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Utility of long-read sequencing for All of Us

M.Mahmoud 1,2, Y.Huang3, K.Garimella3, P. A.Audano 4,W.Wan3,N. Prasad5,
R. E. Handsaker 6,7, S. Hall5, A. Pionzio5, M. C. Schatz 8, M. E. Talkowski 7,9,
E. E. Eichler 10,11, S. E. Levy 12 & F. J. Sedlazeck 1,2,13

TheAll ofUs (AoU) initiative aims to sequence the genomesof over onemillion
Americans from diverse ethnic backgrounds to improve personalized medical
care. In a recent technical pilot, we compare the performance of traditional
short-read sequencing with long-read sequencing in a small cohort of samples
from the HapMap project and two AoU control samples representing eight
datasets. Our analysis reveals substantial differences in the ability of these
technologies to accurately sequence complex medically relevant genes, par-
ticularly in terms of gene coverage and pathogenic variant identification. We
also consider the advantages and challenges of using low coverage sequencing
to increase sample numbers in large cohort analysis. Our results show thatHiFi
reads produce the most accurate results for both small and large variants.
Further, we present a cloud-based pipeline to optimize SNV, indel and SV
calling at scale for long-reads analysis. These results lead to widespread
improvements across AoU.

The All of Us project is a landmark initiative by the National Institutes
of Health (NIH) in the United States of America to sequence up to one
million people using Illumina short-reads and to genotype up to two
million people with array data. It is one of the most extensive efforts
ever to obtain clinical-grade sequencing for the masses, with a goal of
constructing and defining a diverse health database for genomic and
other studies across the USA. Already, this effort has released the first
100,000 Illumina whole genome data sets that characterized partici-
pants across many ethnicities for genomic variations, focusing on
single nucleotide variants (SNVs), small insertions and deletions
<50 bp (indels), and genomic alteration ≥50 bp known as structural
variants (SVs). Using these data, the program aims to advance perso-
nalizedmedicine by providing preventive and tailoredmedical care for
individuals from globally diverse backgrounds1. The endeavor repre-
sents a strategic resource to enable genomic sequencing as a leading
method for diagnosis and risk assessment, and thus will lead to new
insights and improved care for a wide range of genetic diseases.

Understanding the heritability and genetic origins of human
genetic diseases requires the accurate and comprehensive identifica-
tion of all forms of genetic variation along with a detailed recording of
phenotypes2. Historically, researchers initially focused on character-
izing common genetic variation in the human genome in an effort to
understand the genetic basis of common diseases and phenotypes in
the worldwide population3. Nevertheless, they found that the amount
of heritability associated with gene variants is often very low, up to ten
times smaller than expected in some cases, which many named
“missing heritability”4. Several hypotheses have been suggested to
explain the missing heritability, including poor exploration of SV5,6,
inaccurate characterization of phenotypes7, and missing rare variants
that have a crucial role in somediseases4,8,9. Over the last decade,many
efforts have been made to address each of these reasons, although all
factors continue to challenge disease and traits association studies10–12.

One major growth area in recent years has been the continued
technological improvements made to identify and study SVs,
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which include: insertions, deletions, inversions, duplications, and
other rearrangements. Despite being much rarer than SNVs (~0.01% of
SNVs per genome), because of their larger sizes, SVs impact a larger
number of base pairs per individual6,13,14. While very challenging to
resolve with short reads, over the past few years, multiple groups have
demonstrated the usefulness of long-reads for identifying these types
of events12,15–18. These research efforts have uncovered novel sequence
elements, found biases in the human reference genomes19–21, resolved
the complete telomere-to-telomere (T2T) human reference genome22,
and could begin to demonstrate the impact of complex alleles across
various human diseases17,23.

Currently, there are two major sequencing technologies that
provide long reads. Thefirst commercially available technology is from
Pacific Biosciences (PacBio), which started with continuous long reads
(CLR) with a high error rate (15%)24,25 using SingleMolecular, Real-Time
(SMRT) sequencing. Later, they developed high-fidelity reads (HiFi)
with an error rate lower than 1%. HiFi reads are typically 15–20 kbp long
with a tightly controlled insert size26. Today, PacBio sequencing is
commonly performed on either their Sequel II or Revio instruments27.
PacBio has showcased many advantages of long-reads over the years,
for example, by boosting our ability to produce highly continuous de
novo assemblies (e.g., T2T)22 and enabling more comprehensive
genomic, transcriptomic and epigenomic benchmarks20.

