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Extracting accurate materials data from
research papers with conversational
language models and prompt engineering

Maciej P. Polak 1 & Dane Morgan 1

There has been a growing effort to replace manual extraction of data from
research papers with automated data extraction based on natural language
processing, language models, and recently, large language models (LLMs).
Although these methods enable efficient extraction of data from large sets of
researchpapers, they require a significant amount of up-front effort, expertise,
and coding. In this work, we propose the ChatExtractmethod that can fully
automate very accurate data extraction with minimal initial effort and back-
ground, using an advanced conversational LLM.ChatExtract consists of a set
of engineered prompts applied to a conversational LLM that both identify
sentences with data, extract that data, and assure the data’s correctness
through a series of follow-up questions. These follow-up questions largely
overcome known issues with LLMs providing factually inaccurate responses.
ChatExtract can be applied with any conversational LLMs and yields very
high quality data extraction. In tests on materials data, we find precision and
recall both close to 90% from the best conversational LLMs, like GPT-4. We
demonstrate that the exceptional performance is enabled by the information
retention in a conversational model combined with purposeful redundancy
and introducinguncertainty through follow-upprompts. These results suggest
that approaches similar to ChatExtract, due to their simplicity, transfer-
ability, and accuracy are likely to become powerful tools for data extraction in
the near future. Finally, databases for critical cooling rates of metallic glasses
and yield strengths of high entropy alloys are developed using ChatExtract.

Automated data extraction is increasingly used to develop databases
in materials science and other fields1. Many databases have been cre-
ated using natural language processing (NLP) and language models
(LMs)2–22. Recently, the emergence of large language models
(LLMs)23–27 has enabled significantly greater ability to extract complex
data accurately28,29. Previous automated methods require a significant
amount of effort to set up, either preparing parsing rules (i.e., pre-
defining lists of rules for identifying relevant units or particularphrases
that identify the property, etc.), fine-tuning or re-training a model, or

some combination of both, which specializes themethod to perform a
specific task. Fine-tuning is resource and time consuming and requires
extensive preparation of training data, which may not be accessible to
the majority of researchers. With the emergence of conversational
LLMs such as ChatGPT, which are broadly capable and pretrained for
general tasks, there are opportunities for significantly improved
information extraction methods that require almost no initial effort.
These opportunities are enabled by harnessing the outstanding gen-
eral language abilities of conversational LLMs, including their inherent
capability to perform zero-shot (i.e., without additional training)
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classification, accurateword references identification, and information
retention capabilities for textwithin a conversation. These capabilities,
combined with prompt engineering, which is the process of designing
questions and instructions (prompts) to improve the quality of results,
can result in accurate data extraction without the need for fine-tuning
of the model or significant knowledge about the property for which
the data is to be extracted.

Prompt engineering has now become a standard practice in the
field of image generation30–32 to ensure high quality results. It has also
been demonstrated that prompt engineering is an effective method in
increasing the accuracy of reasoning in LLMs33.

In this paperwe demonstrate that using conversational LLMs such
as ChatGPT in a zero-shot fashion with a well-engineered set of
prompts can be a flexible, accurate, and efficient method of extraction
of materials properties in the form of the triplet Material, Value, Unit.
We were able to minimize the main shortcoming of these conversa-
tional models, specifically errors in data extraction (e.g., improperly
interpreted word relations) and hallucinations (i.e., responding with
data not present in the provided text), and achieve 90.8% precision
and 87.7% recall on a constrained test dataset of bulk modulus, and
91.6% precision and 83.6% recall on a full practical database con-
struction example of critical cooling rates for metallic glasses. These
results were achieved by identifying relevant sentences, asking the
model to extract details about the presented data, and then checking
the extracted details by asking a series of follow-up questions that
suggest uncertainty of the extracted information and introduce
redundancy. This approachwas first demonstrated in a preprint of this
paper34, and since then a group fromMicrosoft has described a similar
idea, but for more general tasks than materials data extraction35. We
work with short sentence clusters made up of a target sentence, the
preceding sentence, and the title, as we have found these almost
always contain the fullMaterial, Value, Unit triplet of data we seek. We
also separated cases with single andmultiple data values in a sentence,
thereby greatly reducing certain types of errors. In addition, by
encouraging a certain structure of responses we simplified automated
post-processing the text responses into a useful database.We have put
these approaches together into a single method we call ChatExtract
—a workflow for a fully automated zero-shot approach to data
extraction.We provide an example ChatExtract implementation in a
form of a python code (see “Data availability” for more details). The
prompt engineering proposed here is expected to work for essentially
all Material, Value, Unit data extraction tasks. For different types of
data extraction this prompt engineeringwill likely need tobemodified.
However,webelieve that the generalmethod,which is basedon simple
prompts that utilized uncertainty-inducing redundant questioning
applied within an information retaining conversational model, will
provide an effective and efficient approach to many types of infor-
mation extraction.

The ChatExtract method is largely independent of the con-
versational LLMused and is expected to improve as the LLMs improve.
Therefore, the astonishing rate of LLM improvement is likely to further
support the adoption of ChatExtract and similar approaches to data
extraction. Prompt engineering hasnowbecomea standardpractice in
the field of image generation30–32 to ensure high quality results. A
parallel situation may soon occur for data extraction. Specifically, a
workflow such as that presented here with ChatExtract, which
includes prompt engineering utilized in a conversational set of
prompts with follow-up questions,may become amethod of choice to
obtain high quality data extraction results from LLMs.

Results and discussion
Description of the data extraction workflow
Figure 1 shows a simplified illustration of the ChatExtract workflow.
The full workflowwith all of the steps is shown in Fig. 2 so here we only
summarize the key ideas behind this workflow. The initial step is

preparing the data and involves gathering papers, removing html/XML
syntax and dividing into sentences. This task is straightforward, stan-
dard for any data extraction effort, and described in detail in other
works29.

The data extraction is done in two main stages:
(A) Initial classification with a simple relevancy prompt, which is

applied to all sentences to weed out those that do not
contain data.

