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Nanosecond anomaly detection with
decision trees and real-time application to
exotic Higgs decays

S. T. Roche 1,2, Q. Bayer 2, B. T. Carlson 2,3, W. C. Ouligian2, P. Serhiayenka2,
J. Stelzer 2 & T. M. Hong 2

We present an interpretable implementation of the autoencoding algorithm,
used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the StandardModel. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of theHiggs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge AI users with resource constraints.

Unsupervised artificial intelligence (AI) algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN1. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson2,3 and study its properties4,5 aswell as to probe the unknown and
undiscovered BSM physics (see, e.g.,6–8). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes9–13. An active area of AI research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
providesmethods to find rare andunanticipatedBSMphysics.Muchof
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data14–70. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC71–74. A related but separate endeavor,which is
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments75,76, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

algorithms executedona computing farm.Thefirst-level FPGAportion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining ≈ 99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
depending on the design77.

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously78,79, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple-
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i.e., BSM-vs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con-
ventional cut-based algorithms.
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Our focus is to search for Higgs bosons decaying to a pair of BSM
pseudoscalars with a lack of sensitivity due to a bottleneck in the
triggering step. We examine the scenario in which one pseudoscalar
with ma = 10 GeV subsequently decays to a pair of photons and the
second pseudoscalar with a larger mass decays to a pair of hadronic
jets, i.e., H! aa0 ! γγjj80, one of the channels of the so-called exotic
Higgs decays81. The recent result for this final state82 does not probe
the phase space corresponding to ma < 20 GeV due to a bottleneck
from the trigger. The study presented here considers various general
experimental aspects of the ATLAS and CMS experiments to show that
our tool may benefit ATLAS, CMS, and other physics programs gen-
erally. We demonstrate that the use of our autoencoder can increase
signal acceptance in this region with a minimal addition to the overall
trigger bandwidth.

Beyond our benchmark study, we consider an existing dataset
with a range of different BSM models, referred to here as the LHC
physics dataset83, to compare our tool with the results of the pre-
viously mentioned neural network-based autoencoder designed for
FPGA77. Lastly, the robustness of our general method is considered by
training with samples having varying levels of signal contamination.

This paper uses Higgs bosons to explore the unknown using real-
time computing. Butmore generally, such inferencesmade on edge AI
may be of interest in other experimental setups and situations with
resource constraints and latency requirements. It may also be of
interest in situations in which interpretability is desirable84.

Results
We describe the design of a decision tree-based autoencoder and the
training methodology. We then present our benchmark results of a
scenario in which an anomaly detector could trigger on BSM exotic
Higgs decays in the real-time trigger path. As a test case, we also
consider the LHC physics dataset83 with which our results are com-
pared using a neural network implementation77. Lastly, a study show-
ing our autoencoder’s effectiveness to signal contamination of training
data is presented.

Autoencoder as anomaly detector
Our autoencoder (AE) is related to, and extends beyond, those based
on random forests85,86. We note that there are related concepts in the
literature with various levels of algorithmic sophistication87–90, but
these approachesmaybemore challenging to implement on the FPGA.
We build on the deep decision tree architecture that uses parallel
decision paths of fwXmachina78,79. A general discussion of the tree-
based autoencoder is given below. The subsections that follow will
detail the ML training, the firmware design, including verification and
validation, and the simulation samples.

A tree of maximum depth D takes an input vector x, encodes it
to the latent space as w, then decodes w to an output vector x̂.
Typically both x and x̂ are elements of RV while w is an element of
RT , where V is the number of input variables and T is the number of
trees, i.e.,

x �!encoder
w �!decoder

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

autoencoder

x̂:
ð1Þ

Typically the latent space is smaller than the input-output space, i.e.,
T<V, but it is not a requirement. A decision tree divides up the input
spaceRV into a set of partitions {Pb} labeled by bin number b. The b is a
B-bit integer, where B ≤ 2D, since the tree is a sequence of binary splits.

The encoding occurs when the decision tree processes an input
vector x to place it into one of the partitions labeled byw. Ifmore than
one tree is used, thenw generalizes to a vectorw. The decoding occurs
when w produces x̂ using the same forest. The bin number b

corresponds to a partition inRV , which is a hyperrectangle Pb defined
by a set of extrema in V dimensions.

A metric d provides an anomaly score calculated as a distance
between the input and output, Δ=dðx,x̂Þ, which is our analog of the
loss function used in neural network-based approaches. Our choice for
the estimator of Pb is the dimension-wise central tendency of the
training data sample in the considered bin, x̂ =medianðfxgÞ 8x 2 Pb.
The median minimizes the L1 norm, or Manhattan distance, with
respect to input data resembling the training sample.