The second technology, Oxford Nanopore Technologies (ONT),
innovated the space with nanopore sequencing, providing longer
reads (up to 4Mbp)28. However, these reads often suffer from a higher
sequencing error29, although new “duplex” sequencing is reducing
error rates to nearly HiFi levels. ONT has several instruments that
provide a range of sequencing capacity to adapt from whole genome
population analysis (ONT PromethION) to regional sequencing (ONT
MinION and GridION). Over the past years, ONT also innovated de
novo assemblies30 and demonstrated scalability for SV detection31.
Thus, both technologies currently proved advantageous for detecting
complex alleles compared to short-read sequencing6. The rapid
advancements in long-read sequencing platforms necessitate con-
tinuous monitoring of their performance with respect to multiple
variant types (e.g. STR, SV) and regions of the genome (e.g.
centromere).

Historically, these technologies have seen limited applications in
human genetics due to their higher costs, lower throughput, and lower
accuracy. Only a few published studies so far have considered more
than ten long read genomes, however, these results begin to illustrate
the usefulness of the technology and the potential for scaling these
technologies31–33. For example, one study utilized long-read sequen-
cing to diagnose 13 individuals, with a solving rate of 41.67% (5/12
patients)34. They developed special pipelines and used long reads at 46
to 64x coverage to identify SNVs, small indels, and SVs35. Still, it is
relatively uncertain what the success and utility of long reads at scale
will be.While it’s clear that they improve thedetection of SVs andother
complex variants, it is unclear how they compare to short reads for
more clinically relevant loci, which are generally less repetitive, espe-
cially within exons. Furthermore, if long reads improve only non-
coding variant detection (e.g., repeats far from exons), will this be
relevant for clinical research? This might not be easy to answer, since
most repeat differences and non-coding variants are more difficult to
interpret compared to exonic variations.

Answering this question is particularly challenging since the
standard of practice for genomics within medically focused studies
often does not consider the entire genome, but rather focuses on
several key genes that can be prioritized. Usually, these genes have
already been shown to be medically important (i.e., have an estab-
lished impact on certain diseases), and focusing on these genes often
reduces costs and reduces the labor needed to review variants of
unknown significance. Multiple gene lists are available depending on
the physician, the diseases being studied, and the ability of the

technology at hand to assess these. One of the most commonly used
gene lists is the ACMG36, which encompasses 73 genes in their recent
release36. Two other recent publications postulated their own catalogs
ofmedically relevant but challenging genes.Mandelker et al. showcase
193 genes that are hard to impossible to characterize using traditional
short-read sequencing technology37. Thus, they showed the need to
use long reads to fully capture these genes (e.g., SMN1& 2, LPA).
Wagner et al. extended this list further based on a superset of 5000
genes20. They identified 386 genes as highly challenging and reported
to be medically relevant. These genes represent different challenges
like complex polymorphism (e.g., LPA), high levels of repeats
(SMN1&2), and interaction with their pseudogene (e.g., GBA vs.
GBAP1)20.

In this work, we investigate the utility of long-reads for the All of
Us program using a combination of publicly available control samples
and long-read sample data collected using a range of tissue types and
extraction methods from samples previously used inside All of Us to
establish the short-read pipeline. We used the control samples to
derive a computational pipeline that can accurately identify SNVs and
SVs at scale. Tomake the work scalable and reproducible, the pipeline
is implemented using the Workflow Definition Language (WDL) and
hosted in a public GitHub repository (https://github.com/
broadinstitute/long-read-pipelines) making it possible to run in large
data centers and commercial computing clouds. Furthermore, we
compare this pipeline with Illumina whole genome data processed
with DRAGEN version 3.4.12 (the FDA approved version for this pro-
ject), which is the All of Us production short-read pipeline, to assess
long-read utility. We do so on both “simple” medically relevant genes
(4641) and “challenging”medically relevant genes (386) to evaluate the
different sequencing technologies. One critical study characteristic we
evaluated is coverage: for a fixed amount of financial resources, lower
coverage per sample can potentially expand the number of samples
analyzed yet requires careful controls to not inflate errors or missing
variation. Overall, our study answers the question of the utility and
need for long-read sequencing to identify previously hidden variations
that likely have implications on medical phenotypes.

