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Quantum many-body simulations on digital
quantum computers: State-of-the-art and
future challenges

Benedikt Fauseweh 1,2

Simulating quantum many-body systems is a key application for emerging
quantum processors. While analog quantum simulation has already demon-
strated quantum advantage, its digital counterpart has recently become the
focus of intense research interest due to the availability of devices that aim to
realize general-purpose quantum computers. In this perspective, we give a
selective overview of the currently pursued approaches, review the advances
in digital quantum simulation by comparing non-variational with variational
approaches and identify hardware and algorithmic challenges. Based on this
review, the question arises:What are themost promising problems that can be
tackled with digital quantum simulation? We argue that problems of a quali-
tative nature are much more suitable for near-term devices then approaches
aiming purely for a quantitative accuracy improvement.

One of themain problem classes a quantum computer can tackle is the
simulation of quantum many-body systems. Creating and controlling
novel states of quantum matter is a driver in solid-state physics with
many potential applications. Understanding the complex phase dia-
gram of the cuprate superconductors1, the underlying mechanism of
many-body localization2 and the behavior of quantum systems out of
equilibrium3,4 are key questions that are difficult to answer even with
the best supercomputers currently available.

The reason that quantum simulation is a computationally hard
problem is due to the tensor product structure of the Hilbert space for
combined quantum systems, i.e., the many-body Hilbert space forms
as a tensor product of the individual Hilbert spaces for each degree of
freedom5. For example, consider a quantum system with N two-level
systems (qubits). The dimension of the Hilbert space for each qubit is
2, and the dimension of the Hilbert space for the entire system is
determined by the tensor product of the individual Hilbert spaces,
which is 2N. Thus, as the size of the quantum system increases, the
dimension of the Hilbert space grows exponentially with N. Modern
classical algorithms, such as tensor networks6 and neural network
quantum states7, try to limit the impact of the exponential scaling by
using a low-rank representation of quantum states. However, this
approach is not always applicable, as many physical states do not
possess such a representation, especially for highly entangled

quantum matter in two and higher dimensions and in systems out of
equilibrium.

Oneway to tackle this issue is to find a quantumplatform that acts
as a surrogate for the system one wants to investigate, i.e., analog
quantumsimulation. Control parameters are used to tune the behavior
of the physical quantum platform to match that of the system and by
measuring the state on the platform, it is possible to learn about the
dynamics of the system being studied. Analog quantum simulation has
been a very successful method in the recent decade in order to
simulate quantum systems that are out of reach for classical approa-
ches, with quantum advantage demonstrated using trapped ions and
ultra cold atom experiments8–18. Here quantum advantage denotes to
the ability of quantum devices to efficiently model and predict quan-
tum many-body systems, surpassing the computational limits of clas-
sical computers.

In contrast, digital quantum simulation (DQS) uses a gate-based
quantum computer to simulate the quantum system19. In its original
formulation it involves discretizing the time evolution of the system
and breaking it up into a series of small time steps, which can be
implemented using quantum gates20. This definition has been broa-
dened in recent years to describe any kind of gate-based quantum
simulation of quantum systems. DQS has the potential advantage over
analog quantum simulation that it allows for universal simulation of
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many-body dynamics, particularly for systems that do not ’fit’ onto
analog quantum simulators21. For example, it might be impossible to
simulate certain many-body interactions as they are physically not
realizable in hardware, but its digital decomposition can very well be
implement on a gate-based platform.

Quantum computing platforms
Since Feynman’s original proposal of a quantum computer19 various
technologies have emerged as potential platforms for gate based
quantum computing. Here we give a short overview of some of the
pursued approaches that have already been used for analog anddigital
quantum simulation.

Laser cooled neutral atoms have been very successful for analog
quantum simulation. This technology has recently also reached a level
which allows for digital quantum computation22. In this case qubits are
realized as electronic states of the atoms,which are entangled via long-
range Rydberg states. Recent developments in cold atom quantum
computing have led to the creation of quantum processors with
dynamic, non-local connectivity, enabling coherent transportation of
entangled qubits across two dimensions and the ability to individually
address single atoms, capable of executing quantum algorithms like
quantum phase estimation (QPE) and producing entangled graph
states23,24.

Another promising platform is trapped ions25–27. Trapped ions
were one of the first platforms that were proposed as practical quan-
tum computers28, with the first quantum gate implemented in 199529.
Trapped ions have a long coherence time, as the qubits are formed by
internal electronic states which arewell isolated. The ions are confined
by dynamic electromagnetic fields (Pauli traps) or static magnetic and
electric fields (Penning trap). Quantum gates are applied by laser or
microwave pulses. Transfer of quantum information between ions,
enabling qubit entanglement, is realized through vibrational modes of
the ion lattice.

There has been significant progress in the development of
intermediate-scale quantum computers based on superconducting
qubits with multiple devices being currently developed by academia
and industry30–32. These qubits are made up of superconducting cir-
cuits with Josephson junctions to form an anharmonic quantum
oscillator with discrete energy spectrum that can be addressed via
microwave pulses33. Entangling gates are then realized through cou-
plings between the circuits, for example via waveguide resonators.
Over the past two decades, the coherence time of superconducting
qubits has seen significant improvement31, and the artificial nature of
these qubits has positioned superconducting quantum processors at
the forefront in terms of sheer qubit count.

