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GENESIS CGDYN: large-scale coarse-grained
MD simulation with dynamic load balancing
for heterogeneous biomolecular systems

Jaewoon Jung 1,2,4, Cheng Tan 1,4 & Yuji Sugita 1,2,3

Residue-level coarse-grained (CG) molecular dynamics (MD) simulation is
widely used to investigate slow biological processes that involve multiple
proteins, nucleic acids, and their complexes. Biomolecules in a large simula-
tion system are distributed non-uniformly, limiting computational efficiency
with conventional methods. Here, we develop a hierarchical domain decom-
position schemewith dynamic loadbalancing for heterogeneousbiomolecular
systems to keep computational efficiency even after drastic changes in particle
distribution. These schemes are applied to the dynamics of intrinsically dis-
ordered protein (IDP) droplets. During the fusion of two droplets, we find that
the changes in droplet shape correlate with the mixing of IDP chains. Addi-
tionally, we simulate large systems with multiple IDP droplets, achieving
simulation sizes comparable to those observed in microscopy. In our MD
simulations, we directly observeOstwald ripening, a phenomenonwhere small
droplets dissolve and their molecules redeposit into larger droplets. These
methods have been implemented in CGDYN of the GENESIS software, offering
a tool for investigating mesoscopic biological processes using the residue-
level CG models.

Computational simulations with modeling of biomolecular structure
and dynamics at various levels of detail can elucidate complex cellular
phenomena in close collaboration with experimental studies. Quan-
tum mechanics/molecular mechanics (QM/MM) or atomistic mole-
cular dynamics (MD) methods provide detailed descriptions of the
conformational dynamics of target molecular systems. However, they
are computationally demanding when exploring long-time dynamics
of a large biomolecule or a biomolecular system consisting of many
biomolecules. Coarse-grained (CG) MD simplifies the description
of these systems by representing multiple atoms as a single
particle and thereby reduces computational complexity1–3. CG MD
simulations retain essential structural and dynamic properties in
biomolecules2, making them valuable for investigating biomolecular
processes, such as protein folding and dynamics4–6, protein-DNA
interactions7,8, nucleosome dynamics9,10, genome organizations11,12,

condensate formation/destruction via liquid-liquid phase separation
(LLPS)13–17, etc. Among many CG methods, residue-level CG MD simu-
lations for proteins, nucleic acids, and lipids can bridge the gap
between atomistic simulations and experimental observations2. They
provide insights into fundamental but complex biological processes
by balancing modeling accuracy and computational efficiency.

Various CGmodels have been developed to capture the structure,
dynamics, and inter-molecular interactions of biomolecules. These
models include the structure-based Gō model4 and its variants for
folded biomolecules (such asAICG2+ 5), theHPSmodel for intrinsically
disordered proteins (IDPs)14, the 3SPN series models for nucleic
acids18–20, and theMartini21 and SPICA22models for lipid systems. Other
notable CG models, for instance, UNRES23, OPEP24, and PRIMO/
PRIMONA25, have been specifically designed to address different
aspects of biological phenomena. Several MD programs, including
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CHARMM26, GROMACS27, OpenMM28, NAMD29, HOOMD-blue30,
LAMMPS31, Cafemol32, and GENESIS33–35, offer a diverse set of tools and
capabilities for performing CGMD simulations in various contexts. CG
models are categorized into two: with explicit solvent molecules and
with implicit solvent approximation. For the CG models with implicit
solvent, while they have proven invaluable in addressing biological
problems, there are difficulties in their implementations that do not
arise in atomistic MD simulations. When CG MD simulation with the
implicit solvent approximation is parallelized on multiple processors
by the conventional domain decomposition scheme with an equal
domain size for all processes, the processes in charge of dense regions
have a significant workload. In contrast, those for dilute (or sparse)
regions are almost idle, leading to non-negligible waiting time to syn-
chronize tasks between all the processes. Moreover, the incorporation
of diverse potential functions that describe interactions between dif-
ferent biomolecular components adds to the complexity of optimizing
CG MD software35.

These difficulties limit the available system size even for residue-
level CG models with the implicit solvent approximations. This
requires innovative CG MD simulation schemes. Scientifically, on the
other side, there is a growing demand for residue-level CG MD simu-
lations of large biological systems. For instance, protein/nucleic acid
condensates (or droplets) formed by LLPS have attracted many che-
mists and biologists due to their relevance to serious neurotoxic dis-
eases or essential biological functions in the cellular cytoplasm or
nucleus13,14,36,37. Currently, standard simulations of LLPS have used so-
called slabmodels14, which have two short-length dimensions and only
one long dimension within a periodic rectangular box. Dense and
dilute phases are observed along the long dimension in equilibrium
conditions. However, this anisotropic shape may not fully capture the
three-dimensional (3D) nature of LLPS. Another example is the 3D
modeling of chromatin. Many computational models of 3D structures
of chromatin have been proposed using experimental data such as Hi-
C38,39. However, due to thedynamic nature of chromatin structures and
computational limitations, most of those structural models are
developed at relatively low resolutions (kilo-bases)38,39. On the other
side, at higher resolution, conformational dynamics of only a small
number of nucleosomes with/without transcription factors were
simulated with residue-level CG models9,10.

To perform CG MD simulations of non-uniform densities,
dynamic load balancing is essential to accommodate rapid but sig-
nificant changes in particle distributions in biological processes such
as droplet formations from evenly distributed proteins. Various
endeavors have been undertaken to enhance the efficiency of MD
simulations through the development of dynamic load balancing
schemes. LAMMPS employs the recursive coordinate bisection (RCB)
algorithm for dynamic loadbalancing31. InGROMACS, domain sizes are
dynamically adjusted based on computational time for each process40.
The ddcmd program introduces domain decomposition based on
Voronoi cells41. The ESPResSo software utilizes domain decomposition
based on space-filling curve, with dynamic re-balancing achieved
through a collection of adaptive octrees42. Guzman et al. proposed a
domain decomposition scheme suitable for multi-scale simulations by
assigning different domain sizes for all-atom and CG models43. Addi-
tionally, Grime and Voth developed a highly scalable scheme for ultra-
coarse-grained models using the Hilbert space-filling curve44. Some
have employed the kd-tree schemes for dynamic load balancing45,46.

In this work, we have developed a unique domain decomposition
scheme with dynamic load balancing to enable efficient residue-level
CG MD simulations on parallel computers to handle non-uniform
densities in a large biological system. We have implemented it in the
GENESIS software33–35 as an MD engine called CGDYN (CG molecular
DYNamics), specifically designed for CG MD simulations. CGDYN is
optimized for parallel computers with many processors based on a
domain decomposition with load balancing scheme akin to LAMMPS

andprograms utilizing kd-tree algorithms. In addition, we implement a
united neighboring list search algorithm to calculate the energy and
forces of diverse potential functions with different cutoff values in
residue-level CG MD simulations, and thereby CGDYN outperforms
other MD programs in terms of computational performance. In this
study, we utilize CGDYN to investigate molecular mechanisms under-
lying the fusionof two smaller droplets into a larger oneusingAICG2+ 5

and HPS14 models. Additionally, we conduct ultra-large-scale CG MD
simulations consisting of multiple droplets to observe droplet for-
mations,whose sizes are almost equivalent to the confocalmicroscope
images. CGDYN in GENESIS provides a computational tool for inves-
tigating mesoscale biological phenomena at the residue-level
descriptions and connecting our understanding of the structure and
dynamics of proteins and nucleic acids with cellular-scale biological
phenomena.

Results
Domain decomposition scheme in CGDYN
We have developed a unique domain decomposition scheme with
dynamic load balancing to parallelize the residue-level CG MD simula-
tions. The scheme is based on the midpoint cell method47 used in
GENESISSPDYN for atomisticMDsimulations. Themidpoint cellmethod
divides a simulation space hierarchically: subdomains at first and then
small cells from each subdomain. The cell size is decided from the
interaction-range threshold, and the number of subdomains equals the
numberofprocesses. Becauseof almost uniformparticle distributions in
atomistic MD simulations, every subdomain has the same number of
cells in SPDYN33. In contrast, each subdomain in CGDYN includes a dif-
ferent number of cells to avoid load imbalances by adopting a domain
decomposition scheme which we call the cell-based kd-tree method.
Here, subdomains for low particle density regions include more cells,
while those for high-density regions contain fewer cells.

