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Shaping high-performance wearable robots
for human motor and sensory
reconstruction and enhancement

Haisheng Xia 1,2,3, Yuchong Zhang4, Nona Rajabi4, Farzaneh Taleb4,
Qunting Yang5, Danica Kragic4 & Zhijun Li 1,2,3

Most wearable robots such as exoskeletons and prostheses can operate with
dexterity, while wearers do not perceive them as part of their bodies. In this
perspective, we contend that integrating environmental, physiological, and
physical information through multi-modal fusion, incorporating human-in-
the-loop control, utilizing neuromuscular interface, employing flexible elec-
tronics, and acquiring and processing human-robot information with bio-
mechatronic chips, should all be leveraged towards building the next
generation of wearable robots. These technologies could improve the embo-
diment of wearable robots. With optimizations in mechanical structure and
clinical training, the next generationofwearable robots should better facilitate
human motor and sensory reconstruction and enhancement.

Wearable robots are human-centered interdisciplinary systems incor-
porating diverse technological domains such as machinery, electro-
nics, material science, computer science, integrated circuits, and
control theory. These systems integrate robotic components with the
human body, either in the form of exoskeletons worn atop the human
body to enhance its capabilities; or in the form of powered prostheses
that directly replace the lost limb functionality. They are designed to
combat deficiencies resulting from neuro-muscular diseases or the
loss of limbs. In addition to motor dysfunction, this deficiency
encompasses sensory loss, impacting an individual’s autonomy and
social interactions. The requirements and expectations for exoskele-
tons and prostheses are different. Exoskeletons are mainly involved in
motor and sensory enhancement, whereas prostheses are mainly for
their reconstruction.

Currently, the available technologies for integrating wearable
robots with the human body face numerous limitations, resulting in
wearers not perceiving the wearable robot as a part of their own
bodies. This suggests that enhancing the embodiment of wearable
robots is necessary. Prosthetic embodiment quantifies a user’s com-
bined feeling of ownership and agency1. Serino et al. investigated
cortical maps for movement control and touch sensing in individuals

with upper limb amputation who underwent targeted muscle rein-
nervation, aiming for prostheses embodiment2. Rognini et al. com-
bined tactile and visual stimulation in upper limb prosthesis users to
increase embodiment and decrease perceived phantom limb
distortion3. Fritsch et al. found attenuation of touch sensation in
prosthesis users, which could serve as an indicator of prosthesis
embodiment4. Likewise, in the context of exoskeletons, Forte et al.
argue that exoskeletons should be tailored and adjusted according to
the spinal cord injury patient condition to increase embodiment5.
Hybart and Ferris proposed that measures of embodiment such as
electroencephalography, reaction time, and proprioceptive drift could
serve as metrics for assessing exoskeleton success6. Currently, the
embodiment of wearable robots represents a critical yet insufficiently
explored area, particularly in terms of enhancing their integrationwith
the user.

Many challenges in robotics hinder the embodiment of wearable
robots. Poor intelligence and functionality are common factors in
device rejection by users7. Human-robot interaction requires perceiv-
ing the environment information as well as human physical and phy-
siological information. This is while existingwearable robots often rely
on single or limited modal sensors, which might result in inadequate
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performance8. Although wearable robots are human-centered sys-
tems, not putting the human user in the control loop remains a major
concern9. For instance, issues may arise if individuals wearing exos-
keletons are unintentionally pulled or moved against their intentions.
A lotofwearable robotsmainly focus on the control of the robotswhile
omitting sensory feedback to the human, lacking bi-directional inter-
action between the human and robot10. Additionally, artifacts caused
by skin movement between the wearable robot and the human body
can significantly affect the control accuracy, leading to a significant
drop in usage period and eventual abandonment11. Indeed, skin
stretching during movement makes it challenging to maintain a com-
plete connection between the human and the robot. Moreover, the
current interface for idiodynamics and sensation is limited by a defi-
ciency in information acquisition, transfer, and processing, especially
for novel deep-learning neural network-based control algorithms that
require high computational power12.

Wearable robots have existed for many years, but it is only in
recent years that significant breakthroughs have occurred. Multi-
modal fusion13, human-in-the-loop control14, neuromuscular
interface15, flexible electronics16, and biomechatronic chip17, represent
examples of advancements that could profoundly and positively
impact the interaction betweenwearable robots and humans (Table 1).
However, due to their complex nature, only a few of these advance-
ments have been testedwith users, often involving a limited number of
participants18. Currently, each of the mentioned breakthrough tech-
nologies is available, but fully integrating these technologies requires
the collaboration of multidisciplinary experts. These breakthrough
technologies are transforming traditional wearable robots, though we
expect their application to enable significant improvement that
ensures these solutions mature enough and become the new bench-
mark. The widespread adoption of these technologies in wearable
robots is expected to drive their optimization and standardization,
ensuring the effective embodiment of high-performance wearable
robots for motor and sensory reconstruction and enhancement.