Results
Optimizing variant detection in cell lines
We first focused on four established HapMap cell lines to assess the
long-readability to cover and comprehensively identify variants across
medically relevant genes.We used the widely studied sample NA24385
(Caucasianmale), as well as HG00514 (female Han Chinese), HG00733
(female Puerto Rican), and NA19240 (Yoruba male), for which
assembly-based analyses are available33. The latter samples (HG00514,
HG00733, NA19240) are not as well-curated as the NA2438520,38,39.
Nevertheless, they provide valuable information, since variant calling
tools have generally not been previously optimized across these
samples to minimize overfitting.

First, we assessed the genome-wide coverage and read length
capabilities across these control samples to quantify the ability of
the different sequencing technologies at this basic level. Because of
the randomized nature of whole genome sequencing, coverage and
read length establish the fundamental limitations of variant iden-
tification. For example, in an extreme scenario, if there are zero
reads spanning a given region of the genome, clearly no variants will
be detected there. Moreover, if variants are detected by only a
single read they are generally less trustworthy and are often filtered
out. One simple but effective strategy is to require at least two or
more supporting reads to identify a variant since it is substantially
less likely two reads will have the same error at the same position
(e.g., assuming a 1% sequencing error, there is a 0.01% chance of two
reads having the same error at the same position at random)12. In
low coverage situations, however, requiring two reads spanning a
position to identify a variant will limit the recall of variants,
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especially for heterozygous variants since the haplotype-specific
coverage is half of the total coverage. Nevertheless, an idealized
analysis assuming a Poisson coverage distribution shows 6× cov-
erage is sufficient to recall over 98% of homozygous variants and 8x
is sufficient to recall over 90% of heterozygous variants (Fig. 1a,
Methods). One notable exception to this model is capturing inser-
tion variants when the length of the variant approaches or exceeds
the length of the read, since the amount of coverage that spans the
variant will be proportionally reduced by the length of the inser-
tions (Fig. 1b, Methods). This idealized analysis establishes the
fundamental limits for variation detection. In real-world analysis,
there are additional considerations, especially non-random
sequencing errors, repeats, alignment errors, overdispersion in
coverage, and other biases that further complicate variant calling.
This requires an empirical approach to measure and resolve that we
discuss in later sections of the paper.

The short-read Illumina coverage was between 29.76× (NA19240)
and 32.50× (NA24385) (see Methods), and across the long-read tech-
nologies (Fig. 2a), we obtained an average coverage of 45.29× for ONT
and 35.70× for PacBio HiFi. It is important to highlight that ONT
required only 1–2 PromethION flow cells per sample to produce this
coverage,while PacBioHiFi required several timesmoreusingSequel IIe
(HG00514, HG00733, & NA19240 each required four flow cells,
NA24385 six flow cells). ONT also generated longer alignedN50 lengths
compared to PacBio HiFi, with an aligned N50 length of 20 kbp com-
pared to an alignedN50 lengthof 11 kbp (Supplementary Fig. 1) (Fig. 2a).

Next, we assessed the ability of the technologies for the identifi-
cation of SNVs and indels across these samples using state-of-the-art
methods. Starting with Illumina, we utilized the Dragen pipeline
(v3.4.12)40 with the exact specification as AoU, resulting in a high recall
of 99.32% and precision of 99.63%, leading to a total F-score of 99.47%
across GIAB HG002 benchmark v4.2.139 (see Methods).

For the long-read technologies, we evaluated several best practice
small variant callers (Longshot41, Pepper/DeepVariant42, and Clair343)
as well as various combinations of them. Figure 2b shows the indel size