Linear optics were proposed as a possible platform for quantum
computing already in 200134. Recent developments focused on using
single photon degrees of freedom for quantum computing in inte-
grated photonic circuits35. Beamsplitters,mirrors, phase shifters, wave
plates and non-linear interactions inmatter can be used tomanipulate
the quantum states of the photons, while single photon emitters and
detectors provide andmeasure the photon states. Integrated photonic
circuits try to scale this approach by miniaturizing these building
blocks. Photons not only offer a digital quantum computing platform
but also provide a pathway for measurement-based quantum com-
putation, where quantum information processing is executed by per-
forming measurements on entangled photon states36–38.

Besides superconducting qubits, other solid-state approaches are
also explored as possiblequantumcomputingplatforms, e.g. nitrogen-
vacancy centers in diamond39 as well as quantum dots40–43. Some of
them are already used for analog quantum simulation44,45.

Note that beyond qubit plattforms also higher dimensional
spaces, so-called qudits, are actively explored for various
platforms46–50. Qudits extend the representation by employing d-level

systems, potentially enabling more efficient quantum algorithms and
enhanced information encoding capabilities.

Overall, superconducting circuits currently hold the record for
the highest number of qubits and demonstrate fast clock speeds in
quantum computing platforms. However, these systems often face
limitations due to short coherence times. On the other hand, trapped
ions offer better fidelities and longer coherence times, but controlling
larger numbers of ions poses a significant challenge51. Photonic cir-
cuits, laser-cooled neutral atoms, and spin-based solid-state platforms,
while displaying potential, still lag behind in terms scalability, fidelity
and coherence times. Currently, every platform has a limited circuit
depth that can be achieved before noise and gate imperfections result
in the total decoherence of the computational state. These issuesmake
it difficult to use all of the qubits for fault-tolerant quantum
computation52 and for computations that are sensitive to these
imperfections. Quantum error correction (QEC) is undeniably the
pinnacle objective for quantum computing, particularly for DQS.
However, achieving this goal on contemporary devices remains a dis-
tant endeavor.

Digital quantum simulation on noisy quantum computers
As thehardware platforms continue to advance, an important question
that arises is whether we can still benefit from DQS on current Noisy
Intermediate-Scale Quantum (NISQ) devices53, notwithstanding their
noise limitations. One of the first applications of DQS was using trap-
ped ions, showcasing the digital method of quantum simulation26.
While these results showed potential for scalable quantum simulation,
the impact of noise, especially as the number of qubits and gates
increases, remains a significant challenge to realize practical and
accurate full-scale quantum simulations.

To overcome the noise limitations, a novel paradigm emerged in
the NISQ era: the concept of variational quantum algorithms54. These
are hybrid quantum-classical approaches which combine the ability of
a classical computer to efficiently optimize scalar functions of multi-
ple, real variables and of a quantum computer to represent states in
high-dimensional Hilbert spaces and measure corresponding expec-
tation values. The strength of variational quantum algorithms lies in
their flexibility and tolerance to noise, as they involve shorter quantum
circuits to handle complex problems. This comes at the cost of solving
a high-dimensional optimization problem, which can exhibit the
“barren plateau" phenomenon, where an exponentially vanishing gra-
dient makes it difficult for classical optimizers to find directions for
parameter updates, hindering algorithm convergence and efficacy55,56.
For DQS phase estimation-based methods as well as Trotterized time
evolution are more precise, if a fully error corrected quantum com-
puter is available, but variational quantum algorithms can have sig-
nificant advantages in the NISQ era.

In this perspective, we give a selective overview of the recent
progress of DQS on NISQ devices. We separately discuss approaches
that use variational quantum circuits and those that are based on non-
variational methods. We continue with a discussion of the experi-
mental and theoretical challenges, the impact of noise and deco-
herence and how error mitigation and hardware aware quantum
algorithms canbeused to tackle these challenges.We concludewith an
outlook on the potential applications for DQS, going beyond the
simulation of small spin systems inorder to tackle realistic problemsof
quantum-many-body dynamics.

Note that this perspective serves as a qualitative overviewonwhat
can be done on actual quantum hardware, in what direction the
algorithmic advances go and how the theoretical methods co-evolve
with the architectural and experimental advances. Where possible we
also try to directly compare the performance between experiments
conducted on different platforms. However, this is often difficult due
to varying initial conditions and different metrics being used.
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Non-variational results
In this section we discuss some of the recent key results that were
achievedwithout using variational approaches.Wediscuss realizations
ofDQSondifferent hardwareplatformswith a focus on timeevolution,
simulation of topological systems as well as recent results on many-
body localization and time crystals.

Trotterized time evolution
The Trotterized approach to simulate the time-evolution of quan-
tum many-body systems was the first proposed algorithm for
quantum simulation with a provable quantum advantage20. The only
assumption for this approach is that the Hamiltonian of the system
H = ∑ihi can be decomposed into polynomially many, local20 opera-
tors hi that act only on a non-extensive number of qubits or which
are Pauli string operators. This guarantees certain error bounds on
the Trotter-Suzuki decomposition57,58 of the discretized time evo-
lution operator according toUðtÞ= expð�iHtÞ≈QN

n

Q
i expð�iHit=NÞ.

Generalizations of the original Trotter approach are also known as
product formulas.