(B) A series of prompts that control the data extraction from the
sentences categorized in stage (A) as positive (i.e., as relevant to
thematerials data at hand). To achieve high performance in Stage
(B)we have developed a series of engineered prompts and the key
Features of the major Stage (B) are summarized here:

(1) Split data into single- andmulti-valued, since texts containing a
single entry aremuchmore likely to be extracted properly and
do not require follow up prompts, while extraction from texts
containing multiple values is more prone to errors and
requires further scrutinizing and verification.

(2) Include explicitly the possibility that a piece of the datamay be
missing from the text. This is done to discourage the model
from hallucinating non-existent data to fulfill the task.

(3) Use uncertainty-inducing redundant prompts that encourage
negative answers when appropriate. This lets the model
reanalyze the text instead of reinforcing previous answers.

(4) Embed all the questions in a single conversation as well as
representing the full data in each prompt. This simultaneously
takes advantage of the conversational information retention of
the chat tool while each time reinforcing the text to be
analyzed.

(5) Enforce a strict Yes/No format of answers to reduce uncer-
tainty and allow for easier automation.

Stage (A) is the first prompt given to the model. This first prompt
is meant to provide information whether the sentence is relevant at all
for further analysis, i.e., whether it contains the data for the property in
question (value andunits). This classification is crucial because, even in
papers that have been extracted to be relevant by an initial keyword
search, the ratio of relevant to irrelevant sentences is typically about
1:100. Therefore elimination of irrelevant sentences is a priority in the
first step. Then, before starting Stage (B), we expand the text on which
we are operating to a passage consisting of three sentences: the
paper’s title, the sentence preceding the positively classified sentence
from the previous prompt, and the positive sentence itself. This
expansion is primarily useful for making sure we include text with the
material’s name, which is sometimes not in the sentence targeted in
Stage (A) but is most of the time in the preceding sentence or title.
While in some cases the text passage built this waymay not contain all
the information to produce a complete datapoint, for example if the
materials name ismentionedearlier in the text or in a subsectionwhere
samples are described, we found this to be a relatively rare occurrence.
While technically expanding the passage to ensure extraction of
complete datapoints is possible, we found thatoperatingon as shortof
a text passage as possible results in the most accurate extraction, and
the small gain in recall from expanding the text passage was not worth
the cost of loss of precision of overall extraction. That said, tuning of
the text selection approach to different LLMs and/or target properties
could likely achieve improvements in some cases.

The relevant texts vary in their structure and we found it neces-
sary to use different strategies for data extraction for those sentences
that contain a single value and those sentences that contain multiple
values (Feature (1) above). The texts containing only a single value are
much simpler since the relation betweenmaterial, value, and unit does
not need to be analyzed. The LLMs tend to extract suchdata accurately
and a single well-engineered prompt for each of the fields asked only
once tends to perform very well. Texts containing multiple values
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involve a careful analysis of the relations between words to determine
which values, materials, and units correspond to one another. This
complexity sometimes leads to errors in extraction or hallucinated
data and requires further scrutiny and prompting with follow-up
questions. Thus the first prompt in Stage (2) aims at determining
whether there are multiple data points included in a given sentence,
andbased on that answer oneof twopaths is taken, different for single-
valued andmulti-valued sentences. As a concrete exampleof howoften
this happens, our bulk modulus dataset studied below has 70% multi-
valued and 30% single-valued sentences. Our follow-up question
approachproved to be very successful for the conversational ChatGPT
models.

Next, the text is analyzed. For a single-valued text, we directly ask
questions about the data in the text, asking separately for the value, its
unit, and the material’s name. It is important to explicitly allow for an
option of a negative answer (Feature (2) above), reducing the chance
that the model provides an answer even though not enough data is
provided, limiting the possibility of hallucinating the data. If a negative
answer is given to any of the prompt questions, the text is discarded
and no data is extracted. For the case of a multi-valued sentence,
instead of directly asking for data, we ask the model to provide
structured data in a form of a table. This helps organize the data for
further processing but can produce factually incorrect data, even if
explicitly allowing negative responses. Therefore, we scrutinize each
field in the provided table by asking follow-up questions (this is the
redundancy of Feature (3) above) whether the data and its referencing
is really included in the provided text. Again, we explicitly allow for a
negative answer and, importantly, plant a seed of doubt that it is
possible that the extracted table may contain some inaccuracies.
Similarly as before, if any of the prompt answers are negative, we
discard the sentence. It is important to notice that despite the cap-
ability of the conversational model to retain information throughout
the conversation, we repetitively provide the text with each prompt
(Feature (4) above). This repetition helps in maintaining all of the
details about the text that is being analyzed, as themodel tends to pay
less attention to finer details the longer the conversation is continued.
The conversational aspect and information retention improves the
quality of the answers and reinforces the format of short structured
answers and possibility of negative responses. The importance of the
information retention in a conversation is proven later in this work by
repeating our analysis exercise but with a new conversation started for
each prompt, in which cases both precision and recall are significantly
lowered. It is also worth noticing that we enforce a strictly Yes or No
format of answers for follow up questions (Feature (5) above), which
enables automation of the data extraction process. Without this con-
straint the model tends to answer in full sentences which are challen-
ging to automatically analyze.

The prompts described in the flowchart (Fig. 2) are engineered
by optimizing the accuracy of the responses through trial and error
on various properties of varying complexity. Obviously, we have not
exhausted all options, and it is likely that further optimization is
possible. We have, however, noticed that contrary to intuition, pro-
viding more information about the property in the prompt usually
results in worse outcomes, and we believe that the prompts

proposed here are a reliable and transferable set for many data
extraction tasks.