The encoding and decoding are conceptually two steps, with the
latent space separating the two. But, as explained in the next section,
our design executes both steps simultaneously and bypasses the latent
space altogether by a process we call ⋆coder (star-coder), i.e., x̂= ? x,

x �!?coder
x̂: ð2Þ

Finally, the anomaly score is the sum of the L1 distances for each
tree in the forest, i.e.,

ΔðxÞ=dðx, ? xÞ=
X

trees

t

X

vars

v

∣xv � ?xv,t ∣:
ð3Þ

When theparameters of the autoencoder are trainedon knownSM
events, the autoencoder ideally produces a relatively small Δ when it
encounters an SM event and a relatively large Δ when it encounters a
BSM event. The metric sums the individual distances for variables of
different types, such as angles and momenta, so the ranges of each
variable must be carefully considered. At the LHC they are naturally
defined by the physical constraints, e.g., 0 to 2π for angles and 0 to
pmax
T , the kinematic endpoint, for momenta. The values are trans-

formed into binary bits to design the firmware; see Appendix C.3 of
Ref. 78 for a detailed discussion.

An illustrative example of the decision tree structure is given in
Supplementary Fig. 1, and a demonstration of the autoencoder using
the MNIST dataset91 is given in Supplementary Fig. 2.

ML training
Themachine learning (ML) training of the autoencoder described here
is novel and is suitable for the physics problems at hand. Qualitatively,
the training puts small-sized bins around regions with high event
density and large-sized bins around regions of sparse event density. An
illustration of the bin sizes is given with a 2d toy example in Supple-
mentary Fig. 3, which shows the decreasing sizes of bins as the tree
depth increases.

The following steps areexecuted. To start,x = {xv} = {x0, x1,…, xV−1}
is a vector of lengthV, the number of input variables, that describes the
training sample S. (1) Initialize s with S in steps 2–4 and depth d = 1.
(2) For the sample s, the PDF pv is the marginal distribution of bit-
integer-valued input variable xv for a given v. The PDF pm is the dis-
tribution of the maximum values of the set {pv}. Sampling the
maximum-weighted PDF m ⋅ pm gives ~m=m~v that corresponds to the
x~v. (3) The PDF p~v is for the x~v under consideration. Sampling p~v yields
a threshold value ~c. (4) The sample s is split by a cut g = ðx~v < ~cÞ. (5) The
steps 2–4 are continued recursively for the two subsamples until one of
two stopping conditions are met: (condition-i) the number of splits
exceeds themaximumalloweddepthD, (condition-ii) the split in step 3
produces a sample that is below the smallest allowed fraction f of S.
(6) When stopped, the procedure breaks out of the recursion by
appending the requirement g to the set G. (7) In the end, the algorithm
produces a partition G of the training sample called the decision tree
grid (DTG) that corresponds to adeepdecision tree (DDT) illustrated in
Fig. 1. The pseudocode given below finds G=DTGðS,;,1Þ.
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function DTG(training sample s, partition G, depth d)
1: if (∣s∣/∣S∣ < f or d >D), then
2: return G
3:end if

• Identify the variable x~v to cut on
4:pv← PDF(xv) ∀ xv ∈ x Build set of pdfs for input

variables
5: pm  PDFðfmaxðpvÞg 8 v 2 V Þ Build pdf of max of input pdfs
6: ~m sampleðm � pmÞ Sample max-weighted pdf
7:~v vwheremv = ~m Find variable index

• Find threshold ~t to cut on x~v

8:~c sampleðp~vÞ Sample variable pdf
9:g  x~v<~c Make selection

• Build partition
10:G← append g Add to G the new selection g

• Recursively build the decision tree
11: call DTG(s if g, g, d + 1) Call DTG on subset passing g
12:call DTG(s if not g, not g, d + 1) Call DTG on subset failing g
13: return G

Weighted randomness in both variable selection x~v and threshold
selection~c allow for theconstructionof a forest of non-identical decision
trees to provide better accuracy in the aggregate. As our ML training is
agnostic to the signal process, the so-called boost weights are not rele-
vant because misclassification does not occur in one-sample training.