Experiments using superconducting transmon qubits and trap-
ped ions were performed on Ising, Heisenberg and other spin-1/2
models26,59, as they naturallymap to qubits.While the general feasiblity
was demonstrated in these studies, they also immediately identified
the core problem of the Trotterized approach: its increasing circuit
depth for larger time scales and the associated loss of fidelity due to
the increased gate errors and decoherence. Fermionic models can be

simulated by encoding via the Jordan-Wigner transformation60 in one
spatial dimension or with tree-based encondings, such as the Braviy-
Kitaev transformation61, in higher dimensions. A successful imple-
mentation was using superconducting quantum circuits62 with up to
four fermionic modes. Also the dynamics of lattice gauge theories,
specifically the Schwinger model, can be efficiently simulated using
trapped ionquantumcomputers63. Hereoneof themain advantages of
the trapped ion platform was used, as it can realize global entangling
gates, in order to replace the gauge degrees of freedom in favor of
long-range interactions in the qubit language.

Recent work focused on optimizing the simulation using error
mitigation approaches64,65 as well as using symmetries to reduce the
computational effort66. It was also demonstrated that dynamical cor-
relation functions, that can be measured in spectroscopic experi-
ments, can be computed for spin systems67. In Fig. 1 we see an
exemplary simulation of an interacting Fermi system on a chain using
various error mitigation methods as well as optimized circuit compi-
lation. This model is equivalent to the XXZ chain,

H =
X

i2Z4

J? Sxi � Sxi+ 1 + Syi � Syi+ 1
� �

+UðtÞSzi � Szi + 1, ð1Þ

by virtue of the Jordan-Wigner transformation. A quantum quench in
the interaction U from 0 to Ufinal perturbs the Fermi gas and leads to a
time-dependent reduction in the jump of the Fermi surface. Similar
error mitigation methods allowed for the simulation of the Fermi

Fig. 1 | Digital quantum simulation of an interaction quench in a 1D fermion
system with nearest neighbour interactions. Experimental data are obtained by
combination of optimal state preparation, readout and symmetry error mitigation,
zero noise extrapolation and full quantum state tomography after each time step
on an IBM quantum computer. a Time and momentum dependence of the fer-
mionic distribution function on a periodic four-site chain after an interaction
quench to Ufinal = 2 at t =0. b Time evolution of the filling factor. Comparison
between the exact filling, theweak quenchUfinal = 1 and the strong quenchUfinal = 2.

c Time evolution of the jump in the Fermi distribution. Comparison between the
experimental results for weak and strong quenches and classical simulations. For
the classical simulation, the state after initial preparation at t =0 was obtained by
full state tomography from the quantum computer. It was subsequently evolvedby
the Schroedinger equation, orange and blue line, and by Trotterization, black
dashed line, on a classical computer. (d) Entanglement entropy of a bipartition of
the system. The classical simulations were obtainedwith the samemethod as in (c).
Figure adopted from65.

Perspective https://doi.org/10.1038/s41467-024-46402-9

Nature Communications |         (2024) 15:2123 3



Hubbard model with up to 16 qubits and the observation of spin
charge separation on a superconducting quantum computer68.

The Trotterized approach is not only useful in order to calculate
real-time dynamics, but it can also be used to compute thermal, exci-
ted and ground states using the quantum imaginary time evolution
algorithm, as was first demonstrated on a superconducting quantum
computer by Rigetti69. This approach has potential advantages over
variational algorithms to prepare eigenstates, as it does not involve a
multi-parameter optimization.

Realizing topological systems
Quantum simulation of topological systems is not only a key pro-
blem for the theoretical description of various quantum materials
but it is also directly at the interface to theoretical quantum infor-
mation science as well as the experimental deployment of quantum
error correction codes. A particular interesting class of codes, which
are intrinsically local, are topological error-correction codes, such
as the toric code and other surface codes70,71. In these codes the
logical qubits are encoded in the topologically non-trivial surface,
allowing for protection from decoherence through syndrome mea-
surements and corresponding correction, which requires only
physically local gates.

To identify topological states it is possible tomakeuseof thebulk-
boundary correspondence72, which relates topological bulk properties
with robust edge states. By designing topologically protected quan-
tum circuits it is possible to simulate topological systems and identify
edge states, for example for one dimensional topological Floquet
phases, as recently demonstrated on IBM and Rigetti quantum
processors73.

While this demonstrates a first step towards realizing topological
states on quantum computers, for quantum error correction it is even
more important to construct many-body topologically ordered sys-
tems with true long-range entanglement. Experiments for the toric
code using Google’s superconducting Sycamore quantum processor
were able to prepare the topologically ordered ground state to high
accuracy andmeasure the entanglement entropy74. Figure 2 shows the
parity of the star and plaquette operators after ground state prepara-
tion as well as the circuit employed to prepare the state. Also the
braiding statistics of the anyonic excitations can be simulated,
demonstrating a key property of topologically ordered systems74,75.
Interestingly in a separate approach the toric code was also recently
implemented in an analog fashion using a two-dimensional array of
Rydberg atoms held in optical tweezers18, showing that both digital
and analog approaches are converging towards artificially creating
topologically ordered states.

In another work the phase transition to topologically protected
phases was demonstrated using the IBM superconducting quantum
computers76. Here the authors used a connection of the infinite size
systems that can be iteratively generated using local quantum circuits
and the fact that observables with finite support require only a finite
size system to evaluate their value in the thermodynamic limit.

Another formof topological states that has recently been realized
on trapped ion quantum computers77 and superconducting qubits78

are Floquet and quasiperiodically driven symmetry-protected topolo-
gical phases. Especially the quasiperiodically driven system might
prove to provide stable edge states robust against coherent errors.