Performance evaluation and model comparison
We have investigated the performance of the ChatExtract approach
onmultiple property examples, including bulkmodulus,metallic glass
critical cooling rate, and high-entropy alloy yield stress. For bulk
modulus the data is highly restricted so we can collect complete sta-
tistics on performance, and the other two cases represent applications
of the method to full database generation. The bulk modulus test
dataset has been chosen as a representative and particularly
demanding test case for several reasons. Papers investigating
mechanical properties, such as bulk modulus, very often report other
elastic properties, such as the Young’s modulus or shear modulus,
which have similar names, ranges of values, and the same units of
pressure, and are therefore easy to confuse with bulk modulus. In
addition, those source documents very often describe measurements
performed under pressure and other forms of stress, which have the
samepressureunits as bulkmodulus. Finally, bulkmodulus data is very
often accompanied with information on the derivative of bulk mod-
ulus, which is easily confused as well. Therefore, the bulk modulus
serves as a test example in which the sought property is often pre-
sented alongside numerous other, irrelevant but very easilymistakable
values, presenting a challenge for accurate extraction. Our bulk mod-
ulus example data is taken from a large body of sentences extracted
from hundreds of papers with bulk modulus data. To allow for an
effective assessment we wanted a relatively small number of relevant
sentences (containing data) of around a 100, from which we could
manually extract to provide ground truth. Wemanually extracted data
until we reached 100 relevant sentences, during which a correspond-
ing number of 9164 irrelevant sentences (not containing data) was also
labeled. We then post-processed the irrelevant sentences to remove
ones that do not contain any numberswith a simple regular expression
toobtain 1912 irrelevant sentences containing numbers. This preserves
resources and saves time by not running the language model on sen-
tences that obviously do not contain any data at all (since the values to
be extracted are numbers), and does not impact the results of the
assessment, as in our extensive tests the model never returns any
datapoints from sentences that do not contain numbers. The model is
explicitly instructed not to do so in the prompts (see Fig. 2), even if it
mistakenly classifies the sentence as relevant in the very first classifi-
cation prompt (which is very rarely the case for sentences without
numbers). In these 100 sentences with data, there were a total of 179
data points (a complete triplet of material, bulk modulus, and unit
combination), which we extracted by hand to serve as a ground truth
dataset. We investigated the performance of multiple versions of
ChatGPTmodels (see Table 1) by following the approach as described
above and in Fig. 2. For true positive sentences we divide the results
into categories by type of text: single-valued and multi-valued, and
provide the overall performance over the entire dataset. These results
are summarized in Table 1. Note that single- and multi-values columns
represent performance on input passages that have data, which is of
interest for understanding model behavior. The statistic that best
represents the model performance on real sentences is the overall

Fig. 1 | A simplified flowchart describing our ChatExtractmethod of extracting structured data using a conversational large languagemodel.Only the key ideas
for each of the steps are shown, with the fully detailed workflow presented in Fig. 2.
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Fig. 2 | A flowchart describing our ChatExtract method of extracting struc-
tured data using a conversational large language model. Blue boxes represent
prompts given to the model, gray boxes are instructions to the user, “Yes”, “No”,
and “None” boxes are model’s responses. The bold text in “[]” are to be replaced

with appropriate values of the named item, which includes one of sentence (the
target sentence being analyzed); text (the expanded text consisting of Title, Pre-
ceding sentence, and target sentence); name of the property; extracted material,
value, or unit.
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column, where the input contains sentences both with and without
data. We applied what we consider to be quite stringent criteria for
assessing the performance against ground truth, the details of which
an be found in the “Methods” section.

The best LLM (ChatGPT-4) achieved 90.8% precision at 87.7%
recall, which is very impressive for a zero-shot approach that does not
involve any fine-tuning. Single-valued sentences tend to be extracted
with slightly higher recall (100% and 85.5% in ChatGPT-4 and
ChatGPT-3.5, respectively) compared tomulti-valued sentences with
a recall of 82.7% and 55.9% for the same models.

We believe that there are two core features of ChatGPT that are
being used in ChatExtract to make this approach so successful. The
first feature, and we believe the most important one, is the use of
redundant prompts that introduce the possibility of uncertainty about
the previously extracted data. By engineering the set of prompts and
follow-up questions in this way, they substantially improve the factual
correctness, and therefore precision, of the extracted information. The
second feature is the conversational aspect, in which information
about previous prompts and answers is retained. This allows the
follow-up questions to relate to the entirety of the conversation,
including the model’s previous responses.

In order to demonstrate that the follow-up questions approach
is essential to the good performance we repeated the exercise for
both ChatGPT models without any follow-up questions (directly
asking for structurized data only, in the same manner as before,
only without asking the follow-up prompts in the multi-value
branch (long light green box on right side of Fig. 2)). The results are
denoted as (no follow-up) in Table 1. The dominant effects of
removing follow-up questions is to allowmore extracted triplets to
make it to the final extracted database. This generally increases
recall across all cases (single-valued, multi-valued, and overall). For
passages with data (single-valued, multi-valued) these additional
kept triplets are very few and almost all correct, leading to just
slightly lower precisions. However, for the large number of pas-
sages with no data the additional kept triplets represent many false
positives, and thereforedramatically reduceprecision in theoverall
category. Specifically, removing follow-up questions decreases the
overall precision to just 42.7% and 26.5% for ChatGPT-4 and
ChatGPT-3.5, respectively, from the values of 90.8% and 70.1%,
respectively, resulting from a full ChatExtract workflow. These
large reductions in precision demonstrate that follow-up questions
are critical, and the analysis shows that their role is primarily to
avoid the model erroneously hallucinating data in passages where
none was actually given.

In order to demonstrate that the information retention provided
by the conversationalmodel is important to the good performancewe
repeated our approach but modified it to start a new conversation for
each prompt, which meant that no conversation history was available
during each prompt response. The results are denoted (no chat) in
Table 1, This test was performed on ChatGPT-3.5 and had little or no
reduction in precision. However, there was a significant loss in recall in
all categories (e.g., overall recall dropped by 10.7% to 54.7%). This loss
is recall is because themultiple redundant questions tend to reject too
many cases of correctly extracted triplets when the questions are
asked without model knowing they are connected through a con-
versation. We did not perform this test on ChatGPT-4 to reduce
overall time and expense as the implications results on ChatGPT-3.5
seemed clear.