An information bottleneck may exist, where the input data is
compressed in the latent layer of a given autoencoder design, then
subsequently decompressed for the output. For our design, the latent
layer is theoutputof the setofdecision treesT in the forest. Accordingly,
the latent data is the set of bin numbers from each decision tree, i.e.,
{b0,b1,…,bT−1}. Compression occurs if T is smaller than the number of
input variables V, i.e., T/V < 1. We will see later that the benchmark
physics process is not compressedwithT/Vof about four, while the LHC
Physics problem is compressed with T/V of about half. This demon-
strates that the autoencoder does not necessarily rely on the informa-
tionbottleneckbut ratheron thedensity estimationof the feature space.

Simulated training and testing samples
The training and testing samples are generated using the Monte Carlo
method that is standard practice in high energy physics. In our study,
we use offline quantities for physics objects to approximate the input
values provided at the trigger level, as offline-like reconstruction will
be available after the High Luminosity LHC (HL-LHC) upgrade of the
level-1 trigger systems of the experiments92,93. A brief summary of the
samples is given below (see “Methods” for technical details).

The training sample consists of half a million simulated
proton-proton collision events at 13 TeV. It is comprised of a
cocktail of SM processes that produce a γγjj final state, where j
represents light flavor hadronic jets, weighted according to the SM
cross sections.

The testing is done on half a million of the above process as the
background sample as well as on a signal sample for the benchmark
of the Higgs decay process H125→ a10 a70→ γγjj with asymmetric
pseudoscalar masses of 10 and 70 GeV, respectively. To show that
our training is more generally applicable to other signal models
beyond the benchmark, we consider an alternate cross-check sce-
nario with a Higgs-like scalar of a smaller mass at 70 GeV,
H70→ a5 a50→ γγjj, decaying to pseudoscalars with masses of 5 and
50 GeV, respectively.

The benchmark and the alternate cross-check sample consists of
100 k events each. The H125 and H70 bosons are produced by gluon-
gluon fusion. MadGraph5_aMC 2.9.5 is used for event generation at
leading order94. Decay and showers are done with Pythia895. Detector
simulation and event reconstruction are done with Delphes 3.5.096,97

using the CMS card98.
The input variables to the autoencoder depend only on the two

photons and the two jets. The photons are denoted as γ1 and γ2, which
are the two photons with the highestmomenta transverse to the beam
direction (pT) in the event. Similarly, the two leading jets are denoted
as j1 and j2. Photons are reconstructed inDelpheswith aminimum pT of
0.5 GeV. Jets are reconstructed with the anti-kt algorithm with a mini-
mum pT of 20 GeV. The input variables to the autoencoder include the
pT of these four objects, along with invariant masses of the diphoton
(mγγ) and dijet (mjj) subsystems, and the Cartesian η-ϕ distance (ΔR),
where η is the pseudorapidity variable defined using polar angle θ and
ϕ is the azimuthal angle.

The input variable distributions for the full list of eight variables
—pγ1

T , pγ2
T , pj1

T , p
j2
T , ΔRγγ, ΔRjj,mγγ,mjj—are shown in five plots with white

background in Fig. 2. The left-most plots show the pT distribution for
the jets andphotons, alongwith the cuts imposed inDelphes forobject
reconstruction. The middle column plots show the mjj and two ΔR
distributions; the ΔRjj distribution shows a peak at π for SM processes,
which reveals the back-to-back signature in the azimuthalϕ coordinate
of the dijet system with respect to the beam direction. The top-right
plot shows the mγγ distribution with the pre-selection requirement
discussed in the next section; the peak at 10 GeV for H125 corresponds
to the a10 in the intermediate state. The bottom-right plot with the
shaded background shows the mγγ distribution after a cut on the
anomaly score from the autoencoder, which is described in the next
section.

ML training of deep decision tree (DDT) to create the decision tree grid (DTG)

first
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Threshold is generated by sampling the
projection selected from sampling the
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Fig. 1 | Illustration of the ML training. Data is represented as x1 vs. x2 (leftmost). Recursive importance sampling considers the marginalized distributions (second). A
decision tree grid is constructed (third). Deep decision trees with maximum depth of 4 corresponds to parallel decision paths (rightmost).
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Benchmark: Exotic Higgs decays
In order to define and quantify the gain using the autoencoder trigger
in the FPGA-based systemsover conventional approaches, we consider
the threshold-based algorithm typically deployed at the LHC, such as
at the ATLAS and CMS experiments. The most recent analysis of the
γγjj final state82 used the diphoton (γγ) trigger, so we take this to be
representative of the conventional approach. Moreover, as trigger
performance is generally comparable between the ATLAS and CMS
experiments, we take the ATLAS results from the Run-2 data-taking
period (2015–2018) as typical of the situation at the LHC. ATLAS
reports a peak event rate of 3 kHz for a diphoton trigger in the FPGA-
based first level trigger system in 2018 out of a peak total rate of about
90 kHz99. The threshold is pT > 20GeV for each photon at the first level
trigger, but the refined threshold is 35 and 25 GeV for the leading and
subleading photon, respectively, in the subsequent CPU-based high-
level trigger100. The high-level values are more representative of the
thresholds for which the first-level trigger becomes fully efficient, so
we approximate the situation by requiring 25 GeV for each of the two
reconstructed photons.We consider this to be the ATLAS-inspired cut-
based diphoton trigger.