Many-body localization and time crystals
Many-body localized phases are protected by nonergodicity and the
system fails to thermalize under its intrinsic dynamics. Here therma-
lization refers to the fact that in many-body systems any quantum
states ∣ψ

�
with energy E0 will typically evolve after a certain time t to a

state inwhich all few-body observables arewell described by a thermal
ensemble with a temperature determined by the energy of the initial
state, allowing for a description of the system with statistical
mechanics. This behavior breaks down in many-body localized phases
due to disorder, which hinders thermalization similar to Anderson
localization in non-interacting systems79. This interesting observation
explains the hope of using many-body-localized states to protect
quantum information even away from low temperature states in the
presence of disorder.

Disorder tunable many-body localization has been realized with
an analog trapped ion platform80 in a long-range transverse field Ising
model with 10 qubits and later with up to 53 qubits10. A similar model
was recently investigated using IBMs superconducting quantum
computers64, where the qualitative behavior for up to 10 qubits was
reproduced but without being able to reach the long-time limit. To
limit the impact of the noise in near term devices it was proposed to
measure the spectral functions of local operators, which retains sig-
natures of localization even if a thermal bath destroys most other
features of localization. The principal feasability of the approach was
demonstrated for a 3 qubit system using a trapped ion quantum
computer81.

Many-body localized phases are crucial in order to realize the
famous time crystal in periodically driven quantum systems82,83, which
is a subharmonic frequency responsewith coexisting long-range order
which spontaneously breaks the discrete time translational invariance.
As such, time crystals and their realizations are currently the focus of
many research groups with advances realized through analog quan-
tum simulation and computing devices. First experiments using

Fig. 2 | Toric code on a superconducting quantum processor. a Graphical
representation of the star and plaquette parity measured after preparation of the
toric codeground state.Qubits are represented aswhite crosses, solid black lines in

the background show the lattice of the toric code. b Quantum circuit for the pre-
paration of the toric code ground state on a 31 qubit processor. Figure adopted
from74.
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NV-centers in diamond84 and trapped ions85 seem to confirm the the-
oretical predictions and are promising first steps to investigate such
novel phases. However, detecting the true long-range nature of the
spatiotemporal order is still out-of-reach for these analog
experiments86.

Here digital quantum computers could provide an alternative
route to realize and investigate time crystaline order experimentally87,
allowing for Ising type disorder to be implemented and a wide array of
initial states to be tested. Crucially digital quantumcomputers allow to
discriminate between transient subharmonic responses and asymp-
totic time crystals. This idea was first realized on a superconducting
quantumcomputer88 using a linear chain of up to 20 qubits. By varying
the drive parameters the stability of the nonequilibrium phase was
demonstrated and by a scaling analysis of the spectral properties the
eigenstate order was confirmed. In another study a similar approach
was successful in demonstrating a discrete time crystal using 57 qubits
of IBM’s superconducting quantum computing platform89.

Other non-variational results
Various other DQS approaches have been employed in recent years
that could provide novel insight into many-body systems that are out
of reach to simulate using state-of-the-art classical hardware.

Simulations using trapped ions and cold atoms demonstrated the
ability of these platforms to simulate open quantum systems90,91.
Recently, open quantum systems have also been addressed with new
algorithms on superconducting quantum computers, allowing for the
simulation of both Markovian and non-Markovian dynamics92,93. Sys-
temswith confinement were simulatedwith IBMquantum computers94.
Out-of-time-ordered correlators (OTOCs) are a measure of the degree
of quantum chaos in a system. They are used to determine how quickly
information becomes scrambledwithin a quantum system.OTOCs have
been measured on trapped ion quantum computers95,96, on an NMR
quantum simulator97 as well as on superconducting platforms98,99

including a measurement on a seven qutrit processor100.

Variational results
In this section we discuss key results in DQS using variational quantum
algorithms in a classical-quantum feedback loop. As such they operate
with two main components: a quantum computer, which encodes the
state of the system via a quantum circuit, and a classical computer,
which optimizes the parameters of the quantum circuit to minimize a
cost function. To evaluate the cost function measurements on the
quantum state are performed and sent to the classical computer,
which computes the cost function and optionally its derivative. In an
iterative scheme the classical optimizer then proposes updated para-
meters of the circuit, which are sent to the quantumcomputer in order
to find the optimal solution to the problem.

We will give a short overview on the development of variational
quantum algorithms and then focus on ground and excited state
properties as well as quantum many-body dynamics computed by
variational approaches. Other variational results relevant for DQS are
also discussed.

Overview on variational quantum algorithms
Variational quantum algorithms have been proposed for machine
learning tasks, for combinatorial optimization problems, as numerical
solvers for factorization, matrix decompositions and differential
equations, as well as for quantum compilation54,101. The variational
approach is especially useful for the NISQ era, as it allows a tradeoff
between variational accuracy and loss of coherence due to gate
imperfections andnoise, by varying the depth of the variational circuit.

In the context of DQS variational quantum algorithms can be
compared to classical variational methods, such as tensor networks102

and variational Monte Carlo103. The main advantage of quantum states
prepared by parameterized quantum circuits is an enhanced

expressivity when compared to low-rank tensor states that can
be classically computed104,105. Expressivity can be measured by
investigating how much entanglement entropy SðρAÞ= �
TrðρA lnρAÞ= � TrðρB ln ρBÞ= SðρBÞ, of a bipartite system can be effi-
ciently captured by the variational wave function. As such, para-
meterized quantum circuits could prove to be a useful tool in order to
describe complexmany-body ground and excited states aswell as time
evolved states in non-equilibrium systems. Thus a significant research
effort is put into evaluating the performance of these approaches in
comparison to classicalmethods, as well as the effect of noise and gate
imperfections, which can quickly lead to a breakdown of the potential
quantum advantage.