While currently the OpenAI GPT models, in particular GPT4, are
considered to be the most capable and are the most widely used, the
fact that they are entirely proprietary, with a limited access dependent
on OpenAI servers, and of limited transparency on their internal
workings. Their default versions also tend to change their performance
over time36, which we overcome by using version snapshots (see
“Methods” section), however there is no guarantee for their availability
in the future. As an alternative model to assess, we chose LLaMA2-
chat (70B)37, amodel developed byGenAI (Meta), whichhas extensive
documentation38, and is available to download for free and use locally
without limits. The performance of the LLaMA2-chat model is sum-
marized alongside other models in Table 1, where an overall precision
and recall of 61.5 and 62.9% was achieved. The performance is close,
but slightly worse than that of ChatGPT-3.5, which is expected based
on the overall assessment of LLaMA2 capabilities27. While the
ChatGPT-4 model is still the most capable and performs with sig-
nificantly better outcomes, this demonstrates that alternative models
are also capable of data extraction, and their accuracy is likely to
improve as they catch up to the state-of-the-art. It is worth noting that
although the method and the prompts have been developed to be
general and applicable to any LLM, the prompts have been optimized
based on GPT models. Therefore, it is possible that further prompt
optimization could improve performance for a specific LLM, such as
LLaMA2-chat presented here, making the comparison not entirely fair
for LLaMA2-chat. However, we do not expect this effect to be very
significant. In order to compare the performance of ChatExtract to
previous state-of-the-art data extraction methods, we performed an
assessment of the performance of ChemDataExtractor2 (CDE2) on our
test bulk modulus dataset. CDE2 requires, at minimum, a specifier
expression andunits to be explicitly specified. The specifier expression
used here included all the ways we found the bulk modulus is
addressed in our test data: “bulk modulus”, “B”, “B0”, “B_0”, “K”, “K0”,
and “K_0”. We also created a new unit type for units of pressure, which
included all units we encountered in our test data: “GPa”, “MPa”, “Pa”,
“kbar”, and “bar”. CDE2 was then ran on the same text passages from
our bulk modulus dataset as ChatExtract. The overall precision and
recall were found to be 57% and 31% respectively, slightly lower but
close to the low range results reported for thermoelectric properties
(78% and 31%, respectively) obtained in ref. 6 by the authors of CDE2.
We note that in this paper we use a more strict definition for a false
negative datapoint than the authors of CDE2, which results in a slightly
lower recall. Even though the performance of ChatExtract is better, it is
worth noting that CDE2 can be efficiently executed on a personal
computer with a single CPU, while the use of LLMs at the time of
writing this article requires significantly higher computational power.

Application to tables and figures
Data is not necessarily always contained within the text of the para-
graph, andmay be found in other structures, in particular in tables and
figures. Since tables already contain structured datapoints, LLMs can
certainly assist in their efficient extraction from the document. The

Table 1 | Precision (P) and recall (R) for different types of text
passages containing single- and multi-valued data, and
overall, which includes all analyzed text passages, both
containing data and not

Single-valued Multi-valued Overall

ChatGPT-4
(gpt-4-0314)

P = 100%
R= 100%

P= 100%
R=82.7%

P =90.8%
R =87.7%

ChatGPT-3.5
(gpt-3.5-turbo-0301)

P = 100%
R= 88.5%

P =97.3%
R =55.9%

P = 70.1%
R =65.4%

LLaMA2-chat
(70B)

P = 74.1%
R = 87.7%

P =87.3%
R =53.5%

P =61.5%
R =62.9%

ChatGPT-4 (no follow-up)
(gpt-4-0314)

P = 100%
R = 100%

P = 99.2%
R = 98.4%

P = 42.7%
R = 98.9%

ChatGPT-3.5 (no follow-up)
(gpt-3.5-turbo-0301)

P = 97.9%
R = 88.5%

P = 94.0%
R = 74.0%

P = 26.5%
R = 78.2%

ChatGPT-3.5 (no chat)
(gpt-3.5-turbo-0301)

P = 100%
R = 76.9%

P = 86.6%
R = 45.7%

P = 70.0%
R = 54.7%

Bold font represents final results of models used within the ChatExtract workflow, while the
remaining demonstrate the importance of redundant follow-up questioning (no follow-up) and
conversational information retention aspect (no chat).

Article https://doi.org/10.1038/s41467-024-45914-8

Nature Communications |         (2024) 15:1569 5



analysis offigures, on theother hand, isnot a languageprocessing task,
and is an ongoing challenge for machine learning and artificial intelli-
gence. LLMs can, however, help identify relevant figures for further
human analysis. Figure 3 showsworkflows for tables (1) and figures (2).
Here, we utilize a simpleworkflow for table extraction—tables and their
captions are gathered separately fromthe texts of the papers, and then
they are used in classification, in a similar fashion to sentences (first
step in the general ChatExtract workflow, Fig. 2 to determine whether
they do contain the relevant data or not. In the case of positive clas-
sification, the text of the table and its caption are provided to the LLM
and the model is instructed to only extract the relevant data for the
specified property, in the form of a table, in the same way as in the
general ChatExtract workflow. This step ensures that only the relevant
data is extracted, as tables often containmore than just one column or
one property and have to be further postprocessed. Since the data is
already structured and the probability of an incorrect extraction is low,
the redundant follow-up verification does not seem tobehelpful and is
not performed, similar to our approach for sentences for single values.
Forfigures, only thefigure caption is used in the classification,where In
the case of a positive classification of a figure caption, the figure is
downloaded for later manual data extraction. The accuracy for table
extraction using the model which performed best for text extraction
(GPT4) is quite high, as extracting structured data from an already
structured table poses fewer challenges than extraction from texts.
Out of 163 tables contained in the same papers which served as a
source for the text bulk modulus data, we manually classified 58 as
containing bulk modulus data. From these tables we were able to
manually extract 500 structured bulk modulus datapoints. Using
ChatExtract we were able to achieve a precision and recall for table
classification of 95% and 98%, respectively. The precision and recall
when counting structured data extraction for individual datapoints
reached 91% and 89%, respectively. The lowering of the statistics,
besides the consequence of the sporadic improper classification, was
almost entirely due to an improper formatting of tables when con-
verted fromXML to raw text. While it did not happen very often, in the
cases when it did, it was impossible for humans to extract data from
these wrongly formatted tables as well. Even though these are not
directly themethod’s fault, they are still counted as false positives and
false negatives in our assessment, as they will inevitably be present in
the final extracted database, and this is what ultimately matters the