The events of interest containing γγjj constitute a subset of all
events that pass the diphoton requirement, as γγ events accompanied
with zero or one jet (γγ or γγj, respectively) would also pass. However,
determining the precise composition of the events passing the
diphoton trigger is a nontrivial task. So for our comparisons below,
we consider the worst-case scenario to assume that the γγjj event rate
equals the entire event rate of the diphoton trigger. It is considered the
worst-case scenario because the more likely case that the γγjj rate is
less than the γγ rate would give a more favorable result for the auto-
encoder in comparison.

The overall rate is estimated by comparing the fraction of the γγjj
simulated background sample accepted by the autoencoder with the
diphoton trigger, whichhas a knownevent rate. The SMprocesses that
contribute to this trigger rate have been studied using a procedure
similar to the one we describe101. The study identifies two dominant

scenarios that yield two reconstructed photons: (1) the SM process in
which γγ originate from the interaction vertex and (2) the SM process
in which one photon is accompanied by a jet that has photon-like
characteristics (γj). The study shows that the shape of the mγγ dis-
tribution for events from the γγ process and γj are similar. Therefore,
we conclude that a comparison of equal acceptance using a sample
dominated by the γγ is a conservative approximation for the totality of
these SMprocesses, comprised of both γγ and γj, corresponding to the
above-mentioned 3 kHz.

The diphoton trigger performance is approximated by applying
the pγ2

T > 25 GeV threshold, as discussed above, to the subleading
reconstructed photon in the simulated sample described in the pre-
vious section. Compared to the previous results82, we note that a non-
negligible amount of H125 passes the diphoton trigger in this study in
the ma < 20 GeV region because we are assuming an offline-like
reconstruction after the HL-LHC upgrade of the level-1 trigger systems
of the experiments92,93. In the SM sample, 0.31% of events passed this
ATLAS-inspired diphoton trigger. For the benchmarkHiggsH125 decay,
2.2% of the events passed. For the alternate cross-check H70 decay,
0.01% passed; the small acceptance is due to the soft photon spectrum
from the a5 decay.

The autoencoder trigger performance is evaluated after the fol-
lowing pre-selection. In both training and testing, the autoencoder is
exposed only to events that (1) have two or more reconstructed pho-
tons and two ormore reconstructed jets and (2) have two photons that
fall within the previously unexamined rangemγγ < 20 GeV. Events that
donotmeet these requirements arediscarded. A total of 38%of the SM
background sample pass the pre-selection, as did 53% of the H125

sample and 29% of the H70 sample.
The autoencoder is trained using a forest of 30 decision trees at a

maximum depth of 6 on the training sample of the SM process. In
the training step, measured quantities corresponding to the offline
reconstruction of physics objects are used as input variables.
The trained autoencoder model is applied to both the testing sample
of the SM considered as the background process and the benchmark

Fig. 2 | Input variable distributions forH125→ a10a70→ γγjj and SM γγjj showing (top-
left) pT for the leading and subleading jet, (top-middle)mjj for the dijet subsystem,
(top-right) mγγ for the diphoton subsystem, (bottom-left) pT for the leading and
subleading photon, and (bottom-middle) ΔR distance for the dijet and diphoton

subsystem. The shaded panel (bottom-right) is the mγγ distribution after a cut on
the anomaly score of the autoencoder; this plot is normalized relative to the top-
right plot before the cut.
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H125 sample as the signal process. In the evaluation step, offline
quantities are converted to bitwise values tomimic the firmware78. The
cross-check H70 sample is also considered an alternate signal process
to demonstrate that the autoencoder is effective over a wide
kinematic range.

Anomaly scores for each event are calculated, and their distribu-
tions are shown in the top-left plot of Fig. 3. The corresponding ROC
curves are shown on the top-right plot in the same figure. The plots in
the bottom row are for a different physics scenario, which is discussed
in the next section.