How to assign cells to each subdomain is described in Fig. 1a. We
first divide a simulation system into two subdomains by making a
boundary of cells such that two subdomains have nearly the same
number of particles. Each subdomain is again divided into the next-
level subdomains, in which their numbers of particles are almost
identical. We iterate this procedure until the number of subdomains
becomes the same as the process numbers. Each subdomain has par-
ticle data from the cell in the subdomain and the adjacent cells in other
ones to compute bonded and nonbonded interactions (Fig. 1b). To
complete this data structure, communication between subdomains,
namely, sending particle coordinates from the boundary cells in one
subdomain (i.e., the rank 5 in Fig. 1b) to the neighbors (the ranks 1, 4, 6,
and 9) and receiving the coordinates from the boundary cells in the
neighbors (the ranks 1, 4, 6, and 9) to the target subdomain (the rank
5), are required for the energy/force evaluation. In the residue-level CG
MD simulations, particle densities in subdomains and cells can be
changed rapidly. In such cases, the initial domain decomposition
based on the cell-based kd-tree method cannot guarantee a good load
balance. As an example, we show a simulation of the Heat-resistant
obscure protein-11 (Hero-11)48 and the low-complexity domain of TDP-
43 (TDP-43-LCD, with amino acid residues 261-414)49. TDP-43-LCD is
known to form droplets in physiological conditions, while highly-
charged Hero-11 can regulate the TDP-43-LCD condensate48,50. At t =0,
the particle densities of the subdomains that include the TDP-43-LCD
droplet are quite high, while the rest include just Hero-11 proteins at
low concentrations. As the simulation progresses, the particle den-
sities become more uniform, requiring different domain decomposi-
tions from the initial one (Fig. 1c). During the simulation, we
decompose the simulation space using the cell-based kd-tree method
at a fixed interval (around 106 steps but it depends on the integration
time step and the target system). This example suggests the impor-
tanceof dynamic load balancing to keep the best performanceof long-
timeCGMDsimulations.Our loadbalance scheme is similar to theRCB
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algorithm implemented in LAMMPS31, ls1 mardyn46, and other MD
programs using a kd-tree algorithm. However, CGDYN is distinguish-
able from them by incorporating more complicated potential func-
tions with multiple cutoff distances.

CGDYN structure
In CGDYN, the cell size is greater than or equal to half of the distance
wherein the neighbor list for electrostatic interaction is considered. All
particle information in each subdomain (coordinate, force, charge,
atom class number, and so on) is saved cell-wise (Supplementary
Fig. 1). We make an identifier of particles (ordered/disorder protein
region, DNA base, and so on) for efficient neighbor list generation. For
each cell, we first locate the information on charged particles followed
by uncharged particles in this order. The array of potential function
types and parameters of bonded interactions (bond/angle/dihedral
angle list) is preparedwithout using cell indices (Supplementary Fig. 1).
In the case of bond, the program writes parameters of quadratic and
next quartic bond terms sequentially in bond-related array. There are
three potential functions for angle terms:

E 1ð Þ
angle =

P
θi2angles

�kBT ln
Pθ θi jið Þ
sinθi

E 2ð Þ
angle =

P
ri21�3pairs

�εi exp
� ri�ri,0ð Þ2
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� �

Eð3Þ
angle =

P
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:
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The program first writes parameters of Eð1Þ
angle and next writes para-

meters E 2ð Þ
angle and Eð3Þ

angle. Similarly, we have three dihedral angle
potential functions:
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dihe =

P
φi2dihedrals

�kBT lnPd φiji
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and the program writes parameters sequentially in dihedral
angle array.

All nonbonded interactions, including electrostatic, HPS, exclu-
ded volume, etc, have different interaction ranges. Among them,
electrostatic interaction has the longest interaction range. For a given
particle, the interaction range and the cell involved in the calculation
are depicted in Supplementary Fig. 2. For bonded and excluded
volume interactions, we consider the particles in the target cell and
neighboring cells. Electrostatic and HPS potential functions have
longer interaction ranges. Therefore, particles in the next neighboring
cells from the target cell are considered.

We generate the neighbor lists concurrently for all nonbonded
interactions except for electrostatic and protein-DNA terms (Supple-
mentary Algorithm). First, we predefine threshold values of the
neighbor list generation for excluded volume, DNA pairing, and HPS,
which are denoted here as rp,exv, rp,dna, rp,hps, respectively. If a pairwise
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Fig. 1 | Domain decomposition scheme in CGDYN. a The domain decomposition
algorithm with the cell-based kd-tree method. b Communication in sending the
coordinates from MPI rank 5 to other processes (upper) and receiving the coor-
dinates from other processes to MPI rank 5 (lower). c Updates of subdomains
during MD simulations of Hero11 and TDP-43-LCD. The first column displays

snapshots of molecular structures at specific MD steps. The remaining three col-
umns on the right illustrate the expansion of subdomains across three dimensions
and on the second layer of a 4 × 4 × 4 = 64 domain decomposition. Source data of
(c) are provided as a Source Data file.
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distance between two particles is shorter than rp,exv, we consider the
particles in the neighbor lists for all the nonbonded interactions. If
the distance, r, is in the range of rp,exv<r <rp,dna, we do not consider
the particles in the neighboring list of excluded volume. If the dis-
tance exceeds rp,dna, the particles are included in the neighbor
lists of the HPS interactions only. The neighbor lists of electrostatic
interaction are generated separately by evaluating pairwise distances
only between charged particles with predefined threshold
value, rp,ele. Threshold values of these interactions in the neighbor
search are greater than those in the nonbonded energy/force calcu-
lations with rp,XX = rc,XX + rbuffer (rp,XX and rc,XX are threshold of
neighbor list generation and energy/force calculations for XX inter-
actions, respectively). Neighbor lists for PWMCos and sequence-
nonspecific hydrogen bond (HB) potential used in protein-DNA
interactions are also considered separately. The frequency of
neighbor list search is user-defined value, but the program skips the
neighbor search if the maximum particle displacement is less than
half of rbuffer.

To accelerate the evaluations of nonbonded interactions, SIMD
(Single Instruction, Multiple Data) is applied to electrostatic and HPS
force calculations by doing calculations even for unnecessary pairs
with the pairwise distance between rc,XX and rp,XX. For other interac-
tions including the excluded volume, DNA base pairing, SIMD is not

applied because the ratio of rp,XX
3

rc,XX3 ismuch larger than 1 and it is better to

skip unnecessary calculations for the pairwise distance range between
rc,XX and rp,XX using conditional statements instead of applying SIMD.

Dynamic load balancing with the cell-based kd-tree scheme is
applied at fixed intervals (which we will name the load balance update
period), defined by application users. In this procedure, we do not
change the cell size and only change the cell assignment to each sub-
domain. This process is applied as a default when we start MD. If the
MD simulation time is the multiple of the load balance update period,
the cell reassignment to each subdomain is done in a procedure like
Fig. 1a. Communication between neighboring processes is redefined in
a procedure like Fig. 1b. The subdomain information is saved in the
global data array and the global data is completed by collective com-
munication. Each subdomain reads subdomain information from the
global data andMDsimulations continue basedon the new subdomain
data (Supplementary Fig. 3).

Benchmark tests of CGDYN for heterogeneous biological
systems
We examined the computational performance of CGDYN in CG MD
simulations of heterogeneousmultiple droplet systems. Twomultiple-
droplet systems with different particle densities were prepared for the
performance comparison: one with ρ = 1:85× 10�6 and the other with
ρ=4:97× 10�7 (chains per Å3, Fig. 2a). Both systems consist of 1949
TDP-43-LCD chains (number of particles is 300,146).We compared the
computational performances for three different algorithms in GEN-
ESIS: (i) CGDYN (the cell-based kd-tree method with dynamic load
balancing), (ii) SPDYN-like (the original midpoint cell method without
dynamic load balancing), and (iii) ATDYN (atomic decomposition
without dynamic load balancing). ATDYN shows no performance
dependence on the two systems, but the computational efficiency is
limited to 2:0× 106 steps/day (Fig. 2b). In comparison, MD simulations
using CGDYN show 3–30 times better performances than ATDYN
(Fig. 2b). Importantly, almost identical speeds are obtained between
the high and low-density systems with CGDYN due to the efficient
parallelization with dynamic load balancing, suggesting that these
algorithms used in CGDYN work well irrespective to the particle den-
sities. MD simulations with CGDYN accelerate at most 7.5 times com-
pared to the SPDYN-like algorithms (Fig. 2b). The acceleration with
CGDYN can depend on the frequency of the dynamic load balancing.
Supplementary Fig. 4 shows that the twice better performance is
observed by applying the dynamic load balancing 100 times more
frequently.

We found that CGDYN works well for very large systems with
more than 2.5 million CG particles (Supplementary Fig. 5). It shows
good scalability up to 4096 nodes on Fugaku (16,384 MPI processes)
with ~5:0× 107 steps/day, promising to simulate very large biological
systems efficiently with residue-level CG models. We also conducted
benchmark tests on systems previously published in our work35.
CGDYN encountered memory issues on the RIKEN supercomputer
Hokusai when using a small number of processes for large systems.
Nevertheless, we managed to execute MD simulations even for large
systems by increasing the number of processes, resulting in CGDYN
outperforming ATDYN across all systems with a ten-fold speedup
(Supplementary Fig. 6).

To evaluate the efficiency of CG MD simulations using CGDYN, it
is essential to compare it with other MD programs. Supplementary
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number of nodes, but the parallel efficiency is low, and the performance is
saturated from 16 nodes. The SPDYN-like algorithm performs better using many

nodes but has a higher dependency on particle density. CGDYN performs better
than MD simulations based on the ATDYN and SPDYN-like algorithms, showing a
weak dependency on particle densities. Source data are provided as a Source
Data file.
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Fig. 7 shows the performance comparison of residue-level CG MD
simulations ofDNAsystems amongATDYN,CGDYN, andOpen3SPN251.
Although Open3SPN2 is based on OpenMM28 and accelerated with
GPU processors, CGDYN on a single node performs better onmultiple
double-stranded DNA systems than Open3SPN2. For larger DNA sys-
tems, the superiority of computational performance with CGDYN is
more significant, promising efficient residue-level CG MD simulations
of mesoscopic biological systems (Supplementary Table 1).