ranges that were detected, and Fig. 2d shows the comparison of SNV
and indel density across samples. Importantly, Longshot can only
identify substitutions (Supplementary Figs. 2 and 3), which makes it
complicated to compare this method to the others, which can also
identify short indels. DeepVariant and Clair3 both showed a similar
number of base substitutions when applied to data generated by
PacBio and ONT sequencers. Specifically, DeepVariant identified
4,335,053 substitutions in the PacBio data and 4,709,454 substitutions
in the ONT data. Similarly, Clair3 identified 4,597,773 substitutions in
the PacBio data and 4,578,168 substitutions in the ONT data. On the
other hand, Longshot resulted in an approximately 1.57-fold increase in
the number of substitutions for data generated by ONT, although the
excess is almost entirely false positives (see below). Overall, a combi-
nation of Clair3 and DeepVariant using PacBio HiFi data achieved the
best F-score (99.87%) at this coverage level (as shown in Supplemen-
tary Fig. 4). For ONT, the F-score is 98.74% from merging the results
from Clair3 and DeepVariant (Supplementary Fig. 5). It is worth noting
that the improvement frommergingClair3 andDeepVariant for PacBio
is marginal compared to using only DeepVariant or Clair3 individually,
with a gain of only 0.01% to 0.04% in precision, respectively. Con-
versely, for ONT, the merge F-score enhancement is 0.70% (DeepVar-
iant) and 2.50% (Clair3) improved over using the individual methods.
Furthermore, we assessed the correctness of genotypes across
NA24385 and found that Clair3 achieved higher accuracy than Deep-
Variant. Given this result, we adjusted our merging strategy to utilize
the genotype values (GT flags) from Clair3 when available. With the
pipeline optimized for one sample, we extended the analysis to
HG00514, HG00733, and NA19240 and benchmarked them against
their respective gold-standard variant call sets44. Clair3 merged with
DeepVariant achieved the best results. Regardless, the overall perfor-
mance is reduced compared to NA24385 (HG002). The difference in
the accuracy of variant calling between HG002 and other samples is
attributed to the benchmark set regions for HG002 being filtered to
exclude repetitiveness or polymorphic complexity regions, as men-
tioned inWagner et al.38 and Li et al. studies45. Additionally, the variants

Fig. 1 | Theoretical assessment of variant calling as a function of coverage and
insert size. a Idealized recall of homozygous and heterozygous variants as a
function of overall coverage, assuming at least two spanning reads are required to
recall a given variant in the genome. Here, we assume the sequencing coverage
follows the Poisson distribution centered on a given overall coverage level, and the
coverage will be evenly distributed across maternal and paternal haplotypes

following the binomial distribution with p =0.5. b Idealized recall of insertion
variants of different lengths assuming 20 kbp reads, 5×, 10× or 20× coverage
overall, and at least 2 reads spanning the insertion. As plotted, this represents the
recall of homozygous variants, although heterozygous variants follow the same
distribution as a function of the haplotype specific coverage.
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in this sample have been extensively validated, and their accuracy is
well-established.

We assessed the technologies’ abilities for SV calling in medi-
cally relevant genes using Manta starting with NA24385 (see meth-
ods). Using the state-of-the-art algorithm Manta developed by
Illumina46, Illumina’s F-score is 0.45, due to its inability to identify
large insertions. In contrast, we found that a combination of pbsv
and Sniffles for ONT and PacBio achieved the best results, with an
F-score of 0.93 using HiFi and 0.91 for ONT (see Supplementary
Fig. 6). Furthermore, we conducted a titrated coverage comparison
for sample HG002, focusing on the two long-read technologies,
PacBio and ONT. We evaluated the SV detection F1-score for this
comparison (Supplementary Fig. 18). Overall, the trends follow the
idealized results presented in Fig. 1, with a sharp increase in accu-
racy between 5× to 15× coverage and align with other ongoing
research47. We also observed that below 8× coverage, ONT
demonstrated a higher F1 score for SVs compared to PacBio HiFi.
However, beyond 8× coverage, there was a significant improvement
in the F1-score for PacBio HiFi, exceeding 90%, while the F1-score for
ONT remained around approximately 87%. When applied to the
other samples, we found that using long-reads improved the accu-
racy of SV detection, although the F-score was slightly lower at 0.77
(as shown in Supplementary Fig. 7). When comparing the detection
of SVs between the samples (as depicted in Fig. 2c), we observed
that the frequency of detected SVs was similar.

Overall, the results of this study reproduce several previous
findings that long-read sequencing enhances SV calling and
achieves a high accuracy of genome-wide SNV and indel calling. We
further established an improved variant calling pipeline for SNVs
and SVs for long reads that work similarly well for PacBio HiFi as well
as ONT and thus makes the comparison across the sequencing
technologies faster and easier.

Performance assessment for All of Us samples across medically
relevant genes
To provide a more realistic assessment of the value of long-read
sequencing in a clinical research setting, we next utilized long-reads to
benchmark the analysis of control samples commercially sourced by
the AoU. These samples were sequenced multiple times across the
individual AoU genome centers to establish and assess the variability
of each center for different tissue sources and preparations. Specifi-
cally, we sequenced two anonymized AoU samples T662828295 and
T668639440 using ONT, HiFi, and Illumina technologies for different
tissue sources (white blood cells and whole blood cells, henceforth
WBC and whole blood cells, respectively) and extraction methods
(Chemagen and Autogen).