The autoencoder trigger achieves 6.1% acceptance for the
benchmarkH125 signal at the 3 kHz SM rate, nearly triple the 2.2% value
using the diphoton trigger. Similarly, the acceptance of the cross-
check H70 sample is 1.4%, drastically increased from the negligible
value of the diphoton trigger at 0.01% for the same rate.

For the FPGA cost, the configuration is run on an Xilinx Virtex
UltraScale+ FPGA VCU118 Evaluation Kit (with FPGA model xcvu9p)
with a clock speed of 200MHz. Algorithm latency is 10 clock ticks (30
ns), and the interval is 1 clock tick (5 ns). About 7% of available look-up
tables (LUT) are used; 1% of flip flops (FF) are used; a negligible number
of digital signal processors (DSP) is used; no BRAM or URAM is used.
The results are summarized in the first column of Table 1.

Comparison: LHC physics dataset
Our autoencoder is applied to the LHCphysicsdataset83 and compared
to the results of the neural network implementation77 that involves
discrimination of several different BSM signals from a mixture of SM
background. In this dataset, all events include the existence of an
electron with momentum transverse to the beam axis pT > 23 GeV and
pseudorapidity ∣η∣ < 3.0 or a muon with pT > 23 GeV and ∣η∣ < 2.1. This

preselection is designed to limit the data to events that would already
pass a real-time single-lepton trigger. We note that this requirement
limits the ability of the study to be generalized for events that do not
pass an existing real-time algorithm.

The background is composed of a cocktail of Standard Model
processes (SMcocktail) that would pass the above-mentioned preselec-
tion composed of W→ ℓν, Z→ ℓℓ, t�t, and QCD multijet in proportions
similar to that of pp collisions at the LHC. The dataset’s features are 56
variables consisting of sets of (pT, η,ϕ) from the 10 leading hadronic
jets, 4 leading electrons, and 4 leading muons, along with Emiss

T and its
ϕ orientation. A cross-check using only 26 of these training variables is
presented later in the section.

In our training, a forest of 30 trees at a maximum depth of 4 is
trained on a training set of the SM cocktail and evaluated on both a
testing portion of the SM cocktail and each of the BSM samples. As the
plots in the bottom row of Fig. 3 show, the anomaly detector is able to
isolate all signal samples from the background. The areas under the
ROC curves (AUC) demonstrate comparable performance. For TPR-
FPR convention chosen in Fig. 3, the area under the curve in the plot
corresponds to 1 −AUC, i.e., an AUC of 1 is an ideal classifier. Our AUC
values are listed for the four signal scenarios and neural network-based
results for DNNVAE PTQ8-bit, the configuration highlighted inRef. 77,
in parentheses.

• LQ80→ bτ AUC = 0.93 (0.9277),
• A50 → 4ℓ 0.93 (0.9477),
• h0

60 ! ττ 0.85 (0.8177), and
• h±

60 ! τν 0.94 (0.9477).

For the scenarios, the masses of the resonances are given in the
subscript. Like the background, each signal scenario requires at least

Fig. 3 | Physics performance results. The distribution is given for anomaly scores
Δ (left column) and theROC curves (right column) for theH! aa0 ! γγjj scenario
(top row) and the LHC physics dataset83 (bottom row). Along with the ROC curves
for the γγjj dataset (top right), the operating points of the pγ2

T > 25 GeV trigger are
shown, with numerical values to compare it to the autoencoder’s performance.

Values shown are fractions of all events in the sample. The autoencoder is trained
only on the respective Standard Model (SMγγjj and SMcocktail) processes. TPR and
FPR represent true and false positive rates, respectively. The plots are software-
simulated results using bit integers as done in the firmware.
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one electron ormuon above the above-mentioned trigger threshold in
the final state. The samples with τ lepton final states are dominated by
the leptonic decays because of the trigger selection. Our AUC perfor-
mance is comparable to the range of previous results77.

For the FPGA cost, the configuration is run on an xcvu9p FPGA
with a clock speed of 200 MHz. With similar physics performance
compared to previous results77, our FPGA resource utilization is at
comparable values to the low endof the range of FF and LUTusage but
fewer DSP and BRAM usage. Our design yields a lower latency value at
six clock ticks (30 ns) and the lower bound of the range given at one
clock tick (5 ns) for the interval. The results are summarized in the
second column of Table 1.