Researchers have extensively reviewed various papers on wear-
able robots, including exoskeletons for locomotor assistance19,
human-in-the-loop optimization for wearable robots20, and sensory
feedback for prostheses10. Unlike those papers summarizing the state-
of-the-art in specific aspects of wearable robots, we propose a per-
spective that cutting-edge technologies ofmulti-modal fusion, human-
in-the-loop control, neuromuscular interfaces,flexible electronics, and
biomechatronic chips should be leveraged towards building high-
performance wearable robots with embodiment. To narrow the scope
to the embodiment aspect of wearable robots, we excluded the gen-
eral aspects such as actuators, structures, electronics, and simulations.
The embodiment of wearable robots mainly involves embodied sen-
sing, embodied feedback, and embodied control, which ledus to select
the five enabling technologies: multi-modal fusion for embodied sen-
sing; neuromuscular interface and flexible electronics for embodied

sensing and embodied feedback; human-in-the-loop control and bio-
mechatronic chips for embodied control. The logical relationship
between the five technologies is around the embodiment of wearable
robots (Fig. 1). Biomechatronic chips act as the central units for
information acquisition, processing, and generating control com-
mands. Neuromuscular interface and flexible electronics are enabling
technologies for embodiment sensing of human intention, and
embodiment feedback to improve the feeling of agency. Multi-modal
fusion is utilized to improve the perception of human intention. And
human-in-the-loop control integrates humans into the control loop
with wearable robots, taking human reactions into account. We ana-
lyze how the development of these technologies would facilitate the
development and verification of the next generation of wearable
robots with a high embodiment. We propose a focused perspective on
research progress and challenges in the five selected technologies for
wearable robots, highlight their scientific foundations, and look into
the potential future direction, to help researchers build a high-
performance wearable robot with embodiment for motor and sensory
reconstruction and enhancement.

Motor enhancement
Integration of robotic components with the human body requires
considerations in both technical and practical aspects, which is chal-
lenging when aiming at enhancing motor function. Failure to perceive
changes in human states or the surrounding environmentmay result in
delayed response or ineffective control. Not putting humans in the
control loop restricts the interaction between robots and humans, and
decreases the degree of participation. To surmount the challenges of
integrating wearable robots with the human body, advanced technol-
ogies such as multi-modal fusion and human-in-the-loop control are
being developed, augmenting the ability of robots to perceive the
environment, and taking into account human intent.

Multi-modal fusion
Given that wearable robots operate in unstructured environments and
interact closely with humans, relying solely on information acquisition
from a single sensor is significantly insufficient21. Consequently,
incorporating multi-modal sensors enables wearable robots to accu-
mulate and process information fromdiverse sources, leading tomore
precise and trustworthy motor enhancement. Just like human beings
also utilizemultiplemodalities of sensingorgans toperceive theworld.
Multi-modal information fusion helps wearable robots perceive the
environment and recognize human intentions with diverse fusion
methods, thus making the right decision upon motor enhancement
operation to achieve compliant human-machine interaction (Fig. 2).

Single-modal information has demonstrated effective performance
in capturing human intentions in wearable robot control. For example,
high-density EMG provides detailed spatio-temporal information about
muscle activity, enabling the decoding of intricatemovements like hand

Table 1 | Recent results in the five enabling technologies for wearable robots

Enabling technology Article type Focus Application Year Ref

Multi-modal fusion Research Continuous knee angle prediction Exoskeleton control 2023 Guo et al.123

Review Multi-modal fusion method Human-robot interaction 2020 Xue et al.8

Human-in-the-loop control Research Impedance adaptation Exoskeleton control 2023 Li et al.124

Review Optimization and control strategies Wearable robot control 2022 Diaz et al.20

Neuromuscular interface Review Invasive neural interface Motor and sensory restoration 2023 Shen et al.27

Review Sensory Feedback Limb prostheses 2021 Raspopovic et al.10

Flexible electronics Research Electrophysiological monitoring Sensing under sweat condition 2022 Xie et al.80

Review Tactile sensation Robot sensing 2022 Liu et al.125

Biomechatronic chip Perspective Neuromorphic hardware Somatosensory neuroprostheses 2024 Donati et al.126

Viewpoint Neuromorphic computing Robot control 2022 Sandamirskaya et al.17
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gestures22. High throughput electroencephalography-based brain-com-
puter interface (BCI) has achievedmovement decoding for eachfinger23.
Invasive BCI has also shown impressive performance in intention
decoding. Longitudinal intrafascicular electrodehas achievedprosthetic
hand control24. High-density electrocorticographic (ECoG) can offer
characteristic spatiotemporal neuronal activation patterns to decode
hand gestures25, and has achieved exoskeleton control26. The invasive
BCI can acquirehigh-quality neural signals, although the surgical risk and

suboptimal long-term reliability hinder its widespread adoption27.
Alternatively, people could choose many non-invasive approaches for
intention decoding. Though one non-invasive signal alone is inferior to
an invasive one, multi-modal information fusion could offer com-
plementary details that potentially facilitate human intention
recognition.