First, when assessing coverage, we observed that in this limited
sample set, WBC achieved a better coverage with either Autogen or
Chemagen extraction for ONT and HiFi, while the opposite was found
for Illumina (whole blood cells achieve a better coverage). The mini-
mum and maximum coverage for AoU samples T662828295 and
T668639440 are shown in Supplementary Data S1: Illumina (31.95,
41.68, 34.19, 39.30), HiFi (6.46, 10.50, 5.11, 15.76) and ONT (28.92,
29.26, 28.09, 29.46). This coverage resulted from using one flow cell
for ONT and maximum two flow cells for HiFi (Supplementary Fig. 8
and Supplementary Data S1). Furthermore, we observed that the
extraction method impacted the N50 alignment length (Supplemen-
tary Fig. 9). The averageN50of aligned reads forHiFi (17,612) is greater
than that of ONT (15,726 bp). However, ONT produced the longest
single read alignment by a large margin (758,354 bp).

For small variant calls (substitutions, insertions, and deletions
<50 bp), we assessed the concordance between technologies and
found that long- and short-read, agree on approximately 67.55%
(median 70.47%). We can explain this reduced concordance level by
the lower HiFi coverage and the difficulty in accurately calling

Fig. 2 | Summary comparison across HapMap samples. a Coverage on X-axis vs
N50 on the Y axis, for samples NA24385, HG00514, HG00733, and NA19240
(HapMap). b Indels distribution for HapMap samples, indels length on the X-axis,
and count and density (in red) on Y-axis (using a merge of DeepVariant and Clair3
for HiFi). c SV size distribution for HapMap samples, SVs length on the X-axis, and
count and density (in red) on the Y-axis (using a merge of Sniffles and pbsv HiFi).

d Circular plot for HapMap samples from outside in genes density (Brown), SNVs
(substitutions) average density between HapMap data (Orange), SNVs (indels)
average density between HapMap data (Aquamarine), deletions average density
between HapMap data (Blue), insertions average count between HapMap
data (Green).
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insertions and deletions between technologies. Nevertheless, whenwe
compare substitutions only, the concordance reaches 79.00% on
average (Supplementary Data S2). Unsurprisingly, among variants not
found by all three technologies, HiFi (5.44%) shows greater SNV con-
cordance with Illumina when compared to ONT (8.46%); except for
sample T668639440 whole blood Chemagen, where ONT agreed two
folds higher than HiFi with Illumina 15.49% and 6.46%, respectively.
This is likely due to the much lower coverage from HiFi (5.11x) com-
pared to ONT (28.09×) data set, as mentioned earlier. Additionally, we
noticed an enrichment for Illumina-only identified variants (mean
12.10% and median 8.98%) compared to a lower unique identification
on each of the long reads (ONT or HiFi ~2.29%). Of note, the higher
Illumina average of 12.10% uniquely identified SNVs was chiefly due to
the T668639440 WBC Autogen sample. This outlier substantially
skewed the mean, causing 33.54% of variants to be identified uniquely
by Illumina. Correspondingly, when we focused only on exon and
intron regions (pointmutations and indels), the concordance between
long- and short-read increased to 81.33% and 77.46%, respectively.
Additionally, HiFi showed higher concordance in exons and introns
with Illumina (Supplementary Data S3).

We utilized SnpEff48 across the 24 merged data sets to annotate
the merged variants obtained from the three technologies. A total of
10,939,305 variants were processed and annotated. Among them, we
identified 7622 variants (0.02%) across the 24 data sets with high-
impact annotations, including stop-gained or frameshift variants,
which were of particular interest for further analysis.

When we compared the high-impact variants identified by ONT,
HiFi, and Illumina, we discovered that the percentage of high-impact
variants detected exclusively by Illumina was identical to those
detected by both HiFi and ONT, which was just 0.04%. The same per-
centage was also observed for high-impact variants detected by the
union of HiFi and Illumina. However, considering the high-impact
variants detected by either ONT or HiFi alone, this percentage
increased to 0.05%. Additionally, when evaluating all long-read tech-
nologies collectively, the percentage of high-impact variants identified
rose to 0.09%, as depicted in Supplementary Fig. 19.