most. Assessment of accuracy for figure classification is more difficult,
as figures usually present more complex data than the simple “mate-
rial, value, unit” triplets we discuss here. Therefore the criterion for a
successful classification was whether the figure contained the relevant
property on any of the axes, in the legend, written somewhere in the
figure, or in the caption itself. Out of 436 figures contained in the same
papers which served as a source for the text bulk modulus data, we
manually classified 45 as containing bulk modulus data. Using the
model which performed best for text extraction (GPT4) we found a
82% recall and 80% precision for the figure relevancy classification.
While these results are very encouraging, it is worth noting that this is
not full data extraction from figures, which is a very challenging task
overall. In the case of our test bulkmodulus data, for example, the bulk
moduluswas often contained in the pressure or energy as a functionof
volume plots as one of the parameters in the fitted equation of state,
simply written next to the curve, while the figure caption describing
thefigure only says that it contains the pressure or energy as a function
of volume.While a human with knowledge in the field knows that such
figures represent equations of state and bulk modulus is one of the
parameters in the equation of state and may expect its value in such a
plot, which even a human without expertise would not be able to do.
Nevertheless, in our evaluation, we considered such figures as relevant
and containing data, which negatively impacted the recall. Interest-
ingly most of the reduction in precision came from a similar reason—
the figurewould be explicitly captioned as containing a fitted equation
of state curve, and a model would classify such a figure positively
(since bulk modulus is the key parameter in the fitting) yet the figure
would not directly contain the bulk modulus data.

To further demonstrate the utility of the ChatExtract approach
we used the method to extract two materials property databases, one
for critical cooling rates of bulk metallic glasses and one for yield
strength of high entropy alloys. Before sharing the results of these data
extractions it is useful to consider in more detail different types of
desirable database of a materials property that might be extracted
from text.

Different types of databases can be achieved with different levels
of post-processing after automated data extraction. Here we describe
three types of databases that we believe cover most database use
cases. At one extreme is a database that encompasses all relevant
mentions of a specific property, which is useful when initiating

Fig. 3 | A flowchart describing our ChatExtract method of extracting struc-
tured data from tables figures using a conversational large language model.
Panel (a) contains a flowchart for extracting data from tables while panel (b) con-
tains a flowchart for extracting data from figures. Blue boxes represent prompts

given to the model, gray boxes are instructions to the user, “Yes”, “No” boxes are
model’s responses. The bold text in “[]” are to be replaced with appropriate values
of the named item.
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research in a particular field to assess the extent of data available in the
literature, the span of values (including outliers), and the various
material groups investigated. Entries included in such database might
contain ranges, limits or approximate values, families ofmaterials, etc.
This is typically what the ChatExtract directly extracts, and we will
refer to this as the raw database. At the other extreme is a strict
standardizeddatabase, which contains uniquely definedmaterialswith
standard format, machine-readable compositions, and discrete values
(i.e., not ranges or limits) with standardized units (which also helps
remove the very rare occurrence where a triplet with wrong units is
extracted). A standardized database facilitates easy interpretation and
usage by computer codes and might be well-suited to, e.g., machine
learning analysis. A standardized database can be developed from a
rawdata collection andwill be a subset of that rawdata. A third type of
dataset, which is intermediate between raw and standardized, is a
cleaned database, which removes duplicate triplets derived from
within a single paper from the raw data, as these are almost always the
exact same entry repeated multiple, e.g., in the “Discussion and Con-
clusions” sections) and are obviously undesirable. While the cleaned
database can be done automatically, the standardized database may
require some manual post-processing of the data extracted with the
ChatExtract method.

Results of real-life data extraction
In this study we provide two materials property databases: critical
cooling rates of metallic glasses, and yield strength of high entropy
alloys. Both databases are presented in all three of the above forms:
raw data which is what is directly extracted by the ChatExtract
approach, cleaned data from which single paper duplicate values have
been removed, and standardized data where all materials that were
uniquely identifiable are in a standard form of AXBYCZ… (where
A,B,C,… are elements and X,Y,Z,… are mole fractions). The standar-
dization required post-processing which we accomplished manually
and with a combination of further prompting with an LLM, text pro-
cessing with regular expression and pymatgen39. While this standar-
dization approachmay introduce some additional errors, it provides a
very useful form for the data with modest amounts of human effort.
While we were able to employ further prompting combined with LLMs
and text analysis tools to make this conversion, the approaches
necessitate substantial additional prompt engineering and coding,
which was time consuming and likely not widely applicable without
significant changes. Given these limitations of our present approach to
generating a standardized database from a raw database we do not
discuss the details of our approach or attempt to provide a guide on
how to do this most effectively. Automating the development of a
standardized database from a raw database is an important topic for
future work.

To limit the scope of critical cooling rates to just metallic glasses,
and yield strengths to high entropy alloys, we first limited the source
papers by providing a specified query to the publisher’s database to
return only papers relevant to the family of systemswewere after, and
then we applied a simple composition-based filter to the final stan-
dardized database. Details about both these steps are given in the
following section when discussing the respective databases.

The first database is of critical cooling rates in the context of
metallic glasses. In addition, the critical cooling rate database serves as
a larger scale, real-life case assessment of ChatExtract, complementing
the test bulkmodulus dataset in evaluating themethod’s effectiveness.
A fully manually extracted dataset of critical cooling rates was pre-
pared to serve as ground truth to compare to the data extracted with
ChatExtract. The details of the comparison and evaluation are given
later in this section. The critical cooling rate dataset has been chosen
due to several aspects that also make it a representative and
demanding example. The critical cooling rate is often determined as a
result of experimenting with different cooling rates (not critical

cooling rates), which are values of similar magnitude and with the
same units as critical cooling rates, making them very easy to confuse.
In addition, critical cooling rates are sometimes described as a cooling
rate for vitrification, or a cooling rate for amorphization, making
extraction of the proper value very challenging. Critical cooling rate is
also often present alongside other critical values, such as critical
casting diameters. The units of critical cooling rates are also not
straightforwardas they often contain thedegree symbol,while theunit
of time in the denominator is often expressed in the form of an
exponent.