Another field of research concerns the optimization of the varia-
tional parameters. As the number of variational parameters increases,
performance of classical optimizers can decrease significantly. This
can be attributed to multiple factors, such as the interaction between
noise and large number of parameters, as well as the formation of
Barren Plateaus56. New ways to optimize such non-linear functions
evaluated on quantum computers are currently explored106.

Ground and excited state properties
The first variational algorithm that was employed on a photonic
quantum computer is the variational quantum eigensolver (VQE)107.
The basic idea of the VQE approach is to approximate the ground state
of a quantum system via a parameterized quantum circuit. The target
function is therefore the energy of the variational state
LðθÞ= 0h ∣UyðθÞHUðθÞ∣0i, whereU(θ) is the unitary corresponding to the
parameterized quantum circuit with variational parameters θ. In the
first application of the VQE algorithm, a 2-qubit photonic processor
was used with a single CNOT gate and adjustable phase shifters to
compute the bond dissociation curve of the He-H+ molecule.

In comparison to QPE, which estimates energy eigenvalues
through coherent time evolution of the Hamiltonian5, VQE has sig-
nificantly reduced requirements for coherent gate execution. In a
direct comparison between VQE and QPE to calculate the energy
curves of molecular hydrogen, VQE demonstrated superior perfor-
mance and a robustness towards errors in the gate implementations
on a superconducting quantum processor108. This can be traced back
to the deeper and more complex circuit of the QPE algorithm,
requiring controlled Trotterized time evolution, as well as the ability of
VQE to adjust for gate imperfections by further optimization of the
variational parameters.

Due to the success of the VQE approach new questions arise in
order to scale its applicability beyond simple two qubit examples. One
of the key questions concerns the ansatz of the parameterized quan-
tum circuit in order to represent the variational ground state. In this
context, parallels to classical machine learning109 emerge, as the opti-
mal ansatz should both represent the target state efficiently while at
the same time beeing as shallow as possible. One particular appealing
class of ansatz schemes are hardware-efficient quantumcircuits. These
circuits are designed having the hardware capabilities in mind; for
example by limiting the use of noisy entangling gates, by using hard-
ware intrinsic gates to design the ansatz and by avoiding costly swap
gates in quantum processors with limited connectivity. Using
hardware-efficient quantum circuits, small molecules and a four-qubit
Heisenberg model in a magnetic field B

H = J
X

i,j

S
!

i � S
!

j +B
X

i

Szi ð2Þ

were simulated on an IBM superconducting quantum processors110.
Figure 3 shows the results of the variational optimization for energy
and magnetization in the system depending on J/B. One of the largest
ground state VQE calculations has been performed to simulate a
quadratic Hamiltonian evolution with up to 12 qubits, computing the
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binding energy of hydrogen chains and the isomerization mechanism
of diazene111. The experimental results demonstrate the improvement
of the variational approach with circuit depth and the capability of the
quantum circuit to yield qualitatively correct results while still being
subject to noise.

Replacing QPE with VQE improves on the required depth of the
quantumcircuit but increases the number ofmeasurements due to the
optimization procedure. This makes VQE less attractive for platforms
which have a low clock frequency, e.g. trapped ion platforms. Here
progress was made using a trapped ion platform with up to 4 qubits in
combination with VQE to compute the ground state properties of
small molecules112,113 using a minimal unitary coupled-cluster ansatz
state. In another work the Schwinger model was simulated with up to
20 qubits114 using a hybrid approach combining an analog quantum
simulator with a classical computer.

Beyond ground states it was proposed to use the variational
approach also to compute excited states on quantum computers115,116.
The most straight forward approach to compute excited states is to
implement a Gram-Schmidt orthogonalisation procedure, by modify-
ing the target function,

LðθÞ= 0h ∣UyðθÞHUðθÞ∣0i+ λ
X

i

0h ∣UyðϕiÞUðθÞ∣0i ð3Þ

where λ is a Lagrange factor that penalizes overlap of the trial state
UðθÞ∣0i with previously found solutions UðϕiÞ∣0i, such as the ground
state. This approach was implemented to calculate excited states of a
non-Abelian gauge theory coupled to matter on an IBM quantum
computer using up to 6 qubits117, aiming for the simulation of quantum
chromodynamics. The required overlap was computed using forward-
backward propagation with UyðθexÞUðθgsÞ∣0i and comparison of the
measurement result with the initial state ∣0i.

Another interesting application has been proposed through var-
iationally diagonalizing mixed quantum states118, which is useful to
spectroscopically identify topological properties of quantum phases.
It was demonstrated for a simple one-qubit example on Rigetti’s
quantum computer.

Quantum many-body dynamics
While the Trotterized time evolution is one of the first non-variational
algorithms that was proposed and experimentally realized in DQS,
variational approaches first focused on approximating eigenstates
instead of time evolution. By now there are several proposals119–122

solving an equation of motion or optimizing variational parameters
following the McLachlan time-dependent variational principle to
implement the time-dependent Schrödinger equation for para-
meterized quantum circuits. Another proposal is to variationally
compile the Trotterized time evolution into a diagonal form to

overcome the decoherence limit of the quantum computer. The the-
oretical reasonwhy also timedependentwave functions shouldbewell
approximated by parameterized quantum circuits is that local Hamil-
tonians stay within an exponentially small Hilbert space of the
system123, although not necessarily in a space that is efficiently simu-
latable classically.