A pressure sensor combined with an inertial measurement unit
(IMU) could provide information on ground contact and joint angles

Fig. 1 | Breakthrough technologies for high-performance wearable robots.
Various technologies of wearable robots for motor and sensory enhancement and
reconstruction are depicted. Biomechatronic chips127 could serve as the central unit
for information acquisition and processing, generating control commands. Neu-
romuscular interface128 and flexible electronics129 are enabling technologies for
sensing human intention, which could be fused together withmulti-modal fusion13.

They also provide sensory feedback that transfers information from the robot to
the human to improve the feeling of agency. Human-in-the-loop control14 inte-
grates humans into the control loop of wearable robots, taking human reactions
into account during the training process. (In the figure, arrows represent the
information flow and dashed boxes represent technologies that form the key
components of embodiment).

Fig. 2 | Multi-modal information fusion for wearable robots.Multi-modal signals were captured and extracted features, then fused with diverse fusionmethods such as
transient fusion and sequential fusion8. The fusion result was used to recognize human intentions and account for personal differences to achieve individuation33.
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forwearable robot control28, though the control basedon these signals
is inherent behind the human physiological intention. Fusing electro-
myography (EMG) signals with an IMU has shown potential in pros-
thesis control, however, the EMG signals are susceptible to muscle
fatigue which would influence the control accuracy29. Mechan-
omyography (MMG) signals accompanied by muscle movement have
been proposed to be fused with EMG, which has enhanced human-
exoskeleton interaction30. Ultrasonography and EMG have been com-
bined, resulting in higher electrode-skin impedance compared to
conventional EMG31, in which ultrasonography signals offer the mor-
phological information of the muscle. Near-infrared spectroscopy
(NIRS) has been used in conjunction with EMG and achieved a higher
decoding performance in a prosthesis, compared to using each
method individually32, in which NIRS adds the blood oxygen informa-
tion duringmusclemovement. Sheng et al. integrated EMG,MMG, and
NIRS for intention decoding, achieving the highest performance
among all possible combinations33, in which MMG signals address the
mechanical aspect of muscle movement. Chen et al. fused EMG,MMG,
and ultrasonography to study the rectus femoris muscle during iso-
metric contractions and found this combination could provide com-
plete information on muscle contraction34.

The analysis of the muscle information may be limited by mus-
cular functionality, as disabled elders often have very weak muscle
signals. Electroencephalography (EEG) signals can be assumed to be
consistently available. However, using EEG signals alone to control the
wearable robot is not reliable, because these signals often have a low
signal-to-noise ratio and are easily affected by artifacts. Combining
EEG with EMG has shown great potential in improving the accuracy of
detecting human intentions. For example, Kiguchi and Hayashi pro-
posed a user’s motion estimation method for controlling wearable
robots based on the user’s motion intention35, where EEG signals are
employed as a compensatory measure in the absence of EMG signals.
The combination of EEG and EMG was also employed for recon-
structing the hand’s position in three dimensions36, in which EMG
signals offer a wealth of movement-related information, and EEG sig-
nals provide supplementary data that enhances the reconstruction
process. Environmental information is also important in human-
machine interaction. For example, fusing vision gaze and EMG has
been proven to enhance end-point control performance in upper-limb
prostheses37. However, integrating high-throughput information like
vision can result in extended processing times, placing a significant
burden on the computing unit and potentially increasing latency.

Although we could choose from various modalities of informa-
tion, employing a suitable information fusion method would warrant
the enhancement of motor function in wearable robots. Transient
fusion uses instant information and feeds it into the fusion module
after preprocessing8, which is suitable for obtaining the current state
of an object or human, for instance, instantaneous gesture

recognition38. Sequential fusion introduces sequential data into a
model withmemory, such as long-short-termmemory formulti-modal
fusion to recognize human activity39. However, this kind of fusion
involves sequential information stored in a memory, which might
result in longer fusion times. To minimize the fusion time, the fusion
method utilization of a previously trained model could play a role.
Falco et al. achieved object recognition with tactile sensing fusionwith
a pre-trained visual model40. Although employing a pre-trained model
could reduce the fusion time, it might sacrifice the output accuracy if
themodel is notfine-tunedon the newdata. It should be noted that the
inclusion ofmodalities increases the likelihood of failure. For example,
the communication between modules for measuring different mod-
alities becomes a major issue, along with the concerns associated with
powering and calibrating them. Thus, despite the achievementsmade,
current multi-modal fusion methods still need to improve time effi-
ciency and accuracy simultaneously to satisfy the complex tasks of
wearable robot control.