We next analyzed SVs using the three technologies (HiFi, ONT,
and Illumina). We identified an average of 24,235 SVs per sample (for
each tissue and extraction method), which aligns with previous
studies44. The percentage of SVs agreed upon by all three technologies
is approximately 22.00%; ONT and HiFi agreed on 53.86% of all SVs
(31.90% identified only by long read plus 22.00% identified by all
reads). However, 22.40% remains that is either detected exclusively by
ONT or HiFi, meaning that 32% of the SVs identified by long read were
not detected when using short read sequencing. Moreover, approxi-
mately 15% of SVs were found exclusively by Illumina.

We studied in depth each of these distinctive variants per tech-
nology. We found that 950 SVs were identified uniquely by Illumina in
all datasets, and the majority are translocations (68.63%), followed by
duplications (11.26%). For ONT, we identified 57 unique SVs, with the
majority being deletions (56.14%), followed by insertions (42.11%), and
duplications (1.75%). Furthermore, we found that PacBio had the least
number of unique SV (54), with themajority being insertions (40.74%),
followed by deletions (37.04%), duplications (16.67%), inversions
(3.70%), and translocations (1.85%). Based on these results, it is likely
that Illumina reports a higher number of false SVs, particularly trans-
locations in healthy individuals, as seen in prior studies12,32. Meanwhile,
deletions dominated the uniquely-identified SVs from ONT, while
insertions dominated for HiFi. Additionally, we utilized vcfanno49 to
annotate the SVs that we identified. We calculated the percentage of
SVs thatoverlapgenes (entiregenebody) andpresented thesefindings
in Supplementary Fig. 19. This might be inflated as larger inversions,
for example, might not have a direct impact on genes. Our analysis
revealed that the percentage of SVs overlapping genes was lower in
Illumina sequencing (~43%) compared to HiFi and ONT sequencing

(~54%), as well as all SVs identified by long-read sequencing (~52%).
Furthermore, when we filtered out inversions and recalculated the
percentages of SVs overlappinggenes,wenoted adecreaseof less than
one percentage, as illustrated in Supplementary Fig. 19.

To investigate the clinical utility of long-reads for a program like
All of Us, we focused on a set of 4641 genes that are reported to be
medically relevant38. Most notably, these genes represent non-
repetitive or generally non-complex genes of the human genome
(see Fig. 3a). The coverage across these genes was similar to the
genome-wide coverage across all technologies (see Fig. 3b). In Fig. 3b,
we compared normalized gene coverage (average gene coverage
dividedby sample average coverage) betweenHiFi andONTand found
larger coverage variability for HiFi likely due to the overall lower
coverage.

Similarly, we compared the number of genes with average cov-
erage less than one (henceforth, “uncovered genes”) across the
sequencing technologies. For Illumina, we identified only three
uncovered genes for T668639440 Chemagen (C4A, C4B, and OR2T5),
while Autogen only had two uncovered genes (C4A and C4B) for the
same sample and only one gene for sample T662828295 Autogen
(C4A). PacBio HiFi covered all genes, except when using whole blood
Chemagen. In sample T662828295 using whole blood Chemagen the
gene PDE6G for sample T662828295 and 14 genes in T668639440 are
uncovered. In contrast, we observed that all genes were covered using
ONT. Overall, ONT and HiFi (regardless of the one sample that shows
low coverage T668639440 whole blood Chemagen) showed the least
amount of uncovered medically relevant genes.

To further assess the coverage from a medical perspective, we
downloaded SNPs and indels from ClinVar that were reported patho-
genic and checked whether the individual sequencing technologies
adequately covered these variant locations. We used variants that are
not conflicting in reporting their pathogenicity and submitted by
multiple clinics (see Methods). This resulted in a set of 10,368 variant
sites across the 4641 medically relevant genes.

We calculated the number of uncovered (coverage <1) variants
per sample and condition: For the PacBio HiFi sample, on average, we
have six variants without coverage for sample T662828295 (only two
out of four datasets have uncovered variants) and 24 for T668639440
(three datasets have uncovered variants). ONTcovered all variant sites,
while Illumina, on average, did not cover six variants across the indi-
vidual runs for sample T662828295 and seven for T668639440 (Sup-
plementary Data S4).