One of the first methods for variational time evolution that was
implemented is based on variational fast forwarding (VFF) the Trot-
terized time evolution124. VFF approximates a diagonalization of the
short-time simulation to enable longer-time simulations with a fixed
number of gates by using the quantum-assisted quantum compiling
algorithm125. The approach was implemented using a two qubit circuit
on Rigetti’s quantum computer for a randomized quantum circuit. A
modified fixed state VFF126 diagonalizes the energy subspace spanned
by the initial state resulting in improved requirements on circuit depth.
It was successfully implemented on IBM and Rigetti quantum com-
puters simulating a two-qubit XY spin model.

A hybrid algorithm that utilizes a qubit representation of the
density matrix instead of a variational wave function has been
developed127 to implement quantum time evolution. The density
matrix is time evolved for each element and its matrix elements are
computed on a classical computer using density matrix quantum
Monte Carlo. The performance of this approach is highly dependent
on the sparsity of the density matrix. The algorithm has been imple-
mented on Rigetti quantum computers for a single qubit.

Another approach that does not require a quantum-classical
feedback loop is quantum assisted simulation (QAS)128. It is using so
called K-momentum states to derive an equation of motion for the
variational parameters of the wave function. The states are initially
prepared on the quantum computer and their overlap and energy
expectation value are measured and used as an input for the equation
ofmotion. The principal feasibility of the approachwas testedon a two
qubit circuit using the IBM quantum computers. The main dis-
advantage of the approach is that it is unclear how well the states
approximate the long-time evolution and that a matrix inversion on
noisy measurement results is necessary, which is often unstable.

Recently a first implementation of the variational time evolution
based on optimization was implemented on IBM quantum computers
simulating the Heisenberg model with 3 qubits129. The results suggest
an improvement over the pure Trotterized approach but simulations
for larger systems also demonstrate that the required circuit depth
scales linearly with the entanglement induced due to the time
evolution.

Challenges and methods in digital quantum
simulation
To continue the pursuit of quantum speed-ups in DQS, it is vital to
address current challenges and limitations in the field. This includes

Fig. 3 | Variational Quantum Eigensolver applied to a four qubit Heisenberg
model on a superconducting quantum computer. a Energy optimization using a
hardware efficient Ansatz of depth 0 (blue) and depth 2 (red), with dashed lines
indicating the final energy estimate for J/B = 1. Plotted along with the exact energy
(dashed black line). The inset highlights the qubits used for the experiment along

with the entangling gates (arrows) (b), (c) Experimental results (blue and red data
points) plottedalongwith exact values (black dashed lines) anddensity plots of 100
numerical outcomes, for energy (b) and magnetization (c), for a range of values of
J/B. Figure adopted from110.
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advancing quantum hardware technology, verifying performance
guarantees and developing improved algorithms. The primary
source for errors in current day devices is mainly due to decoherence
and gate imperfections. Although the hardware performance has sig-
nificantly increased for various platforms in the recent years25,31, it
remains an open question if andwhich technologywill first achieve the
necessary requirements for fault tolerant quantum computation130.
Before the age of fault tolerance, quantum advantage, i.e. the ability to
simulate quantum systems and solve complex problems that are
intractable for classical computers, might be achievable with NISQ
devices if hardware-software co-development can be leveraged, which
vertically integrates the design of quantum computers with their
potential applications131.

Challenge: Noise and decoherence
When multiple qubits are connected and operated together, new
challenges arise such as the need to address specific qubits25 and
manage cross-talk errors31,132. These issues can result in slower and less
accurate gates, which requires proper evaluation of the capabilities of
a quantum computer, depending on the number and quality of the
qubits, as well as the use of optimal control theory to tackle fidelity
issues133.

One area of particular interest is the simulatable system size,
taking into account that current state-of-the-art platforms can have ∝
100 qubits available for use134. From a DQS standpoint, this number is
actually sufficient for a wide range of applications. For example,
simulating a 10x10 Fermi-Hubbard model would require 200 qubits
and the results would be highly interesting for various research
questions in many-body systems135. However, current hardware does
not allow using all the qubits on the device, even with a very shallow
quantum circuit, without succumbing to the noise and decoherence
wall. This is reflected in various benchmarks, such as the quantum
volume136–138, which measures the effective number of qubits that can
beusedonagivendevice basedon a randomizedbenchmarkprotocol.
Across various quantum computing platforms the maximum achiev-
able quantum volume translates into at most 15 effectively usable
qubits139, far from what is required for full error correction but also
much less than what is needed for a general quantum advantage in
DQS. This makes it crucial to focus on improving the operational
fidelities of single physical qubits and coherence times of entangled
states created during the computation, addressing the limited system
size issue for DQS while also improving the general computation
capabilities of NISQ devices.

Pre- and postprocessing procedures
Quantum error mitigation describes various methods that have been
proposed to help increasing the applicability of NISQ devices. These
methods, while independent of the actual application, are important
for DQS to increase the accuracy of observables and to improve the
optimization procedure in variational methods by lowering the error
of the target function. Here, we discuss some of the most important
techniques employed so far, in particular readout error mitigation,
zero noise extrapolation and optimized circuit compilation. Depend-
ing on the hardware, other mitigation techniques can be more
important that those discussed here, but the principal theme of these
approaches remains the same.