Human-in-the-loop control
As wearable robots are designed to be human-centric systems, incor-
porating the human element in the control loop is essential for effec-
tive operations (Fig. 3). However, existing wearable robots lack user
interaction, leading to a mismatch between the user’s responses and
the robot’s actions. This disconnection hinders the users’ ability to
fully leverage the robot’s capabilities to enhance theirmotor functions.
Human-in-the-loop control iteratively updates the controller para-
meters by considering the user’s response such as muscle activity,
synergy, metabolic cost, gait symmetry, user preference or comfort,
aiming to minimize or maximize that response20. It achieved a max-
imum reduction of energy cost by 37.9% for ankle exoskeleton41. The
main drawback of this method is its tendency to require long iteration
time thus inducing fatigue and increasing human dropout rate20.

Effective human-robot interaction is critical for optimal perfor-
mance. A patient-cooperative control termed assist-as-needed pro-
vides torque assistance only if there is a large deviation from the
intended movement42, which is an early-stage concept of human-in-
the-loop control. Human biomechanical parameters such as joint
angles, gait symmetry, andmoving speed are some intuitive responses
used in human-in-the-loop control20. However, this method aims to
have the wearers achieve normative biomechanical parameters
derived from previous clinical analysis43, which might not actually
meet the needs of different individuals with different motor and sen-
sory dysfunctions. To deal with this, Huang et al. developed a dynamic
movement primitive tomodelmotion trajectories of exoskeletons that
updates iteratively to account for inter-subject preference44.Metabolic
energy cost45 is a physiological parameter that is one of the most
commonly used human responses in human-in-the-loop control,
where wearable robots help humans to minimize movement effort.

Fig. 3 | Human-in-the-loop control. In the process of using wearable robots, human biomechanical or physiological responses could be evaluated, and task performance
could be compared over time. By using optimization methods, the wearable robot’s control strategy could be iteratively updated to optimization using effect.
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Onedrawbackof this parameter is that it is usually calculated indirectly
from oxygen intake and carbon dioxide output with empirical for-
mulas which require several minutes of breath data, which is a lengthy
time for updating control parameters. Regarding this, Gordon et al.
achieved online metabolic cost estimation with a musculoskeletal
model to save the sampling time46. Besides these parameters, muscle
activity47, muscle synergy48, and user preference49 also have played a
role in human-in-the-loop control.

Optimization is another key factor in the effectiveness of human-
in-the-loop control. Advances in optimization strategies can offer
optimal cooperation with humans by augmenting or reducing the
above-mentioned variables. Evolutionary strategy is frequently used
in human-in-the-loop control as it can manage many objective
functions41. However, objective functions based onmeasurements of
human performance typically require a mass of online and offline
calculations, making it a lengthy evaluation period50. To improve the
optimizing efficiency, Bayesian optimization has been utilized in
human-in-the-loop control and achieved peak and offset timing of
hip extension assistance identification eventually minimizing the
energy expenditure9. Thismethod has high time efficiency as it works
by learning the shape of the objective functions to find parameters
that can improve the result to the global maximum, while it becomes
poor in efficiency when the number of objective functions and
iterations increase. Reinforcement learning is a method learned by
trial and error, where the good performance of humans is remem-
bered and rewarded to facilitate human-robot interaction51. How-
ever, just because of its trial and error characteristic, there is a risk
that the robot might apply harmful torque to the wearer52. Despite
the achievements, most optimization algorithms are heavy on com-
putation, which brings new challenges to the calculationpower of the
wearable solution.

Sensory reconstruction
Sensory reconstruction builds a new pathway for delivering sensory
information from the robot to the human. As motor and sensory
functions are strongly integrated as a fundamental principle of human
beings, the reconstruction ofmotor function shouldnot develop alone
from the integration of sensory reconstruction. An ideal wearable
robot should thus reconstruct and enhance the motor and sensory
functions of the dysfunctional body part. However, in practice,
rebuilding sensory feedback is extremely challenging10.