As a cross-check of our FPGA cost, we implemented the two
additional designs. The first cross-check uses only 26 variables on the
same xcvu9p FPGA at 200 MHz. Due to the nature of the samples,
many of the features are zero-valued, e.g., very few events have more
than 3 jets. Therefore, we train with a subset of 26 input variables
consisting of the (pT, η,ϕ) for the 4 leading jets, 2 leading electrons,
and 2 leadingmuons, alongwith Emiss

T and itsϕ orientation. There is no
difference in AUC using only 26 variables to within a percent of the 56
variable result above. The design is executed with a similar latency of
seven ticks (35ns) and the same intervalof one tick (5 ns).However, the
resource usage is significantly less than the 56 variable configuration at
9k FF, 61k LUT, 26 DSP, and no BRAM.

The second cross-check uses the 26 variable configuration on a
smaller FPGA, on Xilinx Zynq UltraScale+ xczu7ev. The FPGA cost is
nearly identical as reported above. The design is executed with the

same latency and interval; the resource usage is within 5% of the above
values.

We note that the differences in the FPGA cost with respect to
previous results77 may be due to a number of factors. The factors
include differences in the ML architecture as well as details about the
FPGA configuration such asmodel compressionmethods, the number
bits per input, type of input representation, such as fixed-point pre-
cision, and Xilinx versions.

With respect to the last item in the list, both Vivado HLS and Vitis
HLS have been used to synthesize our designs with the latter being the
more recent version of the same platform. Both are platforms that
synthesize C code into an RTL implementation. For the benchmark
scenario, the Vivado result is given in Table 1. The corresponding result
using Vitis produced an increased latency value of 4 more ticks at the
same clock speed, an increase of 50% increase in flip flops, and an
increase of 30% in LUT with no change in DSP or BRAM. We have
generally used Vivado to synthesize our designs, but it had difficulty
with large designs such as the second configuration in Table 1.
Although Vitis yielded a less performant FPGA design compared to
Vivado for the benchmark, Vitis was able to synthesize the larger
configuration for the comparison.

Signal-contaminated training
A promising use case of the anomaly detector is to use collected data
to train the autoencoder itself, rather than to use simulated samples,
and to deploy it on subsequent incoming data. In this scenario, while
the majority of the training sample would remain background, a frac-
tion would consist of the signal since the data would contain the signal
that would cause the anomaly. To study the autoencoder’s perfor-
mance using incoming data, we consider the results from the models
trained with various levels of signal-contaminated simulated SM
samples.

In Fig. 4, we show a family of ROC curves with varying levels of
signal contamination in the training sample from1% toa thirdof the total
number of events. As expected, there is degradation of performance
with an increasing fraction of the signal contamination in the training
dataset. Nevertheless, training the autoencoder with a sample that has
33% contamination still outperforms the ATLAS-inspired diphoton trig-
ger with about a factor of two higher H125 acceptance at the same SM
rate. Our findings are consistent with the anomaly detection study that
reported a similar behavior for percent-level signal contamination19.

Table 1 | FPGA specifications and cost

This paper This paper Govorkova et al.77

ML training and setup

Framework fwXmachina fwXmachina hls4ml

Architecture Deep deci-
sion tree

Deep deci-
sion tree

Variational
autoencoder

Dataset γγjj LHC physics83 LHC physics83

Input variables 8 56 56

No. of trees T 30 30 NA for neural
networks

Max. depth D 6 4 NA for neural
networks

Phys.
performance

See text Comparable to77 77

FPGA and firmware setup

Chip family Xilinx Virtex
UltraScale+

Xilinx Virtex Ultra-
Scale+

Xilinx Virtex Ultra-
Scale+

Chip model xcvu9p-flga2104-
2L-e

xcvu9p-flga2104-
2L-e

xcvu9p-flgb2104-2-e

Platform Vivado 2019.2 Vitis 2022.2 Vivado 2020.1

Clock 200
MHz

5 ns 200
MHz

5 ns 200 MHz 5 ns

Precision ap_int〈8〉 ap_int〈8〉 ap_fixed〈varies〉

FPGA cost

Latency 6 ticks 30 ns 6 ticks 30 ns 16 ticks 80 ns

Interval 1 tick 5 ns 1 tick 5 ns 1 tick 5 ns

FF 15 k 0.6% 15 k 0.6% 12 k* 0.5%

LUT 63 k 5.4% 109 k 9.2% 35 k* 3%

DSP 8 0.1% 56 0.8% 68* 1%

BRAM 0 0% 0 0% 13* 0.3%

Thefirst columndescribes thedesign forγγjj; see text fordetails of the signalmodel onwhich the
design is tested. The second column compares our result for the LHC physics problem given in
the third column77. For the third column, the result listed is for DNN VAE PTQ 8-bit, the high-
lighted configuration in Ref. 77; the * indicates that the numbers are converted from the pub-
lished percentages.