To obtain source research articles we performed a search query
“bulk metallic glass” + “critical cooling rate” from Elsevier’s Science-
Direct database which returned 684 papers, consisting of
110126 sentences.

A reference database (ground truth), which we will call Rc1, was
developed using a thorough manual data extraction process based on
text processing and regular expressions and aided by a previous
database of critical cooling rates extracted with a more time con-
suming and less automated approach that involved significant human
involvement29. This laborious process done by an experienced
researcher although highly impractical, labor-intensive and time con-
suming, is capable of providing the most complete and accurate
reference database, allowing to accurately evaluate the performance
of ChatExtract in a real database extraction scenario, which is the
most relevant assessment of the method.

To develop the critical cooling rate database with ChatEx-
tract, the ChatExtract approach was applied identically as to the
bulkmodulus caseexcept that thephrase “bulkmodulus”was replaced
with “critical cooling rate”. We call this dataset Rc2. In comparing Rc2

data to Rc1 ground truth, the same rules for equivalency of triplet
datapoints have been applied in the same way as the benchmark bulk
modulus data (see “Methods”): equivalent triplets had tohave identical
units and values (including inequality symbols, if present), and mate-
rial names had to be similar enough to allow entries to be uniquely
identified as the samematerials system (e.g., “Mg100−xCuxGd10 (x = 15)”
was the sameasMg85Cu15Gd10, but not the same as “Mg-Cu-Gdmetallic
glass” and “Zr-based bulk metallic glass” was the same as “Zr-based
glass forming alloy” but not the same as Zr41.2Ti13.8Cu12.5Ni10.0Be22.5).
Critical cooling rates for bulk metallic glasses proved to be quite a
challenging property to extract. The analyzed papers very often (much
more often than in the other properties we worked on) contained
values of critical cooling rates described as ranges or limits, and the
materials were often families or broad group ofmaterials, in particular
in the “Introduction” sections of the papers. The ChatExtract
workflow is aimed at extracting triplets of materials, value, and units
without specifying further what do these mean exactly, as will be dis-
cussed in the next paragraph. To provide the most comprehensive
assessment, the human curated database contains all mentions of
critical cooling rates that are accompanied by any number, no matter
how vague or specific. This manually extracted, very challenging raw
database contained 721 entries. ChatExtract applied on the same set
of research papers resulted in 634 extracted values with 76.9% preci-
sion and 63.1% recall. The vast majority of reduction in precision and
recall comes from the more ambiguous material names such as the
above mentioned broad groups or families of materials or ranges and
limits of values. In many cases the error in extraction was minor, such
as a missing inequality sign (e.g., “<0.1” in Rc1 but “0.1” in Rc2),
extracting only one value from a range (e.g., “10–100” in Rc1 but only
“10” in Rc2), or missing details in materials described as a group or
family (e.g., “Zr-basedmetallic glasses” in Rc1 but only “Metallic glasses”
Rc2). Even though these could be regarded as minor errors, we still
consider such triplets to be incorrect. The performance is slightly
improved for the cleaned database where a precision of 78.1% and
64.3% recall is obtained with 637 and 553 entries in Rc1 and Rc2,
respectively. The most relevant standardized version of the database,
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when extracted with ChatExtract yielded a final precision of 91.9%
and 84.2% recall, with 313 and 286 entries subject for comparison in Rc1

and Rc2, respectively. This large reduction in the size of the standar-
dized database when compared to cleaned, and the improvement in
performance, are both due to the large amount of material groups/
families and ranges/limits of values. These cases do not classify as
uniquely identifiablematerial compositions anddiscrete values so they
do not satisfy the requirements for the standardized database, and as
mentioned before, they were the most problematic for ChatExtract
to extract (as they were for the human curating Rc1). It is important to
note that in order to provide an accurate assessment of the extraction
performance, asmentioned previously, the triplets are notmatched by
themselves, but they alsohave tooriginate from the same text passage.
Therefore both the ground truth and the ChatExtract extracted
databases were standardized separately, and if either contained a
standardized value, it was considered in the assessment, making the
comparison more challenging. The performance of ChatExtract for
the standardized database of critical cooling rates is close to that for
bulkmodulus presented inTable 1 and demonstrates the transferabilty
of ChatExtract to different properties.

In addition, we extracted 348 raw datapoints from tables, some
which were duplicates of values already extracted from text data,
adding only 277 new points to the standardized database and con-
sisting of 97 new unique compositions. We also positively classified
208 figures as relevant and provided their source document and
caption, but data from figures has not been manually extracted.

The final standardized database obtained with ChatExtract
consists of 557 datapoints. Duplicate values originating from within a
single paper have already been removed for the cleaned database,
but duplicate triplets originating from different papers are still pre-
sent. We believe it is important to keep all values, as it allows for an
accurate representation of the frequency at which different systems
are studied and for accurate averaging if necessary. If the duplicates
were to be removed, 309 unique triplets would be left, with the many
duplicates being for an industry standard system
Zr41.2Ti13.9Cu12.5Ni10Be22.5 (Vit1). The values in the final database ranged
from 10−3 Ks−1 (for Ni40P20Zr40) to 4.619 ⋅ 1013 Ks−1 (for CuZr2), with an
average around 102 Ks−1, all quite reasonable values. An additional
standardized-MG database is given, in which all non-metallic materials
have been removed. In the case of this modest-sized database, simply
removing oxygen containing systems proved to be enough and 5 non-
metallic oxide materials have been removed. Out of the 309 unique
datapoints, there were 222 unique material compositions (some
compositions had multiple values originating from different research
papers) in the standardized database, and after removing non-metallic
systems standardized-MG database contained 298 unique datapoints
for 217 unique material compositions. This size of 217 unique com-
positions is significantly larger than the previous largest hand-curated
database published by Afflerbach et al.40, which had just 77 entries.
This result shows that, at least in this case, ChatExtract can generate
more quality data with much less time than human extraction efforts.
To further demonstrate the robustness of ChatExtract and compare
with othermethods, we applied CDE2 on the critical cooling dataset as
well. CDE2 performance on the critical cooling rate dataset was con-
sistentwith the previous assessment on the bulkmodulus dataset, with
overall precision and recall of 49.2% and 35.1% respectively. The details
on the usage of CDE2 can be found in the “Methods” section.