Neuromuscular Interface
The neuromuscular interface functions bidirectionally, including sen-
sing and feedback. To sense human movement intentions, sensing
neuromuscular interface through the nerves or muscles can be probed
directly. The sensory feedback neuromuscular interface transmits
information about the external environment or humanbody state to the
nervous system to build a feedback loop (Fig. 4). The sensory feedback
interface is crucial for wearable robots, particularly during tasks
requiring physical interaction with objects. For example, a prosthesis
equipped with sensory feedback can restore lost perception to an
amputee, while an exoskeleton with sensory feedback can convey
information about the contact forcewith the environment to thewearer.

The sensing interface captures signals along the efferent neural
pathway to establish a connection between humans and wearable
robots. For example, BCI can use brain signals from the scalp, the
cortical surface, or intracortical to restore movement control to
paralyzed people53. ECoG signals were for used chronic neural
recording and stimulation26. The invasive brain-computer interface has
high control accuracy while most people could not accept brain sur-
gery, and the non-invasive brain-computer interface typically has
relatively lower accuracy54. Recent years have witnessed significant
advancements in non-invasive techniques55, such that non-invasive
BCIs have demonstrated improvements in motor imagery tasks56. EEG
signals have been investigated as an alternative for measuring brain
activity and conveying user intention towearable robots57. The control
process typically involves decoding EEG responses elicited by ima-
gining the intended task such as gait58 or manipulating objects59,60.
Surface EMG is the most commonly used neuromuscular interface for
sensing human intent in wearable robot control29, while it is suscep-
tible to electrode placement and skin conditions. High-density EMG
provides detailed spatio-temporal information about muscle activity,
enabling the decoding of intricate movements like hand gestures22.
Implant EMG could solve the problem of surface EMG and improve
robustness in wearable control61. This method is confined when in the
case of amputation not enough remnant muscle tissue is left for
implanting electrodes. ENG is a neural electrical signal62 that requires a
nerve implant and could handle the above-mentioned problems for
both invasive and non-invasive EMG interfaces, and has demonstrated
promising results in motor intention decoding63. However, this
method has problems of poor signal-to-noise ratio and stability64, and
might just resemble the decoding result similar to surface EMG65.

Surface 
electrical 

stimulation

Haptic 
feedback

Implant 
electrode

Agonist–antagonist
myoneural

Targeted sensory 
reinnervation

ECoG

Surface 
EMG

EEG

Implant 
EMG

ENG

Fig. 4 | The bidirectional neuromuscular interface. The sensing interface cap-
tures signals on the efferent nerve pathway (orange arrow downwards), which
could be used to sense human intention, for example, ECoG130, EEG131, electro-
neurogram (ENG)132, implant EMG133, and surface EMG134. The feedback interface
stimulates the afferent nerve pathway (indicated by the upward red arrow), which

could be used to convey information to humans, for example, in non-invasive ways
such as haptic feedback67 and surface electrical stimulation70, in implantable ways
like agonist-antagonist myoneural76, implant electrode72, and targeted sensory
reinnervation77.
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Besides, all implants in the brain, nerve, ormuscle have the concern of
durability66. Thus, despite the advances, current sensing neuromus-
cular interfaces still need to improve accuracy for non-invasive
approaches and durability for invasive ones.

In the afferent nerve pathway, feedback plays a vital role in
enabling wearable robots to effectively communicate with the user,
facilitating intuitive interactions. Vibration feedback to generate tac-
tile on the skin is a commonly used way to provide haptic sensation67.
Though, in theory, vibration could be modulated to different fre-
quencies and intensities tomapdifferent sensations68, itwouldenforce
a cognitive burden for the user tomaster the relationship. Iberite et al.
used wearable devices to restore natural thermal sensory feedback in
individuals with amputation69. Electrical stimulation with current into
the skin could generate electrotactile70. However, this method is
usually rated by users as tingling71. External stimulations are inherently
less intuitive compared to internal nerve stimulation, which could
activate the same sensation pathway72. Long-term stimulation of the
nerve might lead to decreased sensitivity73 and make it hard for
information to be conveyed. However, a recent clinical trial has shown
the feasibility of the six-month use of hand prosthesis with intraneural
tactile feedback74. Valle et al. have demonstrated that intraneural
sensory feedback improves sensation naturalness, tactile sensitivity,
and prosthesis embodiment75. Agonist–antagonist myoneural inter-
face could naturally convey proprioception for prosthesis user76, while
it is confined to the position of amputation. To deal with that, targeted
sensory reinnervation could achieve sensation by simulating other
parts of the body77. Significant research progress has been shown in
the self-contained hand prosthesis with sensory feedback over 3–7
years of use in 4 individuals with transhumeral amputation78. Similar to
sensing, sensory feedback could also considermulti-modal integration
to improve naturalness, such as thermal together with tactile
feedback69. Current sensory feedback technology still needs to work
towards creating a neural pathway that transfers a large amount of
sensory information to the nervous system and ensuring an effortless
experience for the user.