The comparison between CGDYN and Open3SPN2 regarding
dynamic load balancing effects is not straightforward. Hence, we
assessed the performance of GENESIS and GROMACS on Fugaku by
creating clusters of DPPC micelles using the dry Martini force field52.
Supplementary Fig. 8 reveals that GROMACS exhibits similar perfor-
mance to CGDYN for 32 nodes. However, CGDYN surpasses GROMACS
from 64 nodes onwards, and this performance margin widens with an
increasing number of processes. Our primary aim in comparing the
performance of the dry Martini systems is not to demonstrate the
superiority of CGDYN within the dry Martini model but to ascertain
whether its parallelization is comparable to existing MD software
equipped with robust dynamic load balancing schemes. We also
observed that the effect of dynamic load balancing within the dry
Martini model is not as pronounced as that of the residue-level CG
model. This is primarily attributed to the small cutoff distance in non-
bonded interactions within the dry Martini model, resulting in a lower
computation-to-communication ratio. We additionally evaluated the
performance for a smaller system (150,000 particles), wherein GRO-
MACS exhibited superior performance to CGDYN from 16 to 128
nodes. Considering this, GROMACS appears to be more optimized
than CGDYN for energy/force calculation, whereas CGDYN demon-
strates superior scalability for larger systems with nonuniform particle
densities.

Furthermore, we compared CGDYNwith LAMMPS using the HPS
potential outlined in Eq. (7) in theMethods section. Both CGDYN and
LAMMPS exhibit saturated performance beyond 512 nodes. Across
all process counts, CGDYN outperforms LAMMPS. Although
LAMMPS approaches similar performance levels as CGDYN with an
increasing number of processes, even at 1024 nodes, CGDYN
demonstrates 1.3 times better performance than LAMMPS, with a
reduced amount of communication time (CGDYN: 0.5ms/step and
LAMMPS: 0.75ms/step). The superior scalability of LAMMPS com-
pared to CGDYN is mainly attributed to a larger computation-to-
communication ratio.

Molecular mechanisms for the fusion of two droplets
The fusion of phase-separated liquid-like droplets is an important
mechanism for maintaining stable cellular environments when the
concentration of components changes53. The residue-level CG MD
simulations13,14,37 allow the investigation of inter-molecular interac-
tions and the resulting diffusion/mixing of different components
during the droplet fusions. However, MD simulations of this process
are computationally demanding and not frequently employed in
practical studies due to the large number of molecules involved and
the rapid exchange of components in droplets. In this study, we use
CGDYN to examine the fusion of two separated droplets, each con-
sisting of approximately 500 chains of TDP-43-LCD (resulting in 1000
chains in total, Fig. 3a). The HPS model14 was utilized for the entire
protein, except for a short α-helical region (residues 320 to 334)
modeled with AICG2+ 5.

The MD simulations were conducted at T =280K for 1 × 108 steps
to explore the dynamics of the system. Despite rapid density changes
during the simulations, we achieved a speed of 1:25 × 107 steps per day
on a single node (16 MPI processes in conjunction with 3 OpenMP
threads) on a local PC cluster (Intel Xeon Gold 6240R CPU, 2.4GHz).
The DBSCAN clustering analysis54 is employed to identify chains
belonging to the two distinct droplets in the initial structure (Figs. 3a

and 3b). By labeling each chain, we can track their positions and
monitor the fusion process (Fig. 3a–g). Interestingly, the fusion of two
droplets occurs shortly after the start of the MD simulation and
completes within the first several 107 MD steps (Fig. 3g). To investigate
the interaction and redistribution of components within the droplets
during fusion, we monitored the “mixing” of contents and the asso-
ciated shape changes.

Through structural analysis and calculation of chain distribution
in the simulation box, we observed that the two droplets merge into
one at approximately 2 × 107 steps, although the shape of the merged
droplet is a flattened ellipsoid, and the chains from the original dro-
plets are not yet fully mixed (Fig. 3c, d). After 1 × 108 steps of simula-
tions, the chains from both droplets mixed completely (Fig. 3e, f). The
entire fusion process can be viewed in Supplementary Movie 1. To
quantify the relationship between the content mixings and the shape
changes, we introduce five order parameters. One parameter, DI,J ,
represents the average distances between the center-of-masses
(COMs) of chains in the original droplets I and J (I,J = 1 or 2, see
Methods). D1,1 and D2,2 increase during the mixing process, while D1,2

decreases (Fig. 3h), depicting the redistribution of chains from their
original droplet into the fused one. We further define m asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1,1D2,2

p
=D1,2 to incorporate information from D1,1, D2,2, and D1,2. As

expected,m increases during the fusion process. Another coordinate,
η, is used to describe the anisotropy of the droplet during fusion (see
Methods for definition). Notably, we observe that mixing (m) and
shape change (η) are coupled, with the fused droplet reaching a
sphere-like shape (η <4:0) slightly earlier than the complete mixing of
contents (m≈ 1:0, Fig. 3i).

Toward the observation of ultra-large droplets that are detect-
able by experimental confocal microscopy
In contrast to the droplet formation or regulations studied in MD
simulations, the real droplet sizes observed with confocal microscopy
vary from sub-micrometer to tens of micrometers55,56. To connect a
large gap between the simulations and experiments, we focus on the
fusion of multiple droplets toward a much larger one, which happens
in the cell during the formation of mesoscopic-scale protein droplets
due to LLPS55,57,58. Here, we generated large systems comprising 16,657
chains of TDP-43-LCD, in total 2,565,178 CG particles. Two systems
were created with different overall chain densities: 1:85× 10�6Å

�3

(high density) and 6:75 × 10�7Å
�3

(lowdensity), respectively (Fig. 4a, b).
The high-density and low-density systems were simulated in boxes
measuring 2087× 2067 ×2077Å

3
and 2899×2903×2929Å

3
, respec-

tively. Both simulations were performed in the NVT ensemble at
T =290K . Leveraging the computational power of the supercomputer
Fugaku, we achieved a simulation speed of 2:8× 107 steps per day
(~280ns/day, with a time integration step size of 10 fs) on 512 nodes,
regardless of the particle densities of the two systems. In total,
1:225 × 109 and ~1:200× 109 stepswereperformed for thehigh- and low-
density systems, respectively.

To monitor the dynamics of droplets, we employ the DBSCAN
clustering analysis54 on selected snapshots obtained at different stages
during the simulations. In the initial structures, proteins are dis-
tributed intomore than 50 droplets of varying sizes, ranging from 5 to
452 chains in a droplet. While the two systems exhibit similar droplet
size distributions in the initial structures,more drastic changes happen
in the high-density system as the simulation progresses. In the high-
density system, the number of droplets (nd) quickly decreases from
nd = 53 to nd = 7 within the first 5 × 107 steps, while the largest droplet
size increases from sd =452 at t =0 to sd =6422 at t = 5× 107 steps
(Fig. 4c), indicating the occurrence of droplet fusions. Indeed, a
snapshot at 1:00× 108 step of the high-density system reveals the
formations of a few large droplets of TDP-43-LCD, with the largest
droplet exhibiting a non-spherical shape (Fig. 4a). These droplets
further assembled into two after ~3 × 108 steps. Eventually, after
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8:5 × 108 steps, only one droplet remains, comprising ~14,000 chains
and a diameter of approximately 0.1μm (Fig. 4a, c). In contrast, the
number of droplets in the low-density system decreases at a slower
pace, reducing from nd = 53 to nd = 16 during the first 4 × 108 steps and
eventually reaching 6 after 1:2× 109 steps (Fig. 4c). Simultaneously, the
largest droplet size slowly increases from sd =452 (t =0) to sd = 1261 at
t =4× 108 steps and finally to sd =2,205 at t = 1:2 × 109 steps. The
complete procedure of the high-density system is available for viewing
in Supplementary Movie 2.

Interestingly, we observed that the decrease in droplet number is
not always due to the fusion of smaller droplets into larger ones, as
shown in Fig. 3. We discovered that some droplets reduce in size and
eventually dissolve into the dilute phase. For instance, in the high-
density system, after 4:25 × 108 steps, the size (sd) of the smaller dro-
plet (depicted as blue in Fig. 4a, middle) decreased from 1297 to 0 (as
shown in Fig. 4c, bottom). Meanwhile, larger droplets can grow as the
concentration in the dilute phase increases, withmore chains entering
the densephase. For example, the size of the larger droplet in the high-
density system increased from 12,850 at t =4:25 × 108 to 14,088 at
t = 1:225 × 109. The differing destinies of large and small droplets can
be attributed to the pressure difference sustained across the interface

between the twophases (Δp), which is described by the Young-Laplace
equation, Δp= � 2γ=Rf , where γ is the surface tension, and Rf is the
mean curvature. For small, highly curved droplets, extra energy is
required to overcome this large pressure, causing the diffusion of
proteins into the dilute phase, and consequently driving Ostwald
ripening59,60.

These simulation results highlight the effectiveness of
CGDYN in capturing the fundamental events involved in droplet
dynamics with residue-level particle resolutions. We expect that
further extensive simulations and in-depth analysis can uncover
additional details and refine our understanding of the IDP phase
behaviors.