Readout error mitigation is a technique used to correct for errors
that occur during the measuring process. By performing multiple
measurements of the same qubit state it is possible to use a statistical
method to suppress readout errors. This can bedonebymeasuring the
qubit in multiple bases and using a maximum likelihood estimation
algorithm to infer the true state. One of first readout error mitigation
schemes was applied to two superconducting transmon qubits140. The
method was extended using quantum detector tomography an tested
on IBM and Rigetti quantum computers141. In its pure form readout

error mitigation requires calibration measurements on all possible
quantum states, leading to an exponential increase in required mea-
surements. However, if the readout errors are only partially correlated,
e.g. due to the local structure of the qubits, tensored readout error
mitigation overcomes this issue142.

To also address noise during the execution of the quantum circuit
zero noise extrapolation has been developed in the context of many-
body simulations119 and later expanded to other quantum circuits143. It
is based on the idea of Richardson’s deferred approach to the limit by
systematically repeating quantum computations at varying noise
levels and then extrapolating the results to the hypothetical zero-noise
limit. Varying noise levels are achieved by systematically stretching the
physical pulses, increasing their pulse duration while reducing their
amplitude. On IBM’s superconducting quantum computers this
approachwas applied to the single aswell as to the two-qubit gates, by
rescaling the duration of the microwave pulses144.

Quantum circuit compilation is the process of translating a high-
level quantum algorithm into a corresponding low-level quantum cir-
cuit that can be executed on a real device145. This process is necessary
due to the limitations of current quantum hardware, such as qubit
dependent levels of noise and limited connectivity between qubits.
The goal of quantum circuit compilation is to find the most efficient
and robust implementation of a quantum algorithm that can be exe-
cuted on a given hardware platform. As such quantum circuit compi-
lation is highly hardware dependent and various approaches are
currently explored in the literature146,147. Optimized state preparation
with a minimal number of entangling CNOT gates can be realized
based on isometry decompositions148 and were used for the quantum
simulation of quenched fermionic systems on IBM quantum
computers65.

Combining these error mitigation methods leads to a synergistic
effect that could be crucial to reach a quantum advantage over clas-
sical computers. Recently, a combination of error mitigation techni-
ques was used to compute the quench dynamics in an Ising model149

using 26 qubits of an IBM quantum computer. Here dynamic
decoupling150, Pauli twirling151, native gate decomposition, readout
error mitigation and zero noise extrapolation demonstrated the
practical scaling of these methods to larger system sizes and their
capability to significantly enhance the performance of the hardware.

Hardware aware quantum algorithm development
With the availability of NISQ devices also the development of quantum
algorithms has adapted to the available hardware features and draw-
backs. The central challenge is utilizing noisy quantum computers to
gain a quantum advantage. This requires a plan that takes into con-
sideration the restricted number of qubits, the qubits’ connection
limitations, and the errors that affect coherence, state preparation,
readout and thereby circuit depth. At the same time it means devel-
oping novel algorithms that use existing features, such asdecoherence
free subspaces152 and multi-level qudit platforms47.

For DQS, variational algorithms promise flexible scalability of
circuit depth at the cost of limited knowledge about the variational
fidelity and additional measurement costs due to the non-linear
optimization54. Beyond the previously discussed VQE approach, other
methods have been proposed to prepare ground states, e.g. for fer-
mionic Hamiltonians using antisymmetrization of initial states, QPE
and qubitzation153,154. Hardware-efficient variational time evolution
using optimization and time dependent variational principle has been
proposed and classically simulated for quantum Ising chains155. Algo-
rithms for computing the Green function based on variational time
evolution and on a Lehmann representation of the spectral function
have been developed156. A similar approach for magnon spectra has
been proposed and tested on IBM quantum computers157. Quantum
computation of Floquet spectra in periodically driven many-body
systems can be enhanced using multi-level qudit quantum computing
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platforms158. These are just a few examples of themany different types
of quantum algorithms that have been developed and proposed for
DQS. For an overview of other quantum algorithms we refer to other
reviews54,159,160.

Outlook and applications
The advances in digital quantum simulation have been comprehen-
sively reviewed in the preceding sections. Here, I wish to present my
own viewpoint on their wider implications.

Digital quantum simulation is a rapidly growing field that has the
potential to have a significant impact on the study of quantum many-
body systems. The ability to simulate intermediate scale spin systems
using near termquantumdevices offers the possibility to discover new
phenomena and improve our understanding of previously observed
phenomena. However, in order to fully realize the capabilities of DQS,
it will be important to focus on simulating more realistic and complex
problems.

Aswe think about themost promisingproblems tobe tackledwith
DQS on near-term devices, I think it is prudent to emphasize that
problems of qualitative nature have a more promising outlook than
those aiming purely for a quantitative improvement in accuracy. The
examples discussed in the results section exhibit significant strides
towards a quantum advantage, yet they remain largely confined to
small system sizes due to the inherent limitations of noise and gate
errors.

Recently advanced error mitigation techniques161 were used to
push the boundaries of system sizes into the regime of 100 qubits to
simulate the time evolution of a 2D transverse field Ising model.
However, these techniques encounter difficulties when the circuit
depth reaches and goes beyond the device’s decoherence time,
resulting in an exacerbation of existing issues rather than their reso-
lution. Therefore, a pursuit of improved quantitative accuracy, i.e. by
increasing circuit width and depth, could inadvertently magnify these
challenges. To provide a concrete example consider reaction rates in
quantum chemistry, which depend exponentially on the accuracy of
the energy in the simulation leading to a significant effect in the pre-
dicted reaction. This sets a natural limit on the required accuracy for
such calculations162, which is unrealistic to achieve for NISQ devices
while they also have to compete with state-of-the-art numerical
approaches. On the algorithmic side its even unclear, if one of themain
tasks in quantum chemistry, i.e. ground state energy estimation, can
achieve an exponential quantum advantage at all163.

