each Xi are not identical in structure, the noise
becomes dependent on i. This also leads to a momentum-dependent
noise term fk, which in turn appears in the momentum space signal as

Gobserved
k ðtÞ /

X
p

f k�pG
exact
p ðtÞ, ð24Þ

which we derive in the Supplementary Note 2. Second, the Hadamard
testmethod introducesmore of the sameproblem because each Xi is a
separate circuit— in addition to needingmore circuits to be run and an
additional ancilla. This further exacerbates the issue with the Fourier
analysis. The momentum-selectivity avoids these issues by making a
unique excitation and thus producing a response functionwith a single
large contribution.

Green’s function of the 1D Hubbard model
The method is equally applicable to interacting models that are not
simply integrable; here we demonstrate this by calculating the Green’s
function of a periodic 1D Hubbard model with N = 6 sites (12 spin-
orbitals). The Hamiltonian for the model is

H= � t
X
hi,ji,σ

cyi,σcj,σ + c
y
j,σci,σ

� �
+U

X
i

ni,"ni,# +μ
X
i,σ

ni,σ ð25Þ

where ni,σ = c
y
i,σci,σ . The first term in the Hamiltonian is the nearest-

neighbor hopping between sites, the second term governs the on-site
electron-electron interactions with strength U, and the last term sets
the chemical potential for themodel. We set μ = 0, so the ground state
of the system is half-filled. The calculations were performed using a

Fig. 4 | Comparison of the momentum selective linear response, position
selective linear response, and Hadamard test methods. The circuit diagrams
schematically represent the 3 approaches: a linear response with momentum
selectivity, b linear response in position space and c Hadamard test in position
space. The simulations were run on a noisy simulators with one/two qubit noise of
1% and 10%, respectively. While the momentum selective linear response method
directly yields Lk ðtÞ, an additional spatial Fourier transformation is needed for the
other two methods.
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statevector simulator, with the ground state prepared via exact
diagonalization.Weobtained the retardedGreen’s function via Eq. (10)
for different interaction strengths U using a momentum-selective
driving field (c.f. Eq. (21)) and a Gaussian temporal profile. The results
are shown in Fig. 5 for various values of U. With increasing interaction
strength, a gap opens in the spectrum, satellite peaks appear, and a
reduction in theweights of the sub-bandsoccurs, all in agreementwith
the known results for this model53,54.

Polarizability of the SSH model
We next consider the polarizability χ(q,ω) of the 1D chain. The polar-
izability is the response of the electronic system to an applied poten-
tial. It plays a critical role in the screening of interactions between
electrons in solids and molecules, and in their electromagnetic prop-
erties. Experimentally, the polarizability can be studied by light
absorption or scattering, or by momentum-resolved electron energy
loss spectroscopy (M-EELS). The polarizability is defined by

χðr, tÞ= � ihψ0jδnðr, tÞδnðr =0, t =0Þjψ0i, ð26Þ

i.e. it is a charge-charge correlation function. Here δn is the change in
the charge from the equilibrium density. The observable A is the
charge, and the applied field B (which is coupled to the charge) is a
potential. The excitations are changes in the density, which are
composed of pairs of fermionic operators, and thus this is a bosonic
correlation function.

For this demonstration, B acts on a single site, and we classically
simulate a partially filled 24-site chain (μ =0.9, which was chosen to
reveal the salient features of a 1D system). As discussed above, one of
the advantages of the linear response framework is that all 24 corre-
lation functions are obtainedwith a single calculation. Figure 6a shows
Im χðq,ωÞ, which is the double Fourier transform of χ(r, t) obtained
from driving a single site with a sharp h(t). Im χðq,ωÞ has all the text-
book features of the response of a 1D charged system55; there is no

response at all at q = 0 due to charge conservation, there is a narrow
dispersive feature at low q,ω that broadens with increasing q, and a
low-energy turnover with a minimum at 2kF.

Since h(ω) has support across the entire spectrum of χ(q,ω)
(shown in the inset), the entire spectrum can be obtained from this
measurement. This is in contrast to panel b, where we drive with a
short-duration sinusoid centered at ω = 1.5. This excitation is fre-
quency-selective; that is, it only excites the system at frequencies
where h(ω) hasfinite support. This range of frequencies is indicated by
dashed lines in thefigure.Withour particular choiceofh(t),we are able
to observe some of themiddle range of excitations, but are insensitive
to the lower frequencies and the topof the spectrum.Note that there is
no restriction on the Fourier transformof χ(r, t) per se; rather, the need
to divide by h(ω) (see Eq. (4)) limits the applicable window to the
ranges where h(ω) is sufficiently far from zero.