Discussion
Slab simulations have been commonly employed to investigate
the equilibrated phase behavior of biomolecular condensates13,14,37,49,50.
It is crucial to note that these simulations have limitations in accurately
capturing the 3D nature of the fusion processes due to the limited
number of chains and the small size of the system. In contrast, the large-
scale droplet simulations with the residue-level description of proteins
can overcome these potential problems in smaller-scale simulations. As
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Fig. 3 | CGMDsimulationof the fusionprocessof twoTDP-43-LCDdroplets.The
system consists of 1000 chains of TDP-43-LCD. In the initial structure, two separate
droplets were put close to each other. The system was simulated at 280 K for 108

steps. Snapshots of simulated structures at t =0 (a), t = 2 × 107 steps (c), and 1 × 108

steps (e). Chains from the two droplets in the initial structure are colored red and
blue, respectively. Time-averaged distributions of TDP-43 chains along the z axis
during 0< t<0:4× 107 (b), 1:8× 107<t<2:2 × 107 (d), and 9:6× 107<t<10:0× 107 (f)

steps, respectively. g Density of TDP-43 particles along the z axis as a function of
simulation time. h Time series of average chain-chain distances DI, J (upper) and
shape coordinateη (lower,η = 3 indicates perfectly symmetrical sphere and largerη
values indicate deviations from spherical symmetry). iDroplet mixing (depicted by
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DI, J , η, and m are in the Methods section. Source data are provided as a Source
Data file.
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demonstrated in the current study, CGDYN is a powerful tool for
simulating realistic-sized biomolecular condensates. The versatility of
CGDYN could facilitate the reproduction of many experimental results,
such as fluorescence recovery after photobleaching49 and optical
tweezers61, and sheds more light on the molecular mechanisms under-
lying the biomolecular condensates.

We have developed CGDYN to enhance and broaden the
applicability of CGMD simulations. ATDYN, an engine utilized in our
prior residue-level CG simulations, suffers from speed limitations,
preventing us from achieving long time-scale observations. When we
introduce a non-bondedpotential function, itmerely incorporates an
additional neighbor list search module. Consequently, it lacks opti-
mization for handlingmultiple non-bonded interactions with distinct
potential terms. CGDYN is specifically designed to address these
shortcomings present in ATDYN. CGDYN endeavors to integrate
various non-bonded potential functions into a single neighbor list
search module, except for interactions involving protein-DNA inter-
actions (whereNewton’s action-reaction principle cannot be applied)
and electrostatic interactions (which are handled separately by
considering only charged particles). Consequently, CGDYN necessi-
tates defining cutoff values in ascending order and generating
neighbor lists within a unifiedmodule according to atom types (such
as ordered/disordered protein regions, DNA phosphate/sugar/base,
etc). We believe that the distinctive aspect of CGDYN, setting it apart

from existing software, lies in its utilization of this hierarchical
arrangement of cutoff values in managing multiple non-bonded
interactions.

Our primary focus in this development is currently limited to
CPU-based computers. Nonetheless, we anticipate that GPUs could
further enhance the speed of MD simulations by employing the same
domain decomposition with dynamic load balancing. While there
have been several GPU implementations of CG potentials, optimizing
multiple functions on GPU cores will pose significant challenges. In
cases where the system size is not substantial, allocating all the
energy/force calculations and integrations to a single GPU may be
feasible. However, when utilizing multiple nodes with GPUs, com-
munication between different nodes becomes a more critical issue
due to the reduced computation-to-communication ratio inherent in
GPU usage.

The LLPS of biomolecules and the subsequent transitions from
liquid to solid phases can be influenced by specific proteins48 or RNA
molecules62,63. In a recent study, we explored the regulation of TDP-
43-LCD’s condensation by Hero-1150. Through slab simulations
simulated with ATDYN, we could investigate the effects of Hero-11 on
the interactions and dynamics of TDP-43-LCD, including its potential
influence on droplet fusion through charge distribution. We expect
that by incorporating Hero-11 into the TDP-43-LCD droplet systems
examined in this work, we can provide direct evidence for one of the

Fig. 4 | CGMD simulations of the dynamics ofmultiple TDP-43-LCD droplets at
two different densities. a Snapshots of the high-density system taken at five dif-
ferent times during the simulation. b similar to (a) but for the low-density system.
Colors of protein chains in (a) and (b) are according to the DBSCAN clustering
results: chains in droplets are colored blue or red, and chains classified as “noise”
are coloredwhite. cNumber of droplets (nd , upper) and sizesof droplets (sd , lower)

as functions of simulation time. In the lower plot, special markers are used for the
two droplets in the high-density system (a) after 4:25 × 108 steps: the markers have
yellow edges, with the face color being red for the larger droplet and blue for the
smaller droplet, respectively. For the other dots and lines, yellow represents the
high-density system, while green represents the low-density system. Source data
are provided as a Source Data file.
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previously proposed mechanisms of surface effect and develop a
deeper understanding of the regulation of biomolecular LLPS. Fur-
thermore, as demonstrated in Fig. 4, surface tension plays a crucial
role in regulating droplet morphology, which, unfortunately, cannot
be fully captured by slab simulations due to the infinite curvature
imposed by periodic boundary conditions. This underscores the
necessity of using our high-performance implementation in CGDYN
to simulate such systems.

The internal structures of droplets or mesoscopic assemblies
composed of multi-component proteins/RNAs have attracted
significant attention64–68. Computational and experimental studies
have focused on investigating the multi-layered structures in multi-
component systems64–66. Valency has been proposed as a key
factor in determining the spatial positioning of each component66.
The impact of layered distributions, such as reducing the surface
tension and localizing higher-valency components at the core while
allowing rapid exchange of lower-valency components in and out
of condensate, has been discussed66. The dynamics of multi-
component LLPS has been proposed to involve multiple phase
transitions, including the first separation of condensates from the
bulk solution and subsequent transitions within the high-density
phase69.

There are increasingly interesting mesoscopic biological phe-
nomena to be simulated with large-scale CG MD simulations with
residue-level CG models. Paraspeckles, which are condensates com-
posed of RNAs and IDPs, are observed in the cellular nucleus of
mammalian cells70. A triblock copolymer model has been proposed
to explain the shell localization of RNA ends and the size of
paraspeckles71. However, due to their large sizes, achieving residue-
level descriptions of such biologically interesting systems has been
challenging. Multi-dimensional information on chromatin is also
accumulated, providing a deeper understanding of how gene
expression is regulated via dynamic interactions involving nucleo-
somes, transcription factors, remodelers, RNA polymerases, and
other factors72–75. Experimental studies have suggested the functional
roles of liquid droplets formed by transcription factors, mediators,
and RNA polymerases73–75. To understand these models structurally
and epigenetically, the residue-level descriptions are necessary at the
very least. The methods and software developed in this study could
be important computational bases for understanding mesoscopic
biological phenomena through long-time dynamics of the real-size
simulation systems.

Methods
Potential functions of the residue-level CG models
In GENESIS CGDYN, we employ residue-level CG models with an
approximate resolutionof 10heavy atomsperparticle. At this level, each
CG particle represents a single amino acid residue in proteins, while
nucleic acids are represented by three particles per nucleotide, corre-
sponding to the phosphate (P), sugar (S), and base (B) components.

Protein models
Regarding proteins,we have incorporated twodistinct CGmodels: one
for folded domains (AICG2 + 5) and another for IDRs (HPS/KH14). These
models can be incorporated for proteins comprising folded domains
and IDRs.

The AICG2+ potential energy function is given by5:

VAICG2+ Γð Þ =V local +
X

i,jð Þ2native contacts
EGo rij

	 

+

X
i,jð Þ2nonnative contacts

Eexv rij
	 


: ð3Þ

where Γ is the conformation of protein, V local includes all bonded
terms, EGoðrijÞ is the structure-based Gō potential, and EexvðrijÞ is the
potential from excluded volume interaction.

The local interaction term, V local in Eq. (3), is defined as5:

V local =
X

bi2bonds
kb,i bi � bi,0

� �2 + X
ri21�3pairs

�εi exp
� ri � ri,0
� �2

2w2
i

 !

+
X

θi2angles
�kBT ln

Pθ θiji
� �

sinθi

+
X

φi2dihedrals
�ϵφ,i exp

� φi � φi,0

� �2
2σ2

φ,i

 !

+
X

φi2dihedrals
�kBT lnPd φiji

� �
,

ð4Þ

where the first term is for the bond interaction, the second term is for
every two end particles in the angle one, and the fourth term is for the
dihedral angle potential. The third andfifth terms are statisticalflexible
potentials, where PθðθijiÞ and Pd φiji

� �
are residue-type dependent

probability distributions of angles and dihedral angles, respectively. kB

is the Boltzmann constant and T is temperature.
EGoðrijÞ in Eq. (3) is given by:

EGo rij
	 


= εGo,i,j 5
σij

rij

 !12

� 6
σij

rij

 !10
2
4

3
5, ð5Þ

where rij is the distance between residues forming a native contact, σij

is the reference value of rij , and εGo,i,j is the context-dependent energy
coefficient. A native contact is defined as two residues having any
heavy atoms within 4.5 Å from each other in the reference structure.
Only the folded regions of proteins have EGoðrijÞ interactions.

EexvðrijÞ in Eq. (3) is given by:

Eexv rij
	 


=
�εexv

σij

rij

	 
12
+ ϵ0exv,ij , rij < rC

0, rij ≥ rC

8<
: ð6Þ

where rij is the distance between residues i and j, σij is residue-type
dependent excluded volume distance7, εexv =0:6kcal=mol is the force
coefficient, rC = 2σij is the cutoff distance, and ϵ0exv,i,j =

1
2

� �12
εexv.