In my opinion, this highlights the necessity of shifting our focus
towards problems that involve fundamental principles and qualitative
understanding. Such problems beckon us with questions that are
foundational in character, often concerning the very nature of quan-
tum states, their stability, phase transitions, and symmetries.

A better understanding of the topologically ordered states in the
fractional quantum hall effect164,165, the nature of the superconducting
glue in unconventional superconductors166,167, the ability to induce
quantum phases “on demand" via ultrafast excitations3, and the iden-
tification of interesting quantum materials such as topological insula-
tors, superconductors, and spin liquids168 are fundamental problems
that in many cases are hard to describe with classical methods, espe-
cially if the corresponding quantum states are highly entangled.

While powerful classical methods exist for approximating low-
dimensional ground states, they often reach their limits in systems that
require large cluster sizes for accurate representation, posing sig-
nificant challenges to the scalability and precision of numerical
methods. Take, for example, the debate concerning the ground state
competition between charge and spin ordered states versus super-
conductivity in the 2D square lattice Hubbard model pertinent to the
cuprates169,170. The true ground state, in particular in the underdoped
regime, is still an active field of research171, despite the simplicity of the
model. The formationofwavelength λ = 8 stripeorder seems to coexist

with d-wave superconductivity, but it is unclear if an even longer
wavelength could compete with this state or another competing
ground state forms. Such calculations would require cluster sizes that
are out of reach for current but likely also next-generation numerical
approaches. Here, DQS on larger clusters could offer qualitative
insight into potential novel low energy states in the near term, even
though the energy measurements may initially have large error bars,
making it uncertain if the DQS solution truly represents the ground
state. However, two key aspects are noteworthy: first, hardware
improvements will directly reduce these error bars over time, and
second, new insights into the low energy sector, includingmeta-stable
states, are of significant interest. Such states, potentially stabilized by
minor system perturbations, could provide crucial information for
understanding and manipulating these systems.

As another example, non-equilibrium dynamics in many-body
systems presents persistent challenges, especially when addressing
phenomena such as light-induced superconductivity172–174, collective
excitations175–178 and combinations of the two179. Classical computa-
tional methodologies often face difficulties in capturing these
dynamics due to their complexity and the pivotal role of high-energy
states, which are frequently omitted in many low-energy approxima-
tions. This limitation can restrict our comprehensive understanding
andmight bypass essential mechanisms inherent to the phenomenon.
DQS, while not achieving the quantitative accuracy of some classical
methods, has the potential to provide qualitative insights that could
enhance our understanding of many-body non-equilibrium dynamics.

Beyond the pure unitary case, monitored quantum dynamics180

has recently attracted attention as a possible application for near term
devices. It lies at the intersection of quantum information science and
condensed matter physics and investigates quantum circuits, which
are constructed from local unitary gates and measurements. Complex
questions that arise in this context concern thermalization, entangle-
ment, and quantum chaos. Notably, their dynamics can both echo
traditional quantum behaviors and introduce novel phenomena
absent in conventional settings. One such novel behavior is the
entanglement phase transitions in quantum systems when they are
under external observation181, with first successful experiments182

performed on trapped ion platforms. Many qualitative questions
remain unanswered, particularly in the two and three-dimensional case
and in open quantum systems, as monitored quantum dynamics is
leading to a rapid proliferation of quantum trajectories. This intricacy
can potentially offer a quantum advantage sooner than pure unitary
systems, as quantum devices can inherently handle such dynamics
more efficiently than classical computers.

With the further development of digital quantum computers, it
will be possible to address a wide range of open questions in quantum
matter. Nevertheless, the problems that we will be able to tackle will
grow iteratively and it is essential to acknowledge that each leap for-
ward hinges not just on advancements in quantum hardware but also
on refining the entire hardware-software ecosystem.

As of now, a definitive quantum advantage in any DQS application
remains unproven. However, for researchers who investigate areas
with qualitative questions surrounding many-body systems, it may be
prudent to forge collaborations with the quantum computing com-
munity. Such partnerships can spur the identification of new use cases
and the development of near-term algorithms, not only addressing
specific challenges but also paving the way for the much-anticipated
demonstration of the first genuine quantum advantage on digital
quantum devices.

In the long-term, the advancements in DQS could potentially
enable a full quantum technology circle, see Fig. 4, where quantum
computing is used to enhance the simulation capabilities in order to
understand and develop novel quantum technology, which in turn
further enhances the quantum processing power. As of now the
potential power of this circle is only partially tapped. While current
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feedback loops in quantum computing development, like those
implemented by companies such as IBM, effectively integrate hard-
ware and benchmark improvements, these processes have not yet
systematically incorporated DQS, leaving untapped potential for a
more holistic integration. While there are existing proposals focusing
on a full quantumcomputing stack131,marrying hardware development
with applications, I believe that there is a need to further broaden this
perspective by creating a harmonized stack that seamlessly integrates
quantum technology, quantum computing hardware, and DQS appli-
cation development. In such an ecosystem, quantum phases on-
demand and the exploration of exotic quantum matter will be foun-
dational pillars for the underlying quantum hardware. By fostering
these interconnections, wemight be able to realize a quantum version
of Moore’s Law, marked by ongoing hardware self-improvements and
an enriched understanding of quantum many-body physics.
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