Flexible electronics
It is difficult for traditional rigid sensors to conform to the human skin
or internal organs when measuring neuromuscular signals or deliver-
ing the sensory feedback mentioned earlier, which often results in
motion artifacts and low measurement accuracy. As a person moves,
the skin stretches, wrinkles and flexes, and internal organs beat, all
with large deformation. This makes it difficult to maintain contact
between the sensors and humans. The flexible electronics nature of
soft and stretchable, minimizing the physical and mechanical mis-
match between skin/neural tissue and the flexible electronics79,
potentially enabling a high-quality interface (Fig. 5).

Flexible electronics have the potential to form the bidirectional
neuromuscular interface discussed previously. For neuromuscular
signal sensing, Xie et al. developed a nano-thick porous stretchable dry
electrode for surface EMG sensing, which even works under sweating
conditions80. Hydrogel has been commonlyused for electrophysiology
signals in wearable robot applications for its skin-like properties and
good conductivity81. However, the hydrogel sensor is limited in a
humid environment, which could not withstand a long time in the air
while this characteristic makes it a suitable interface for implant
electrodes82. Poly (3,4-ethylenedioxythiophene) (PEDOT) material has
been used to form implant EMG electrodes83. Liquid metal has
achieved implant ENG signal recording84. For brain signals, Carneiro
et al. developed a headband with conductive stretchable ink for fore-
head EEG signal acquisition85. Invasive ECoG has also been shown to be
recorded by flexible electronics86. Besides, flexible electronics could
sense human mechanical movement with multiple channels87. Spatial
resolution is important for sensing neuromuscular signal quality. Thus,
flexible electronics for wearable robots need to form high-density
arrays and overcome difficulties in wiring, especially during strain
when the connection tends to break80.

Flexible electronics may also function as an interactive feedback
mechanism, enhancing the communication between humans and
wearable robots. Chossat et al. have developed a soft skin stretch
device with twisted and coiled polymer for generating haptic

Surface EMG sensing
ECoG sensing

Bi-directional soft interface
EEG sensing

Invasive EMG sensing
Movement sensing

Electrotactile HapticNerve stimulation

Micro
electrodes

Stimulation Electrodes

Mechano-
receptors

Current
path

Nerve

Sciatic nerve

Fig. 5 | Flexible electronics for sensing and feedback. It could be conformal with
human skin or internal organs to capture signals or deliver stimulations. a Flexible
electronics for sensing surface EMG80. b Flexible electronics for sensing EEG85.
c Flexible electronics for sensing ECog86. d Flexible electronics for sensing and

feedback93. e Flexible electronics for sensing invasive EMG83. f Flexible electronics
for sensing hand movement87. g Flexible electronics for providing electrotactile89.
h Flexible electronics for nerve stimulation90. i Flexible electronics for providing
haptic feedback88.
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feedback88. Akhtar et al. used a flexible interface to achieve electro-
tactile touch feedback in prosthesis users89. For in vivo sensory feed-
back, flexible electronics have also played a role. Lienemann et al.
developed cuff electrodes with stretchable gold nanowires and
achieved invasive peripheral nerve stimulation90. Minev et al. devel-
oped an electronic dura mater capable of delivering electronic sti-
mulation and even drugs91. Similarly to sensing, feedback also requires
high resolution. Zhu et al. achieved large area pressure feedback with
flexible electronic92. To meet the bi-directional requirements for the
neuromuscular interface, flexible electronics need to integrate sensing
and feedback. Vitale et al. achieved neural stimulation and recording
with soft carbonnanotube fibermicroelectrodes93. Sincemany flexible
neuromuscular interfaces work in vivo, they need to head off toward
high biocompatibility and long durability to avoid rejection and
replacement.

Biomechatronic chip
Forwearable robots, dealingwith humanphysiological signals involves
acquisition, transfer, and processing, while currently idiodynamic and
sensation are limited by a deficiency in human-robot interface. As a
weak signal, the human physiological electrical signal first needs to be
amplified to meet the level of the following circuit and handle the
problems such as electromagnetic interference, human artifact, and
noise. Then, the analog-to-digital converter (ADC) directly determines
whether the data used for signal processing is reliable. Meanwhile, the
latest wearable robot control and optimization involves a large-scale
deep learning network, which is extremely costly in conventional
computing hardware (Fig. 6). Biomechatronic chip is specifically

designed for the acquisition, transfer, and processing of biomecha-
tronic information94, which is very attractive in acting as the central
processing unit for a wearable robot.