Finally, we developed a database of yield strength of high entropy
alloys (HEAs) using the ChatExtract approach. This database does
not have any readily available ground truth for validation but repre-
sents a very different property and alloy set than either bulk modulus
or critical cooling rate and therefore further demonstrates the efficacy
of the ChatExtract approach. In the first step we searched for a
combination of the phrase “yield strength” and (“high entropy alloys”
or “compositionally complex alloys” or “multi-principle component

alloys”) in the Elsevier’s ScienceDirect API. The search returned 4029
researchpapers consistingof 840431 sentences. 10269 rawdata points
were extracted. The cleaned database consisted of 8900 datapoints.
Further post-processing yielded 4275 datapoints that constitute the
standardizeddata, wherewe assumed that all compositions were given
as atomic %, unless otherwise stated in the analyzed text (which was
infrequent). The 4275 standardized datapoints contained a number of
alloys that were not were not HEAs, with HEA defined as a systems
containing 5 or more elements. The inclusion of non-HEA systems is
not an error in ChatExtract as the data was generally in the papers,
despite their being extracted by the above initial keyword search. By
restricting the database to only HEAs we obtained a final standardized-
HEA database of 2442 values. The standardized-HEA database had 636
materials with unique compositions. The values ranged from 12 MPa
for Al0.4Co1Cu0.6Ni1Si0.2 to 19.16 GPa for Fe7Cr31Ni23Co34Mn5. These
values are extreme but not unphysical and we have confirmed that
both these extremes are extracted correctly. The distribution of yield
stress values resembles a positively skewed normal distribution with a
maximum around 400 MPa, which is a physically reasonable dis-
tribution shape with a peak at a typical yield stress for strong metal
alloys. Additionally 2456 raw datapoints were extracted from tables,
many of which were duplicates of values already extracted from text
data, adding only 195 new unique HEA compositions. We positively
classified 1848 figures as relevant and provide their source document
and caption, but data from figures has not been manually extracted.

A large automatically extracted database of general yield
strengths, not specific toHEAs, has been developed previously5. Direct
quantitative comparison is not straightforward, but the histogram of
values obtained from the previous database exhibits a very similar
shape to the data obtained here, further supporting that our data is
reasonable. The database of yield strengths for HEAs developed here is
significantly larger than databases developed for HEAs previously, for
example, databases containing yield strengths for 169 unique HEA
compositions from201841 and containing yield strength for 419 unique
HEA compositions from 202042. The ChatExtract generated data-
bases are available in Figshare43 (see “Data availability”).

Now that we developed and analyzed these databases, it is easier
to understand the utility of ChatExtract. ChatExtract was devel-
oped to be general and transferable, therefore it tackles a fundamental
type of data extraction—a triplet ofMaterial, Value, Unit for a specified
property, without imposing any other restrictions. The lack of speci-
ficity when extracting “Material” or “Value” allows for extraction of
data from texts where the materials are presented both as exact che-
mical compositions, or broad groups or families of systems. Similarly,
values may be discrete numbers, or ranges or limits. However, certain
restrictions are often desired in developing a database, and we believe
that these fall into two broad categories with respect to the challenges
of integrating them into the present ChatExtractworkflow. The first
category is restrictions based on the extracted data, for example, tar-
geting only desired compositions or ranges of a property value. Such
restrictions are trivial to integratewithChatExtractby either limiting
the initial search query in the publisher’s database, limiting the final
standardized database, or both, based on the restriction. For example,
in ourHEAdatabasewe assured onlyHEAs infinal data by both limiting
the search query in the publisher’s database and applying a
composition-based rule on the final standardized database. The sec-
ond category is where we want a property value when some other
property conditions hold, for example, the initial property should be
considered at a certain temperature and pressure. This situation is
formally straightforward for ChatExtract as it can be captured by
generalizing the problem from finding the triplet: material, property,
unit, to finding themultiplet:material, property1, unit1, property2, unit2,
…. The ChatExtract workflow can then be generalized to apply to
these multiplets by adding more steps to both the left and right
branches in Fig. 2, for example if a temperature at which the data was

Article https://doi.org/10.1038/s41467-024-45914-8

Nature Communications |         (2024) 15:1569 8



obtained was relevant, the left branch would contain two more
boxes, the first being: Give the number only without units, do not use a
full sentence. If the value is not present type “None”. What is the value
of the temperature at which the value of [property] is given in the
following text?, followed by a second similar one prompting for the
unit. The first prompt in the right branch would ask for a table that
also included a temperature value and temperature unit, followed by
two validation prompts for those two columns. This approach could
be expanded into extracting non-numerical data as well, such as
sample crystalinity or processing conditions. While these general-
izations are formally straightforward we havemade no assessment of
their accuracy in this work, and some changes to ChatExtract
might be needed to implement them effectively. For example, any
additional constraints or information would have to be included in
the text being examined by the LLM, and themore information that is
required, the less likely it is that it will all be contained in the
examined text passage. Thus the examined text passage may need to
be expanded, or sometimes the required additional data may be
missing from the paper altogether.