The potential energy function of the HPS model is defined as14:

VHPS Λð Þ=
X

bi2bonds
Eb bi

� �
+

X
i,jð Þ2non�bondedpairs

EHPS rij
	 


+
X

i,jð Þ2charged pairs

Eele rij
	 


,
ð7Þ

where Λ is the conformation of an IDP and EbðbiÞ is the potential for
every two neighboring particles with a bond length bi:

Eb bi

� �
= kb bi � bi,0

� �2, ð8Þ

where bi,0 = 3:8Å is the reference value and kb =2:39kcal=mol�Å−2 is the
force constant.

EHPSðrijÞ is the interaction between non-bonded particles14:

EHPS rij
	 


=
ELJðrijÞ+ 1� λij

	 

ϵ, rij ≤ 2

1=6σij

λijELJðrijÞ, rij > 2
1=6σij

8<
: ð9Þ

where λij is the hydropathy and ELJðrijÞ is the Lennard–Jones potential:

ELJ rij
	 


=4ϵ
σij

rij

 !12

� σij

rij

 !6
2
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5: ð10Þ
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In Eqs. (9) and (10), ϵ=0:2kcal=mol. We use an arithmetic com-
binational rule for σij and λij .

We utilize the Debye-Hückel term for the electrostatic interaction
EeleðrijÞ:

Eele rij
	 


=
qiqje

�rij=λD

4πε0εr rij
, ð11Þ

where rij is the distance between two non-bonded charged particles i
and j and ε0 is the dielectric permittivity of vacuum. εr , the relative
permittivity of the solution, is defined as a function of the temperature
T and salt molarity C: εr = e Tð Þa Cð Þ, where e Tð Þ=249:4�
0:788T + 7:20× 10�4T276 and a Cð Þ= 1� 0:2551C + 5:151× 10�2C2�
6:889× 10�3C3 77. The Debye length λD is given by λD =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTε0εr
2NAe

2
c I

q
, where

ec is the elementary charge, NA is the Avogadro’s number, and I is the
ionic strength of the solution.

Nucleic acid models
We utilize the 3SPN.2C model for DNA, whose potential energy func-
tion is defined as18,19:

V 3SPN:2C Γð Þ=
X

bi2bonds
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bond bi
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+

X
θi2angles
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angle θi
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+
X
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Ebp +
X

cross�stacking pairs
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ð12Þ
where Γ represents the conformation of DNA. Here, “excluded
volume pairs” (shown as exv pairs in Eq. (12)) are the nonbonded
particle pairs that do not participate in base pairing or stacking
interactions.

Bond potential in Eq. (12) is defined as18,19:

E 2ð Þ
bond bi

� �
= k 2ð Þ

b,i bi � bi,0

� �2 + k 3ð Þ
b,i bi � bi,0

� �4, ð13Þ

where bi is the bond length, bi,0 is the reference value of bi, k
2ð Þ
b,i and k 3ð Þ

b,i
are the force constants in the quadratic and quartic terms,
respectively.

The angle potential in Eq. (12) is given by18,19:

E 1ð Þ
angle θi

� �
= ka,i θi � θi,0

� �2, ð14Þ

where θi is the bond angle formed by three CG particles, θi,0 is the
reference value, and ka,i is the force constant.

The dihedral angle potentials in Eq. (12) are defined as18,19:

E 1ð Þ
dihedral ϕi

� �
=
X
n

kϕ,i,n 1 + cos n ϕi � ϕi,0

� �� �� �
, ð15Þ

and:

E 2ð Þ
dihedral ϕi

� �
= � ϵϕ,i exp
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� �2
2σ2

ϕ,i

 !
, ð16Þ

where ϕi and ϕi,0 are the dihedral angle and its reference value,
respectively, n is an integer number that controls the periodicity of the
function, σϕ,i is the Gaussian width, and kϕ,i,n and ϵϕ,i are the force
constants.

The terms Ebstk, Ebp, and Ecstk in Eq. (12) refer tomulti-body energy
functions describing base-base interactions18,19:

Ebstk = E
repð Þ
Morse ri

� �
+ f ΔθBS,i

� �
E attrð Þ
Morse ri

� �
, ð17Þ

Ebp = E
repð Þ
Morse ri

� �
+
1
2

1 + cosΔϕBP,i

� �
f Δθ1,i
� �

f Δθ2,i
� �

E attrð Þ
Morse ri

� �
, ð18Þ

Ecstk = f Δθ3,i
� �

f ΔθCS,i

� �
E attrð Þ
Morse ri

� �
, ð19Þ

where ri represents the distance between the two interacting bases,
and the angles (θBS,i, θ1,i, θ2,i, θ3,i, and θCS,i) and dihedral angles (ϕBP,i)
are formed by the surrounding sugar and phosphate sites. The Morse
potential in Eqs. (17), (18), and (19) are defined as:

EMorse ri
� �

= ϵM,i 1�e�αi ri�ri,0ð Þ	 
2
� ϵM,i, ð20Þ

where ri and ri,0 are the distance between two particles and its refer-
ence value, respectively. ϵM,i and αi are the “depth” and the “width” of
the Morse potentials, respectively. The repulsive (E repð Þ

Morse) and the
attractive (E attrð Þ

Morse) components of the Morse potential are defined in
the following:

E repð Þ
Morse ri

� �
=

ϵM,i 1�e�αi ri�ri,0ð Þ	 
2
, ri < ri,0

0, ri ≥ ri,0

8<
: ð20aÞ

and

E attrð Þ
Morse ri

� �
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�ϵM,i, ri < ri,0

ϵM,i 1�e�αi ri�ri,0ð Þ	 
2
� ϵM,i, ri ≥ ri,0

8<
: ð20bÞ

The angle-dependent modulating function in Eqs. (17), (18), and
(19) is defined as18,19:

f Δθð Þ=
1, Δθ

�� ��< γ
1� cos2 π

2γΔθ
	 


, γ ≤ Δθ
�� ��≤ 2γ

0, Δθ
�� ��≥ 2γ

8>><
>>: ð21Þ

whereΔθ is the difference between anangle (θ) and its reference value,
and γ controls the tuning range.

The excluded volume interaction in Eq. (12) is given by18,19:

E 1ð Þ
exv ri
� �

=
ϵexv,i

σi
ri

	 
12
� 2 σi

ri

	 
6� 
+ ϵexv,i, r < rC,exv

0, r ≥ rC,exv

8<
: ð22Þ

where rC,exv is the cutoff distance and has the same value as σi.
For the electrostatic interactions in Eq. (12), we use the same

definition given by the Debye-Hückel model as in Eq. (11).
For RNA, weoffer twomodels: a structure-basedmodel (similar to

Eq. (3)) with a three-bead-per-nucleotide resolution78, and an HPS
model (Eq. (7)) with a one-bead-per-nucleotide resolution37.

Protein-DNA models
Protein-DNA binding can be divided into two types: sequence-
nonspecific interactions involving amino acids and DNA backbone
groups (primarily electrostatic interactions), and sequence-specific
interactions between amino acids and DNA bases. The PWMcosmodel
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can describe the latter by incorporating positionweight matrix (PWM)
information into structure-based interactions79. Thismodel identifies a
set of DNA-binding protein residues (DB-Cαs) that contact DNA in its
native structure. The potential energy is then calculated using:

X
i2bases

X
j2DB�Cα

X
m2PWMcolumns

EPWMcos i,j,m,~x
� �

=
X
i,j,m

Um,j bi,~x
� �

+Um0 , j bi~x
� �	 
 ð23Þ

where m0 is the base in the complementary base of m, bi is the base
type of base i (bi 2 ½A,C,G,T �), and~x is the coordinates of particles in
each conformation.

Function Um,j bi,~x
� �

is defined as79:

Um,j bi,~x
� �

= EGaussian

�
rij
�
f Δθ1

� �
f Δθ2
� �

f Δθ3

� �
, ð24Þ

where rij is the distance between the i-th base and the j-th Cα , and θ1,
θ2, and θ3 are angles defined by the surrounding particles79.

The Gaussian potential is defined as79:

EGaussian ri
� �

= � ϵG,i exp
� ri � ri,0
� �2

2w2
i

 !
, ð25Þ

where ϵG,i and wi are the “depth” and “width” of the Gaussian,
respectively. ϵG,i is a constant dependent on base type and the PWM.
The modulating functions f Δθð Þ is defined in Eq. (21).

Similar to PWMcos, we also implement a sequence-nonspecific
model to describe the hydrogen bond (HB) interactions formed
between protein and DNA backbone10.

Modeling of TDP-43-LCD
Weused the AlphaFold280 predicted structure of TDP-43 as a reference
structure for the residue-level CG modeling. In this modeling
approach, each amino acidwas represented by a single CGparticle.We
employed the HPS model14 for simulating TDP-43-LCD (residues 261-
319 and 335 to 414), mostly as an IDP. To preserve the secondary
structure of an α-helix (residues 320 to 334), we employed the AICG2+
model5. The GENESIS-CG-tool is used to prepare all the structure and
topology files for the MD simulations35.

Preparation of initial structures for the droplet systems
We constructed the initial structures for the droplet simulations in a
stepwise manner. First, we simulated a single chain of TDP-43-LCD for
2 × 107 steps. From this simulation trajectory, we randomly selected a
structure, which was then duplicated to create a system consisting of
500 chains. Subsequently, we performed “shrinking” simulations,
gradually compressing the simulation boxes to dimensions of
500Å×500Å×500Å. The system was equilibrated at 260K for 7 × 106

steps, resulting in the formation of a single droplet of TDP-43-LCD.
Next, we selected structures obtained from the single-droplet simu-
lations andput them into a larger simulationbox to constructmultiple-
droplet systems.