Fig. 4 | ROC curves showing the SMγγjj acceptance vs. H125 efficiency for dif-
ferent contaminatedmixtures ofH125 that is used to train the autoencoder.The
legend indicates the percentage of the training sample consisting of H125 with the
rest consisting of the SM sample, i.e., the uncontaminated is trained only on the SM
sample. The 3 kHz line and the values for the uncontaminated autoencoder trigger
and the 2γ trigger matches that of the top-right plot in Fig. 3. The plot is software-
simulated results using bit integers as done in the firmware.
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For the benchmarkphysics process, an approximate upper bound
of the signal contamination is estimated tobe 1%. This boundconsiders
known SM processes94 and assumes that all Higgs bosons102 decay to
the γγjj final state. Therefore, the resistance to contamination at the
percent level—like that demonstrated in the study above—is promising
for the rare BSM signals sought in high-energy physics experiments. A
possible experimental setup to prepare for varying levels of con-
taminated data could be to employ a set of autoencoder triggers
trained with varying levels of simulated signal contamination. A sketch
of the setup is given in the Supplementary Fig. 4.

Discussion
An implementation of a decision tree-based autoencoder anomaly
detector was presented. The fwXmachina framework is used to
implement the algorithm on FPGA with the goal of conducting real-
timeanomaly detection for physicsbeyond the StandardModel at real-
time trigger systems at high-energy physics experiments. The imple-
mentation is tested on two problems: detection of exotic Higgs decays
to γγjj through pseudoscalar intermediates and an LHC physics
anomaly detection dataset83. In both problems, the ML is trained only
on background processes and evaluated on both signal and back-
ground. The anomaly detector shows the promise to identify several
different realistic exotic signals that may be seen at a trigger system
with comparable physics performance to existing neural network-
based anomaly detectors. The efficient firmware implementation and
low latency of 30 ns are well suited for the timing constraints of FPGA-
based first-level triggers at LHC experiments.

A studyof classifier performancewith signal contamination shows
the promise of the possibility of training on the collected data at the
LHC. If the collected data already has BSM processes mixed in that we
are trying to discover, then this possibility allows one to train the ML
with the data anyway and then deploy it on future data to detect the
BSM signal103. These approachesmay also be of interest at the HL-LHC,
which will increase the rate of proton collisions at the cost of higher
background levels.

Existing approaches of the real-time trigger path anomaly detec-
tor, including the one in this paper, make assumptions about the
availability of the preprocessed objects such as electrons that are
reconstructed from more basic inputs such as calorimetric data. The
next step would consider such inputs ranging from 1 k to 100 M
channels, depending on the experimental setup, which may require a
drastic redesign of existing approaches.

An added advantage of using decision tree-based anomaly
detectors such as the algorithm presented here is that it allows for
interpretability. As Fig. 1 and Supplementary Fig. 3 demonstrate, it is
possible to examine the cuts used to construct thedecision trees either
by examining the feature space or the constructed trees. This enables
visual interpretation of the anomaly detection. The large majority of
autoencoders relyon neural networks and other blackboxmodels that
have resisted easy interpretation84 of the latent space and intermediate
node values. Interpretabilitymay be desirable in understanding trigger
behavior in high-energy physics when disentangling BSM events from
flaws in the apparatus leading to similar anomalous signals. Fields in
which black box models are undesirable may also find our tool useful.

A challenging aspect of the analysis of anomalous events, which
may affect other methods as well, is that the mapping of the input
space to the anomaly score is not necessarily unique due to the Jaco-
bian arising from the coordinate transformation68. That is, how rare a
given event is depends on the choice of variables. In such cases, the
events selected by a threshold on the score can be studied with vari-
ables orthogonal to the input space74 or the latent space of the
autoencoder50. Adding to the difficulty is what to do with the selected
anomalous sample. We list three ideas in the literature that may help
identify the BSM events in this sample. The first two methods use
variables orthogonal to the input space. First, a bump hunt was

conducted using invariant masses in Ref. 74. Second, a control sample
could be obtained using a sideband to help identify the BSM events in
the sample of anomalous events48,49. Lastly, an analysis of the latent
space could help separate BSM from the other events50. For any of
these methods, the BSM may not populate smoothly across the
anomalous score distribution, so the BSM fraction would likely be
extracted by a statistical treatment. As is commonly done in high
energy physics, e.g., Ref. 104, a simultaneous maximum likelihood fit
can extract the BSM composition in the various subsamples.