In wearable robot applications, data acquisition faces challenges
in a multitude of signal modalities, multi-channels, weak raw signal
amplitude, and noises. To reduce noises in neuromuscular sensing,
chopper modulation technology and current multiplexing technology
have been proposed to modulate input noise when gathering neural
signal95. For amplificationof theweakneuromuscular signal, Ng andXu
applied single-ended CMOS-inverter-based preamplifiers for both the
reference and neural signal inputs and achieved a low power96. For
different modality signals, different signal amplification gains have
been achieved with a programmable gain amplifier97. In consideration
of themulti-channel data acquisition to increase signal resolution, Luo
et al. designed a 16-channel neural-signal acquisition chip and achieved
low noise98. Besides, to suppress the offset voltage of the neuromus-
cular signal, a direct current servo loop is introduced to reduce the
offset99. As the front end, signal acquisition still needs to work towards
optimizing the above-mentioned parameters simultaneously with low
power consumption.

Analog-to-digital converter (ADC) is vital for biomechatronic
chips in wearable robot applications as it determines the data quality
used for subsequent signal processing. The primary consideration is
the accuracy of conversion, Ahmed and Kakkar designed an auto-
configurable successive approximation register ADC for neural
implants and achieved a good performance100. However, the offset
compensation that is important for ADC was not considered in this
design. Wendler et al. developed a Delta-Sigma ADC with 120 mVpp

…
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Controller

EMI
filter PGA1 ∑-Δ

ADC

EMI
filter PGA1 ∑-Δ
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On-chip
neural network

Fig. 6 | Biomechatronic chips for wearable robots. The signal acquisition part intakes multi-modal information, ADC prepares processable data, and neuromorphic
computing handles on-chip neural network calculation94. The biomechatronic chip serves as the central control unit for the wearable robot.
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offset compensation for neural signal recording101. Power consump-
tion and number of channels are two main factors that limit the
development of ADC for wearable robot applications. Gagnon-
Turcotte et al. designed a CMOS biomechatronic chip for simulta-
neous multichannel optogenetics and neural signal recording and
achieved a low power of 11.2uW102. However, the chip area would
increasewhen the number of channels increases for the highdensity of
the neuromuscular signal. Besides, the stimulation artifact should be
rejected to achieve a bidirectional neuromuscular interface. Pazhou-
handeh et al. proposed a neural ADC that achieves blind stimulation
artifact rejection, where a bidirectional COMS neural interface could
capture neural signals during neural stimulation103.

Current wearable robot control and optimization involve large-
scale deep learning network algorithms,which require a high hash rate
and even a dedicated hardware structure for neural network calcula-
tion. Mimicking the dynamics of spiking neurons and dynamic
synapses, a neural morphology chip ‘Loihi’ was proposed that could
conduct such computation efficiently with integrated circuits104. With
the recent advance inmaterial withmemristive properties which holds
the state induced by a transient spike, the neuromorphic chip could be
efficient and compact in neural network computing105. Based on this,
Kreiser et al. realized simultaneous localization and mapping with
neuromorphic chips106, which holds the potential for wearable robots
that assist visually impaired individuals. Stewart et al. achieved online
gesture learning with a neuromorphic chip107, which could be suitable
for prosthetic applications. Flexible neuromorphic electronics for
neuroprosthetics are also achieved108. Despite these achievements, as
algorithm development is faster than hardware, there is a limitation in
reconfigurability in neuromorphic chips to construct different net-
work architectures to adapt different wearable robot applications.

The next generation of wearable robots
We foresee the performance of the next generation of wearable robots
will broaden their applications by leveraging the breakthroughs -
multi-modal fusion, human-in-the-loop control, neuromuscular inter-
face, flexible electronics, and biomechatronic chip. With intuitive
control and proprioception, next-generation wearable robots should
bettermeet the user requirement formotor and sensory enhancement
and reconstruction. The fusion of multi-modal information could
guarantee the performance in perceiving the environment and human
intention. Putting humans in the control loop in this human-centered
system provides an intuitive human-robot interaction. The establish-
ment of a bidirectional neuromuscular interface could reconstruct the
neural pathway for sensation. Applying flexible electronics could
handle artifacts caused bymovement between the wearable robot and
the human. Moreover, the adoption of biomechatronic chips with
dedicated information acquisition, transfer, and neural network com-
putation would empower fast signal processing for wearable robots.

Multi-modal fusion will eliminate the deficiency in perception of
environment information and human intention information, especially
for complex human intention. In order to use complementary char-
acteristics of multi-modal information obtained from heterogeneous
sensing, a novelmulti-modal feature fusion strategy for humanmotion
intention recognition shall be studied109. Besides, an accurate motion
intention recognition model with the ability to adapt to different
individuals with various motor and sensory dysfunction features is of
great importance5. The fusion of available auxiliary modalities such as
EMG signals, and visual images can enhance the performance of EEG-
based BCI for wearable robots110. Moreover, the accuracy of human
motion intention recognition and real-time performance determines
the overall user acceptability of wearable robots. Advances in the
fusion of multi-scale multi-modal information would warrant com-
pliant human-machine interaction.