Specifically,we constructed the following systems. We constructed
a system consisting of 500 TDP-43-LCD chains and 100 Hero11 chains
(Fig. 1c).We selected one simulated structure of the singleTDP-43-LCD
droplet system and placed it randomly within a simulation box of
1000Å× 1000Å× 1000Å. 100 Hero11 chains were then randomly
added to the empty space, ensuring no structure clashes.

To construct themultiple-droplet systems in Figs. 2 and 4, we first
carried out MD simulations of meso-scale particles with radii ranging
from 50Å to 200Å. Only excluded volume interactions were con-
sidered during these simulations. Various numbers of large particles
were simulated within simulation boxes of different sizes to achieve

varying densities. Next, we superimposed the single-droplet TDP-43-
LCD structures onto the large particles and removed any TDP-43-LCD
chains that were located beyond the boundaries of the large particles.
This process allows us to obtain multiple-droplet systems without
structure conflicts.

To construct the initial structures of the two droplet simulations
(Fig. 3), we chose two structures (named Λ1 and Λ2) from the single-
droplet simulations of TDP-43-LCD. These two selected structures
were placed into a simulation box with dimensions of
1000Å× 1000Å× 1500Å, ensuring that the two droplets in each
structure were positioned close to each other with no direct contact
(Fig. 3a). In themerged structure, certain chains in the dilute phase of
Λ1 overlapped with the condensate in Λ2. For these chains, we relo-
cated them to random locations in the dilute phase.

Preparation of DNA structures for the benchmark systems
We first utilized the DNA structure building tool in GENESIS-CG-tool to
generate a 200-bp double-stranded DNA (dsDNA) structure with a
random sequence. Using the 3SPN.2 C model18,19, the 200-bp dsDNA
system consists of 1198 particles. Subsequently, we duplicated this
dsDNA structure n2 (n= 1,2,3,4,5) times using GENESIS-CG-tool.

Validation and benchmark simulations
For the benchmark tests, we first prepared droplet systems of TDP-43-
LCD chains with four different particle numbers: (1) N1 = 300,146,
(2) N2 = 744,128, (3) N3 = 1,190,882, and (4) N4 = 2,565,178.
In all systems, there are two densities: ρL =6:74× 10�7chains=Å3

and ρH = 1:85× 10�6chains=Å3.
Comparison tests between ATDYN (the atomistic decomposition

method without dynamic load balancing), SPDYN-like (the midpoint
cell method without dynamic load balancing), and CGDYN (the cell-
based kd-tree domain decomposition with dynamic load balancing)
are carried out for the systemswithN1 particles on Fugakuwith 4MPIs
per node. Performances are investigated by checking the wall time of
10,000MD steps. We save the trajectory files at the final step tomimic
the real MD simulations. In all cases, we run the same runs five times
and get the average as the benchmark results. The effect of the load
balancing update during MD simulations is checked for N1 particles
with ρH density. In this case, we ran 108MD steps and saved trajectories
every 50,000 steps. In all cases, we assigned 35 Å as the electrostatic
cutoff values ðrc,ele = 35ÅÞ

Benchmark comparisons among ATDYN, CGDYN, and
Open3SPN2 are carried out with the above-mentioned duplicated
dsDNA systems. These systems have the cutoff distance rc,ele = 50Å.
For ATDYN and CGDYN, we used Intel Xeon Gold 6242 CPUs (32 cores
per node). For the test with Open3SPN2, Nvidia RTXA6000GPU cards
are used. Note that we were unable to perform simulations of our
n2ðn≥ 2Þ dsDNA systems using the default Open3SPN2 software51. We
had to modify the structure-reading component of Open3SPN2 to
make it functional. However, we did not make any changes to the
kernel part responsible for force/energy calculations, so the perfor-
mance should remain consistentwithwhatwas reported in the original
paper51. In addition, we faced memory issues when utilizing
Open3SPN2 for the duplicated dsDNA systems with n2ðn≥6Þ 200-bp
dsDNAs. However, we encountered no problems with such systems
when using GENESIS ATDYN and CGDYN.

For the comparison between CGDYN and ATDYN for three sys-
temson the RIKENHokusai supercomputer,weused the sameworking
conditions as before35.

To compare CGDYN with GROMACS, we generated two 1000
DPPC micelle systems with different densities. One micelle is gener-
atedbyCHARMM-GUIMartiniMaker81, whichhas 100DPPCmolecules.
We then duplicated this molecule and put in different places with
different orientations. The finally generated systems have 1.2 million
particles with two system sizes: 2377.059Å × 2395.0 Å × 2395.0 Å and
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1598.128Å × 1598.767 Å × 1597.518 Å.We used 11 Å as the cutoff value.
Weestimated theperformanceby running 5000MDstepswith0.03 ps
time step. We used 2023.1 version of GROMACS for benchmark
comparison.

In the benchmark comparison of ATDYN, CGDYN, and LAMMPS,
we simulated a multiple IDP droplets system consisting of 300,146
particles (Fig. 2a, right). For LAMMPS, we utilized the version dated 29-
Oct-2020 and incorporated the implementation of the HPS model
(https://github.com/azamat-rizuan/HPS-SS-model). For both GENESIS
(ATDYN and CGDYN) and LAMMPS, cutoffs of 20Å for HPS and 35 Å
for Debye-Hückel potentials were applied. Additionally, a buffer size of
3 Å was employed for pairlist generation. All benchmark simulations
were conducted using Langevin dynamics at 300K, with a friction
coefficient of 0.01 ps−1. The solution temperature was set to 300K and
the ionic strength to 150mM in GENESIS, with the dielectric constant
accordingly set to 74.911 in LAMMPS. For load balancing in LAMMPS,
the RCB algorithm was used every 1000 steps, with a load imbalance
threshold set at 1.1. In CGDYN, load balancing was performed during
the initialization of calculations.

CG MD simulations of droplet dynamics
All CG simulations were performed using CGDYN. In all the
simulations, we used a time-integration step size of 10 fs. Nonlocal
HPS (EHPS) and electrostatic (Eele) potentials have cutoffs of 20 Å
and 35 Å, respectively. Production runs were conducted in NVT
ensembles, using Langevin dynamics with a friction coefficient
of 0:01ps�1.

The two-droplet simulations were conducted in the periodic
boundary condition (PBC) with box dimensions of 1000Å× 1000Å×
1500Å. MD simulations were carried out at 280K for 5 × 108 steps.
However, we found that the fusion process occurredwithin a relatively
short timeduring the simulations. Therefore, only the first 1 × 108 steps
data are analyzed and shown in the current study. The results are
consistent across all five independent runs (Fig. 3g, h, and Supple-
mentary Fig. 9). We performed the simulations on local PC clusters
(Intel Xeon Gold 6240R CPU, 2.4 GHz) using 16 MPI processes in
conjunction with 3 OpenMP threads.

The ultra-large multiple-droplet simulations were conducted in
PBC boxes of 2087Å×2067Å× 2077Å (high-density) and
2899Å× 2903Å×2929Å (low-density). We performed these simula-
tions at T =290K . The high-density and low-density systems were
simulated for 12:25 × 108 and 12:00× 108 steps, respectively. These
simulations were conducted on the supercomputer Fugaku using 512
or 1024 nodes.

Data analysis
The DBSCAN clustering method54 was employed to analyze the
structures from the droplet simulations. However, different para-
meters were used for the two-droplet and multiple-droplet systems.
In the two-droplet system, we defined the contact distance between
two chains as dDBSCAN,2�drop = 1 when the two chains formed contacts
(i.e., when two inter-chain residues were within 10 Å from each
other), and 0 otherwise. On the other hand, in the multiple-droplet
system, we define the contact distance between two chains as the
distance between their center of mass (COM). With these definitions,
we used ε=0:5 (radius of neighborhood),min_pts = 20 (theminimum
number of neighbors for a point to be considered as a core point),
and min_cluster_size = 100 (minimum cluster size) in the two-droplet
systems. For the multiple-droplet systems, we used ε= 50Å,
min_pts = 5, and min_cluster_size = 50. These parameters were cho-
sen to effectively identify clusters and analyze the droplet structures
in each system.

To monitor the mixing of contents in the two-droplet system,
we define a coordinate DI,J to describe the average distance

between every two chains, one coming from cluster I and the other
from cluster J:

DI,J =

P
i2CI ,j2CJ ,i≠j

dCOM,ij

NI,J
, ð26Þ

where I and J can be 1 or 2 (one of the two clusters in the initial
structure), NI,J =

P
i2CI ,j2CJ ,i≠j

1 is the total number of computed chain

pairs. On top of NI,J , we defined a “mixing” coordinate m as:

m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1,1D2,2

p
D1,2

: ð27Þ

We employed a coordinate η to describe the shape of a droplet:

η= max
dx

dy
,
dy

dx

 !
+ max

dy

dz
,
dz

dy

 !
+ max

dz

dx
,
dx

dz

� �
: ð28Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Benchmark and simulation data generated in this study have been
deposited at https://github.com/RikenSugitaLab/cgdyntest/, where
analysis scripts are also deposited. Initial, final, and some intermediate
structures from our simulations are stored on the same GitHub repo-
sitory. Given that the total volume of MD trajectories amounts to 7.0
TB, we have not uploaded them to public repositories. However, we
ensure full reproducibility of our results with the provided data (MD
control files, initial structures, and analysis scripts). Additionally, MD
trajectories are available upon request to the corresponding author.
Source data are provided as a Source Data file. Source data are pro-
vided with this paper.