Methods
Details of simulated samples
Samples of the multistage process of simulating the proton collisions
that produce our final state followed by the simulation of the detector
effects, so called Monte Carlo samples, are considered in order to test
the autoencoder’s performance in real-time triggers.

We produced a sample of one million simulated proton-proton
collision events in the SM composed of all processes that produce the
γγjj final state, which we consider the background process during the
evaluation of physics performance.

Additionally, two signal samples of one hundred thousand events
each that simulate the production and decay of scalar bosons are
generated, which we consider the anomaly processes. Scalar bosons
produced from the gluon-gluon fusion production mode in proton-
proton collisions are decayed as H125→ a10a70 and H70→ a5a50. The
lighter a decays to γγ and the heavier a0 decays to jj. All samples, both
background and anomaly, use theHiggs effective field theorymodel in
MadGraph5_aMC 2.9.594.

The input variables are the reconstructed values calculated by
Delphes 3.5.096,97. Jets are reconstructedwith the anti-kt algorithmwith
a radius parameter R =0.4 and aminimum pT of 20 GeV105. Photons are
reconstructed with a radius parameter of R =0.2 and a minimum pT of
0.5 GeV. All samples are produced with the above-mentioned Mad-
Graph5 and decayed and showeredwith Pythia895. Detector simulation
and event reconstruction are simulated with Delphes, which uses the
CMS card to simulate the behavior of the CMS detector98. We note the
similarities between the physics capabilities of the CMS and ATLAS
detectors allow a generic interpretation of the results presented in the
next section. Without mitigation, multiple proton-proton interactions
(pileup) impact the number of jets reconstructed in each event. Due to
the importance of hadronic jets in the HL-LHC, a variety of algorithms
have been proposed for removing pileup contributions in jets106–108,
and therefore we neglect the effects of pileup. More details can be
found in the samples109. The input variable distributions are given
in Fig. 2.

Firmware design
The structure of the firmware is based on fwXmachina78,79. The
AUTOENCODER PROCESSOR, whose block diagram is shown in Fig. 5,
takes in input data and outputs the anomaly score. In the firmware
implementation, we approximateR of the input-output space byN-bit
integers ZN .

In the diagram, input enters from the left, and copies are dis-
tributed to T deep decision trees, each tree corresponding to one
latent dimension. Once the outputs of the engine are available, the
distance processor computes theΔwith respect to the input. TheDEEP
DECISION TREE ENGINE (DDTE)79 is modified to output a vector of
values. The DISTANCE PROCESSOR takes the outputs of DDTE and
computes the distance for each set of outputs followed by a sum.

We note that further modification of DDTE would allow for effi-
cient transmission of compressed data110, but is beyond the scope of
this paper.

Verification and validation
Wevalidate andverifyourdesignusing thebenchmarkphysics scenario.
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For validation of our algorithm, first we run Oð105Þ test vectors
through our design using C simulation in Vivado HLS and compare the
outputs to that of the expected firmware outputs simulated in Python.
Then co-simulation is done, which creates an RTLmodel of the design,
simulates it, and compares the RTL model against the C design. In all
cases, the simulation outputs match the expected outputs.

For the physical verification of our algorithm, we program select
configurations onto the xcvu9p at a clock speed of 200 MHz, which is
the setup used for the benchmark results in this paper. We test a
handful of test vector inputs and use the Xilinx Integrated Logic Ana-
lyzer IP core to observe the outputs. In all cases, the outputsmatch the
expected outputs received from software and co-simulation.

Data availability
Two datasets were used in this paper. The γγjj data generated by us for
this study have been deposited in Mendeley Datasets under https://
doi.org/10.17632/44t976dyrj.1 and is cited as Ref. 109. The LHCphysics
dataset was taken from Ref. 83 and is publicly available in Zenodo
under https://doi.org/10.5281/zenodo.3675210, https://doi.org/10.
5281/zenodo.3675206, https://doi.org/10.5281/zenodo.3675203,
https://doi.org/10.5281/zenodo.3675199, and https://doi.org/10.5281/
zenodo.5046388.

Code availability
The repository with the files to evaluate the FPGA performance is
publicly available at D-Scholarship@Pitt, which is an institutional
repository for the research output of the University of Pittsburgh111.
More specifically, the IP core design for the benchmark scenario is
available, along with a testbench and associated test vectors. General
information about fwXmachina can be found at http://fwx.pitt.edu.
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