Conclusions
This paper demonstrates that conversational LLMs such as ChatGPT,
with proper prompt engineering and a series of follow-up questions,
such as the ChatExtract approach presented here, are capable of
providing high quality materials data extracted from research texts
with no additional fine-tuning, extensive code development or deep
knowledge about the property for which the data is extracted. We
present such a series of well-engineered prompts and follow-up
questions in this paper and demonstrate its effectiveness resulting in a
best performance of over 90% precision at 87.7% recall on our test set
of bulk modulus data, and 91.6% precision and 83.6% recall on a full
database of critical cooling rates. We show that the success of the
ChatExtract method lies in asking follow-up questions with purpo-
seful redundancy and introduction of uncertainty and information
retention within the conversation by comparing to results when these
aspects are removed. We further develop two databases using Cha-
tExtract—a database of critical cooling rates for metallic glasses and
yield strengths for high entropy alloys. The first one was modest-sized
and served as a benchmark for full database development since we
were able to compare it to datawe extractedmanually. The secondone
was a large database, to our knowledge the largest database of yield
strength of high entropy alloys to date. The high quality of the
extracted data and the simplicity of the approach suggests that
approaches similar to ChatExtract offer an opportunity to replace
previous, more labor intensive, methods. Since ChatExtract is lar-
gely independent of the usedmodel, it is also likely improve by simply
applying it to newer and more capable LLMs as they are developed in
the future.

Methods
The main statistical quantities used to assess performance of Cha-
tExtract were precision and recall, defined as:

Precision = True Positive
True Positive + False Positive

Recall = True Positive
True Positive + False Negative

:
ð1Þ

In our assessment we defined true positives (for precision) and false
negatives (for recall) in terms of each input text passage, which we
define above to consist of a target sentence, its preceding sentence,
and the title. The exact approach can be confusing so we describe it
concretely for every case. For a given input text passage there are zero,
one or multiple unique datapoint triplets of material, value, and unit.
We take the hand extracted triplets as the ground truth. We then
process the text passage with ChatExtract to get a set of zero or

more extracted triplets. If the ground truth has zero triplets and the
extracted data has zero triplets, this is a true negative. Every extracted
triplet from a passage with zero ground truth triplets is counted as a
false positive. If the ground truth has one triplet and the extracted data
has zero triplets this is counted as a false negative. If the ground truth
has one triplet and the extracted data has one equivalent triplet (we
will define “equivalent” below) then this is counted as a single true
positive. If the ground truth has one triplet and the extracted data has
one inequivalent triplet then this is counted as a single false positive. If
the ground truth has one triplet and the extracted data has multiple
triplets they are each compared against the ground truth sequentially,
assigning them as a single true positive if they are equivalent to the
ground truth triplet and a single false positive if they are not equivalent
to the ground truth triplet. However, only one match (a match is an
equivalent pair of triplets) can be made of an extracted triplet to each
ground truth triplet for a given sentence, i.e., we consider the ground
truth triplet to be used up after one match. Therefore, any further
extracted triplets that are equivalent to the ground truth triplet are still
counted as each contributing a single false positive. Finally, we con-
sider the case where ground truth has multiple triplets. In this case, if
the extracted data has no triplets it is counted as a multiple false
negatives. If the extracted data has one triplet and it is equivalent to
any ground truth triplet that is counted as one true positive. If the
extracted data has multiple triplets each one is compared to each
ground truth triplet. If a given extracted triplet is equivalent to any one
of the ground truth triplets that extracted triplet is counted as a true
positive. However, as above, each ground truth triplet can only be
matched once, and any addition matches of extracted triplets to an
already matched ground truth triplet are counted as one additional
false positive.

In the above we defined “equivalent” triplets in the following
way. First, equivalent triplets had to have identical units and values (if
uncertainty was present, it did not have to be extracted, but if it was
extracted it had to be extracted properly as well). Second, equivalent
triplets had to have materials names in the ground truth and
extracted text that uniquely identified the same materials system
(e.g., Li17Si(4−x)Gex (x = 2.3) and Li17Si1.7Ge2.3 would be equivalent but
“Zr-Ni alloy” and “Zr62Ni38” would not). These requirements for
equivalent triplets are quite unforgiving. In particular, in many cases
where we identified false positives the LLM extracted data that was
partially right or had just small errors. This fact suggests that
better precision and recallmight be obtainedwith some human input
or further processing. Overall we believe the above methods provide
a rigorous and demanding assessment of the ChatExtract
approach.

OpenAI ChatGPT API was used within Python 3.10.6. Tomaximize
reproducibility and consistency in responses we specifically used the
gpt-3.5-turbo-0301 snapshot model of GPT-3.5, and gpt-4-0314 snap-
shot model of GPT-4, in both of which the model parameters were set
as follows: temperature = 0.0, frequency_penalty = 0.0, presence_pen-
alty = 0.0, top_p = 1.0, logprobs = False, n = 1, logit_bias and stop has
been set to the default null. For the LLaMA2-chat 70B model, tem-
perature = 0.0, and top_p = 1.0 were used, with a batch size of 6. No
systemprompts (empty strings) were used in any of themodels. When
using ChemDataExtractor2 for extracting critical cooling rates, the
specifier expression was prepared based on how we found the critical
cooling rate is addressed in our test data: “critical cooling rate”, “Rc”,
“R c”, “R_c”, “RC”, “R_C”, “RC”, “R c”, “CCR”. A new unit type for units of
cooling rate was prepared, which included all units we encountered in
our test data: “C/s”, “K/min”, “K/s”, “K^(−1)”, “Kmin^(−1)”, “Ks-1”,
“Ks^(−1)”, “°C/min”, “°C/s”, “°Cs^(−1)”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The extracted databases of critical cooling rates ofmetallic glasses and
yield strength for HEAs, as well as data used in the assessment of the
models is available on figshare43: https://doi.org/10.6084/m9.figshare.
22213747. In the case of data related to figures, we do not provide the
figure file due to copyrights, but instead provide the figure numbers,
figure captions, and and theDOI of the source document, which allows
for an easy and precise identification of the figures. In that repository,
we also provide a version of the python code we used for data
extraction that follows the workflow presented in Fig. 2, and involves
additional simple post-processing of the ChatGPT responses to follow
the workflow and provide a more convenient output. The post-
processing included in the example code is relatively simple, andwhile
it worked well for the properties we studied here, there may be cases
when it fails in processing responses for different datasets, since
occasionally ChatGPTmay format its response in an unexpected way.
The provided code is just a simple example of how ChatExtract
could be implemented and has limited error handling.
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