Code availability
The GENESIS CGDYN code and analysis programs can be found at
https://github.com/genesis-release-r-ccs/genesis-2.1.0beta_cgdyn82.
The GENESIS-CG-tool for creating CGDYN inputs is available at https://
github.com/genesis-release-r-ccs/genesis_cg_tool. Additionally, in-
house scripts utilized for analyzing droplet systems are hosted at
https://github.com/RikenSugitaLab/cgdyntest.

References
1. Kmiecik, S. et al. Coarse-grained protein models and their appli-

cations. Chem. Rev. 116, 7898–7936 (2016).
2. Takada, S. et al. Modeling structural dynamics of biomolecular

complexes by coarse-grained molecular simulations. Acc. Chem.
Res. 48, 3026–3035 (2015).

3. Jin, J. H. Y., Pak, A. J., Durumeric, A. E. P., Loose, T. D. & Voth, G. A.
Bottom-up coarse-graining: principles and perspectives. J. Chem.
Theory Comput. 18, 5759–5791 (2022).

4. Clementi, C., Nymeyer, H. & Onuchic, J. N. Topological and ener-
getic factors:what determines the structural details of the transition
state ensemble and “en-route” intermediates for protein folding?
An investigation for small globular proteins. J. Mol. Biol. 298,
937–953 (2000).

5. Li, W., Wang, W. & Takada, S. Energy landscape views for interplays
among folding, binding, and allostery of calmodulin domains. Proc.
Natl Acad. Sci. USA 111, 10550–10555 (2014).

6. Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein
complex. Nature 555, 61–66 (2018).

Article https://doi.org/10.1038/s41467-024-47654-1

Nature Communications |         (2024) 15:3370 11

https://github.com/azamat-rizuan/HPS-SS-model
https://github.com/RikenSugitaLab/cgdyntest/
https://github.com/genesis-release-r-ccs/genesis-2.1.0beta_cgdyn
https://github.com/genesis-release-r-ccs/genesis_cg_tool
https://github.com/genesis-release-r-ccs/genesis_cg_tool
https://github.com/RikenSugitaLab/cgdyntest


7. Tan, C., Terakawa, T. & Takada, S. Dynamic coupling among protein
binding, sliding, and DNA bending revealed by molecular dynam-
ics. J. Am. Chem. Soc. 138, 8512–8522 (2016).

8. Vuzman, D., Azia, A. & Levy, Y. Searching DNA via a “Monkey Bar”
mechanism: the significance of disordered tails. J. Mol. Biol. 396,
674–684 (2010).

9. Tan, C. & Takada, S. Nucleosome allostery in pioneer transcription
factor binding. Proc. Natl Acad. Sci. USA 117, 20586–20596 (2020).

10. Brandani, G. B., Niina, T., Tan, C. & Takada, S. DNA sliding in
nucleosomes via twist defect propagation revealed by molecular
simulations. Nucleic Acids Res. 46, 2788–2801 (2018).

11. Lequieu, J., Cordoba, A., Moller, J. & de Pablo, J. J. 1CPN: a coarse-
grained multi-scale model of chromatin. J. Chem. Phys. 150,
215102 (2019).

12. Arya, G. & Schlick, T. Role of histone tails in chromatin folding
revealed by a mesoscopic oligonucleosome model. Proc. Natl
Acad. Sci. USA 103, 16236–16241 (2006).

13. Joseph, J. A. et al. Physics-driven coarse-grained model for bio-
molecular phase separation with near-quantitative accuracy. Nat.
Comput. Sci. 1, 732–743 (2021).

14. Dignon, G. L., Zheng,W., Kim, Y. C., Best, R. B. &Mittal, J. Sequence
determinants of protein phase behavior from a coarse-grained
model. PLoS Comput. Biol. 14, e1005941 (2018).

15. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrin-
sically disordered linkers determine the interplay between phase
separation and gelation in multivalent proteins. Elife 6, e30294
(2017).

16. Benayad, Z., von Bülow, S., Stelzl, L. S. & Hummer, G. Simulation of
FUS protein condensates with an adapted coarse-grainedmodel. J.
Chem. Theory Comput. 17, 525–537 (2021).

17. Gruijs da Silva, L. A. et al. Disease‐linked TDP‐43 hyperpho-
sphorylation suppresses TDP‐43 condensation and aggregation.
EMBO J. 41, e108443 (2022).

18. Freeman, G. S., Hinckley, D. M., Lequieu, J. P., Whitmer, J. K. & de
Pablo, J. J. Coarse-grained modeling of DNA curvature. J. Chem.
Phys. 141, 165103 (2014).

19. Hinckley, D. M., Freeman, G. S., Whitmer, J. K. & de Pablo, J. J. An
experimentally-informed coarse-grained 3-Site-Per-Nucleotide
model of DNA: structure, thermodynamics, and dynamics of
hybridization. J. Chem. Phys. 139, 144903 (2013).

20. Sambriski, E. J., Schwartz, D. C. & de Pablo, J. J. Amesoscalemodel
of DNA and its renaturation. Biophys. J. 96, 1675–1690 (2009).

21. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & deVries,
A. H. The MARTINI force field: coarse grained model for biomole-
cular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).

22. Seo, S. & Shinoda, W. SPICA force field for lipid membranes:
domain formation inducedbycholesterol. J. Chem.TheoryComput.
15, 762–774 (2019).

23. Liwo, A. et al. A united-residue force field for off-lattice protein-
structure simulations. I. Functional forms and parameters of long-
range side-chain interaction potentials from protein crystal data. J.
Comput. Chem. 18, 849–873 (1997).

24. Sterpone, F. et al. The OPEP protein model: from single molecules,
amyloid formation, crowding and hydrodynamics to DNA/RNA
systems. Chem. Soc. Rev. 43, 4871–4893 (2014).

25. Gopal, S. M., Mukherjee, S., Cheng, Y. M. & Feig, M. PRIMO/PRI-
MONA: a coarse-grained model for proteins and nucleic acids that
preserves near-atomistic accuracy. Proteins 78, 1266–1281 (2010).

26. Brooks, B. R. et al. CHARMM: the biomolecular simulation program.
J. Comput. Chem. 30, 1545–1614 (2009).

27. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J.
Comput. Chem. 26, 1701–1718 (2005).

28. Eastman, P. et al. OpenMM 7: rapid development of high perfor-
mance algorithms for molecular dynamics. PLoS Comput. Biol. 13,
e1005659 (2017).

29. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J.
Comput. Chem. 26, 1781–1802 (2005).

30. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python
package for high-performance molecular dynamics and hard par-
ticle Monte Carlo simulations. Comput. Mater. Sci. 173,
109363 (2020).

31. Thompson, A. P. et al. LAMMPS—a flexible simulation tool
for particle-based materials modeling at the atomic, meso,
and continuum scales. Comput. Phys. Commun. 271, 108171
(2022).

32. Kenzaki, H. et al. CafeMol: a coarse-grained biomolecular simulator
for simulating proteins at work. J. Chem. Theory Comput. 7,
1979–1989 (2011).

33. Jung, J. et al. GENESIS: a hybrid-parallel and multi-scale molecular
dynamics simulator with enhanced sampling algorithms for bio-
molecular and cellular simulations.Wiley Interdiscip. Rev. Comput.
Mol. Sci. 5, 310–323 (2015).

34. Kobayashi, C. et al. GENESIS 1.1: a hybrid-parallel molecular
dynamics simulator with enhanced sampling algorithms on multi-
ple computational platforms. J. Comput. Chem. 38, 2193–2206
(2017).

35. Tan, C. et al. Implementation of residue-level coarse-grained
models inGENESIS for large-scalemolecular dynamics simulations.
PLoS Comput. Biol. 18, e1009578 (2022).

36. Martin, E. W. et al. Valence and patterning of aromatic residues
determine the phase behavior of prion-like domains. Science 367,
694–699 (2020).

37. Regy, R.M., Dignon,G. L., Zheng,W., Kim, Y.C. &Mittal, J. Sequence
dependent phase separation of protein-polynucleotide mixtures
elucidated using molecular simulations. Nucleic Acids Res. 48,
12593–12603 (2020).

38. Contessoto, V. G., Cheng, R. R. & Onuchic, J. N. Uncovering the
statistical physics of 3D chromosomal organization using data-
driven modeling. Curr. Opin. Struct. Biol. 75, 102418 (2022).

39. Bianco, S. et al. Computational approaches from polymer physics
to investigate chromatin folding. Curr. Opin. Cell Biol. 64,
10–17 (2020).

40. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4:
algorithms for highly efficient, load-balanced, and scalable
molecular simulation. J. Chem. Theory Comput. 4, 435–447
(2008).

41. Fattebert, J. L., Richards, D. F. & Glosli, J. N. Dynamic load
balancing algorithm formolecular dynamicsbasedonVoronoi cells
domain decompositions. Comput. Phys. Commun. 183,
2608–2615 (2012).

42. Hirschmann, S., Glass, C. W. & Pflüger, D. Enabling unstructured
domain decompositions for inhomogeneous short-rangemolecular
dynamics in ESPResSo. Eur. Phys. J. Spec. Top. 227, 1779–1788
(2019).

43. Guzman, H. V., Junghans, C., Kremer, K. & Stuehn, T. Scalable and
fast heterogeneous molecular simulation with predictive paralleli-
zation schemes. Phys. Rev. E 96, 053311 (2017).