Discussion
The linear-response based formalism is a shift in perspective on
quantum simulation where the experiment itself is simulated. This is in
contrast to Hadamard test based approaches, where the system is
simulated and the desired observables are extracted either outside of
the system qubits and/or from a large excitation. This shift in per-
spective and methodology enables a much broader set of observables
to be envisioned and easily calculated without additional post-
processing. And, unlike variational methods for computing response
functions18–22, it relies almost entirely on time evolution, a task for
which quantum computers are well-suited.

The linear response method enables efficiently obtaining a num-
ber of dynamical properties. The fact that it is efficient is important
because we expect quantum computation to remain costly for quite
some time – this is true on today’s NISQ hardware, andwill also be true
for early fault tolerant quantum computing. Thus, if the properties can
be obtained in as few circuits as possible, and with a higher tolerance
for error, this is beneficial. Our proposed algorithm achieves
precisely this.

This shift inperspective and the resulting implementation leads to
several clear advantages:
1. Efficiency is achieved by enabling the measurement of many

correlation functions at the same time (see also Gustafson et al.35).
For example, a local excitation can provide a researcher access to
χ(r, t) given in (26) for all values of rbecauseallnr canbemeasured
simultaneously.

2. Additional efficiency andnoise resilianceare achievedby enabling
the excitation/measurement to be any Hermitian operator,
potentially obviating the need to run many circuits and having to
post-process the data from multiple different circuits, each with
its own noise characteristic.

3. Being able to make tailored excitations means that researchers
can pinpoint the regime they are interested in and study precisely
the excitations of interest, within a single circuit. This is an
improvement over rather than having to extract the signal of
interest out of the full system response (plus the noise), or having
to rely on cancellation between the (noisy) results obtained from
several circuit runs.

4. Fault tolerant quantum computing comes at a significant qubit
overhead cost. An algorithm that has a high tolerance for error
and requires 1 fewer qubit will enable earlier hardware calculation
of response functions.

Fermionic response functions (anti-correlation functions) can be
obtained with the same experimentally centered, linear response
perspective; this is unlike other ancilla-free methods35,36 which are
limited to bosonic response functions. The post-selection method is
intuitive, as the particle number sectors are clearly delineated. On the
other hand, the auxiliary operatormethod is an unusual perspective; it

Fig. 5 | Green functions for the 1DHubbardModel. False color plot of jGR
k ðωÞj2 for

various values ofU. The interactions add a shift proportional to themagnitude ofU
to each of the excitation peaks in the spectrum and additional satellite peaks start
to appear.
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is sufficient to measure almost the same operator as for the bosonic
correlation function. The electron Green’s function, for example, is
obtained simply by keeping track of the parity as well as the occupa-
tion numbermeasurement. In either case, this is an important advance
since electron Green’s functions play a key role in physics; as an
important measurement per se56, and as an ingredient in embedding
theories such as dynamical mean field theory3–8.

While here we have explicitly demonstrated the linear response
approach in the context of a charge density wave, it is a generalmethod
to obtain response functions, and is not limited to electronic Hamilto-
nians. It canbe applied to spinorbosonicmodels, or othermodels from
fields where quantum simulation plays a role, including chemistry and
high energy physics. Different choices ofA andB extend themethod to
a wide variety of observables. For example, the conductivity is a
current-current correlation function, forwhichh(t) is an appliedelectric
field. A zz-spin susceptibility can be obtained with h(t) as a z-axis mag-
netic field, and the operators A =B = Sz. Moving forward, the functional
derivative formalism can be extended to higher order derivatives that
involve multiple driving fields. One notable application is resonant
inelasic X-ray scattering (RIXS), which is a four-point correlation
function57, which is very challenging to calculate via diagrammatics. In
addition, and aside fromdirect experimental probes, pairing vertices in
superconductors and other ordered phenomena also fall into this class
of observables. We reserve these discussions for future work.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the SupplementaryMaterials. The data for the Figs. 3,
4, 5 and 6 are available at https://doi.org/10.5061/dryad.51c59zwcn.

Code availability
Code is available from the corresponding author upon request.
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