The next generation of human-in-the-loop control aims at devel-
oping control strategies that are simple and “fit like a glove” to each

user, integrating information from multiple human-related responses
to generate coherent control parameters configurations and improve
human-robot interaction111. Despite the different needs of exoskele-
tons and prostheses, a natural and reliable control that minimizes the
interaction forces between the robot andhuman to improve comfort is
a desired characteristic for both types of wearable robots. Discomfort
and problems with body fitting are common causes of device
rejection112. It is also worth noting that the wrong set of control para-
meters may cause discomfort and pain113, thus personalization might
be necessary to engage. Future control should consider the user pre-
ference, and coactive feedback andutilize cost functions togetherwith
other metrics to optimize interaction which increases users’
acceptance114. Advancements in closing the human-robot loop of
wearable robot control strategies can benefit different populations
with motor and sensory dysfunctions.

Wearable robots involving neuromuscular interfaces have
demonstrated significant benefits in rehabilitation, while the wide-
spread adoption of such wearable robots still faces significant chal-
lenges. For example, although BCI has shown promising results in
detecting the user’s intentions while using a wearable robot their
actual effectiveness is yet to be fully explored. While invasive brain
imaging methods provide better accuracies, their acceptance is likely
to be limited to a small group of patients as the concern of safety and
durability of the invasive neuromuscular interface, which might cause
unwanted surgery115. Conversely, non-invasive methods, such as EEG,
contain less information and are more susceptible to noise and arti-
facts. Therefore, better recording hardware and detection algorithms
are still required to prepare EEG-based BCI for real-world applications.
Another challenge in using neuromuscular interfaces is the long
adaptation time. Due to the signal’s variability across sessions and
individuals, using the same BCI system without calibration or retrain-
ing is nearly impractical. Therefore, enhancing the transferability of
learned representations is crucial for seamless integration of these
systems with wearable robots. Besides, the neuromuscular interface
typically builds on humans, while it is also important to build an
interfacebetween the robot and environment, for example, sensors on
the prostheses for generating sensory feedback for humans116. In order
to achieve a positive user experience in the use of wearable robots, the
neuromuscular interface should include both reliable decoding of user
intentions and real-timedeliveryof sensory feedback. In the future, the
continuous development of bidirectional neuromuscular interfaces
will bring leaps to wearable robots for motor and sensory
reconstruction.

The flexible electronics offer the advantage of conformation to
human skin or tissue. It also has good scalability and can be prepared
into different shapes to meet the requirements of different wearable
robots. The new generation of flexible electronics for wearable robots
shall achieve stretch and healing itself, low cross-coupling, low-cost
processing, andmulti-sensor integration117. Self-power supply is another
direction that could benefit the arrangement of interfaces for wearable
robots118. One step forward, flexible electronics could not only serve as
sensors but also as the interface for sensory feedback119. This integration
would greatly benefit the above-mentioned bidirectional neuromus-
cular interface. Advances in flexible electronics will provide new stra-
tegies for the research and development of wearable robots.

The next generation of wearable robots should apply dedicated
biomechatronic chips with high performance in data acquisition, ADC,
and processing. As multi-modal signals have various levels of ampli-
tudes, chips with programmable gain amplifiers which can be digitally
controlled to obtainmultiple amplification ratios to adapt to changes in
the input signal would be highly beneficial120,121. Bit error is a problem in
ADC, adding redundant bits to the binary code could improve system
fault tolerance and reduce bit error probability, and bringing digital
calibration technology into the system would improve the effective
resolution122. Neuromorphic chips could run neural networks with
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various topologies and thus could support large-scale deep learning
neural network algorithms, where the neuromorphic hardware
empowers continual learning with training data and experience toge-
ther. Those three key components constitute the next-generation bio-
mechatronic chip that canenrichwearable robotswith apowerful heart.

Realistically, the wider clinical application of multi-modal fusion,
human-in-the-loop control, neuromuscular interface, flexible electro-
nics, and biomechatronic chips should occur within the next decade
for wearable robots. All of these technologies have been validated and
shown to have benefits for people with motor and sensory dysfunc-
tion, such as hemiplegic patients and amputees. Exoskeletons and
prostheses leveraging these cutting-edge technologies together will
constitute a new generation of wearable robots. We expect them to
significantly improve the users’ quality of life and pave the way for
motor and sensory enhancement and reconstruction.
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