44. Grime, J. M. A. & Voth, G. A. Highly scalable and memory efficient
ultra-coarse-grained molecular dynamics simulations. J. Chem.
Theory Comput. 10, 423–431 (2014).

45. Zhang, J., Guo, H. Q., Hong, F., Yuan, X. R. & Peterka, T. Dynamic
load balancing based on constrained K-D tree decomposition for
parallel particle tracing. IEEE Transc. Vis. Comput. Gr. 24,
954–963 (2018).

46. Niethammer, C. et al. ls1 mardyn: the massively parallel molecular
dynamics code for large systems. J. Chem. Theory Comput. 10,
4455–4464 (2014).

47. Jung, J., Mori, T. & Sugita, Y. Midpoint cell method for hybrid (MPI
+OpenMP) parallelization of molecular dynamics simulations. J.
Comput. Chem. 35, 1064–1072 (2014).

Article https://doi.org/10.1038/s41467-024-47654-1

Nature Communications |         (2024) 15:3370 12



48. Tsuboyama, K. et al. A widespread family of heat-resistant obscure
(Hero) proteins protect against protein instability and aggregation.
PLoS Biol. 18, e3000632 (2020).

49. Conicella, A. E. et al. TDP-43 alpha-helical structure tunes liquid-
liquid phase separation and function. Proc. Natl Acad. Sci. USA 117,
5883–5894 (2020).

50. Tan, C., Niitsu, A. & Sugita, Y. Highly charged proteins and their
repulsive interactions antagonize biomolecular condensation.
JACS Au 3, 834–848 (2023).

51. Lu, W. et al. OpenAWSEM with Open3SPN2: A fast, flexible, and
accessible framework for large-scale coarse-grained biomolecular
simulations. PLoS Comput. Biol. 17, e1008308 (2021).

52. Arnarez, C. et al. Dry Martini, a coarse-grained force field for lipid
membrane Simblations with implicit solvent. J. Chem. Theory
Comput. 11, 260–275 (2015).

53. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular
condensates: organizers of cellular biochemistry. Nat. Rev. Mol.
Cell Biol. 18, 285–298 (2017).

54. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
kdd 96, 226–231 (1996).

55. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1
drives phase separation into droplets with tunable viscosity and
dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

56. Brangwynne, C. P. et al. Germline P granules are liquid droplets that
localize by controlled dissolution/condensation. Science 324,
1729–1732 (2009).

57. Gasset-Rosa, F. et al. Cytoplasmic TDP-43 De-mixing independent
of stress granules drives inhibition of nuclear import, loss of nuclear
TDP-43, and cell death. Neuron 102, 339–357.e337 (2019).

58. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic
lateral sclerosis-linked mutations increase the viscosity of liquid-
like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114,
E2466–E2475 (2017).

59. Khedr, A. & Striolo, A. Quantification of Ostwald ripening in emul-
sions via coarse-grained simulations. J. Chem. Theory. Comput. 15,
5058–5068 (2019).

60. Kraska, T. Direct observation of single Ostwald ripening pro-
cesses by molecular dynamics simulation. J. Phys. Chem. B 112,
12408–12413 (2008).

61. Ghosh, A. & Zhou, H. X. Determinants for fusion speed of biomo-
lecular droplets. Angew. Chem. Int. Ed. Engl. 59, 20837–20840
(2020).

62. Maharana, S. et al. RNA buffers the phase separation behavior of
prion-like RNA binding proteins. Science 360, 918–921 (2018).

63. Langdon, E. M. et al. mRNA structure determines specificity of a
polyQ-driven phase separation. Science 360, 922–927 (2018).

64. Kaur, T. et al. Sequence-encoded and composition-dependent
protein-RNA interactions control multiphasic condensate
morphologies. Nat. Commun. 12, 872 (2021).

65. Espinosa, J. R. et al. Liquid network connectivity regulates the sta-
bility and composition of biomolecular condensates with many
components. Proc. Natl Acad. Sci. USA 117, 13238–13247 (2020).

66. Sanchez-Burgos, I., Espinosa, J. R., Joseph, J. A. & Collepardo-
Guevara, R. Valency and binding affinity variations can regulate the
multilayered organization of protein condensates with many com-
ponents. Biomolecules 11, 278 (2021).

67. Deviri, D. & Safran, S. A. Physical theory of biological noise buffering
bymulticomponent phase separation. Proc. Natl Acad. Sci. USA 118,
e2100099118 (2021).

68. Lu, T. & Spruijt, E. Multiphase complex coacervate droplets. J. Am.
Chem. Soc. 142, 2905–2914 (2020).

69. Mazarakos, K. & Zhou, H. X. Multiphase organization is a second
phase transition within multi-component biomolecular con-
densates. J. Chem. Phys. 156, 191104 (2022).

70. Fox, A. H., Nakagawa, S., Hirose, T. & Bond, C. S. Paraspeckles:
where long noncoding RNA meets phase separation. Trends Bio-
chem. Sci. 43, 124–135 (2018).

71. Yamazaki, T. et al. Paraspeckles are constructed asblock copolymer
micelles. EMBO J. 40, e107270 (2021).

72. Feric, M. & Misteli, T. Phase separation in genome organization
across evolution. Trends Cell Biol. 31, 671–685 (2021).

73. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate
in transcription-dependent condensates. Science 361, 412–415
(2018).

74. Chong, S. et al. Imaging dynamic and selective low-complexity
domain interactions that control gene transcription. Science 361,
ear2555 (2018).

75. Sabari, B. R. et al. Coactivator condensation at super-enhancers
links phase separation and gene control. Science 361,
eaar3958 (2018).

76. Catenaccio, A., Daruich, Y. & Magallanes, C. Temperature depen-
dence of the permittivity of water. Chem. Phys. Lett. 367,
669–671 (2003).

77. Stogryn, A. Equations for calculating the dielectric constant of
saline water (Correspondence). IEEE Transac. Microw. Theory Tech.
19, 733–736 (1971).

78. Hori, N. & Takada, S. Coarse-grained structure-based model for
RNA-protein complexes developed by fluctuation matching. J.
Chem. Theory Comput. 8, 3384–3394 (2012).

79. Tan, C. & Takada, S. Dynamic and structural modeling of the
specificity in protein-DNA interactions guided by binding assay
and structure data. J. Chem. Theory. Comput. 14, 3877–3889
(2018).

80. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

81. Qi, Y. F. et al. CHARMM-GUI martini maker for coarse-grained
simulationswith themartini force field. J. Chem. Theory Comput. 11,
4486–4494 (2015).

82. Jung J., Tan C., Sugita Y. GENESIS CGDYN: large-scale coarse-
grained MD simulation with dynamic load balancing for hetero-
geneous biomolecular systems. https://doi.org/10.5281/zenodo.
10906331) (2024).

Acknowledgements
This work was supported in part by MEXT JSPS Kakenhi (grant number
19H05645, 21H05249 (to Y.S.), 21H05282 (to J.J. and C.T.)), RIKEN
pioneering projects “Biology of Intracellular Environments”, and
“Glycolipidologue Initiative” (to Y.S.), RIKEN incentive (to J.J. and C.T.),
MEXT program for promoting research on the supercomputer Fugaku
(JPMXP1020200101), and MEXT program for Big-data-driven bio/syn-
thetic polymer science to create absolutely circular materials
(JPMXP1122714694) and Data-Driven Research Methods Development
and Materials Innovation Led by Computational Materials Science
(JPMXP1020230327) (to Y.S.). The computer resources are
provided by the HPCI system research project (Project ID: ra000003,
hp200028, hp200135, hp210177, hp220170, hp230072, and
hp230212) and by RIKEN Advanced Center for Computing and Com-
munication (for HOKUSAI BigWaterfall, project Q22535, Q22536, and
Q23536).

Author contributions
J.J. developed the program, prepared a part of the benchmark system,
performed benchmark tests, and ran MD simulations. C.T. prepared
benchmark and simulation systems, ran MD simulations, and analyzed
simulation trajectories. Y.S. planned and organized the overall research.
All authors contributed the preparation of the manuscript.

Competing interests
The authors declare no competing interest.

Article https://doi.org/10.1038/s41467-024-47654-1

Nature Communications |         (2024) 15:3370 13

https://doi.org/10.5281/zenodo.10906331)
https://doi.org/10.5281/zenodo.10906331)


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47654-1.

Correspondence and requests for materials should be addressed to
Yuji Sugita.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47654-1

Nature Communications |         (2024) 15:3370 14

https://doi.org/10.1038/s41467-024-47654-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	GENESIS CGDYN: large-scale coarse-grained MD simulation with dynamic load balancing for heterogeneous biomolecular systems
	Results
	Domain decomposition scheme in�CGDYN
	CGDYN structure
	Benchmark tests of CGDYN for heterogeneous biological systems
	Molecular mechanisms for the fusion of two droplets
	Toward the observation of ultra-large droplets that are detectable by experimental confocal microscopy

	Discussion
	Methods
	Potential functions of the residue-level CG�models
	Protein�models
	Nucleic acid�models
	Protein-DNA�models
	Modeling of TDP-43-LCD
	Preparation of initial structures for the droplet systems
	Specifically, we constructed the following systems
	Preparation of DNA structures for the benchmark systems
	Validation and benchmark simulations
	CG MD simulations of droplet dynamics
	Data analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