Next, we analyzed the list of 73 American College of Medical
Genetics and Genomics (ACMG) genes, in which mutations are
commonly recommended to be reported to patients. These genes
span both gene groups defined in this study, includingmostly easily
accessible genes (68) but also some challenging genes (5). Overall,
the genes are well covered by each of the technologies and the
normalized average gene coverage is one or more (Supplementary
Fig. 10 and Supplementary Data S5). For the five challenging genes,
we observed that the normalized average coverage is slightly higher
for ONT than for HiFi, indicating a better mapping overall for the
ONT data (Supplementary Fig. 11 and Supplementary Data S5).
Additionally, for the pilot data T668639440 and T662828295, the
normalized mean coverage for accessible genes are similar, HiFi
(1.06) and ONT (1.04). Nevertheless, coverage differs in challenging
genes, where HiFi is 0.88 and ONT is 1.03. For the benchmark of
variants within genes available in the GIAB, the results fromHiFi and
Illumina are similar compared toONT. However, the average F-score
across these genes is higher for Illumina (93.64%) compared to HiFi
(85.24%) and ONT (73.98%) that is due to low F-score for gene TNNI3
(Supplementary Data S5 and Supplementary Fig. 12). Based on the
previous finding, we can conclude that the ACMG list is well covered
by all technologies; Likewise, we can call variants with high accuracy
using either Illumina or HiFi.
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Resolution of highly challenging medically relevant genes
We assessed the utility of long-reads specificallywithin highly complex
and repetitive medically relevant genes. In principle, this is where the
long-read technology offers its greatest advantages, but it remains to
be shown across primary tissues from patient donors. For this, we
focused on a gene set from a recent GIAB publication, which proposed
386 genes that were found to be highly challenging for mapping and
variant calling20.

We first assessed the normalized gene coverage (Fig. 4a) between
HiFi and ONT. Here, HiFi has a lower median gene coverage than ONT
similar to the genome-wide results. Further, normalized coverage
distribution is centralized around median 1.05× for ONT compared to
0.97 for HiFi (Supplementary Fig. 13). Additionally, we counted the
number of uncovered genes (i.e., genes that do not contain a sin-
gle read).

For Illumina, nine genes (CCL3L1, CRYAA, DGCR6, DUX4L1, H19,
NAIP, PRODH, SMN1, andU2AF1) are uncovered in sample T668639440
and eight genes (CCL3L1, CFC1B, DUX4L1, H19, HLA-DRB1, SMN1,
TAS2R45, and U2AF1) in sample T662828295. Thus, five genes are
uncovered across both samples (Supplementary Data S6). Interest-
ingly, in our analysis, we found that ONT and HiFi did not cover genes
H19 and U2AF1. Nevertheless, previous studies found that these genes
are incorrectly duplicated in GRCh38, which makes it hard, if not
possible, to call variants in these genes19,50. However, genesCCL3L1 and
DUX4L1 are covered, making them only challenging for short reads.
Interestingly, the SMN1 gene differentiates between the ability of long-
read to untangle this complex repetitive gene. While HiFi could not
support coverage for the gene in all samples, ONTmanaged to cover it
in ~50% bp of sample T662828295. Nonetheless, ONT failed to do the
same in sample T668639440.

We next compared the percentage of genes where 50% ormoreof
the gene body lacks coverage (Fig. 4c). In the majority of samples, we
saw that the 386 genes group has a higher percentage of gene bodies
that are not fully covered. However, for ONT, the percentage of
uncovered gene bodies is always lower than HiFi for 386 and 5027

groups alike. Additionally, we saw only that the difference between the
two gene sets is in guanine (G) and cytosine (C) GCcontent percentage
(Supplementary Fig. 14). Thus, we conclude that the difference in the
percentage of uncovered genes is due to the sample coverage.

We next assessed variant calling ability for long reads, starting
with the GIAB sample that has a gold standard benchmark to compare.
Specifically, we employed sample NA24385 to rank and characterize
273 genes (70.75% of our 386 gene panel) for which a GIAB benchmark
is available. We excluded seven genes that do not report a variant in
this benchmark. For each technology, we investigated the top and
lowest ten genes ranked by F-score (Supplementary Data S7) and
compared these genes across the other technologies. Importantly, the
top ten genes that achieved the highest F-scores with Illumina, had the
sameor better F-scorewithHiFi.Meanwhile, for these same top ranked
genes, ONT had a lower recall for three genes by failing to identify an
insertion ineachgene (PIGV andMYOT) and two substitutions inMYOT.

For the ten lowest performing genes using HiFi (CBS, CRYAA,
GTF2IRD2, H19, KCNE1, KMT2C, MDK, MUC1, SMN1, and TERT), in six
genes (CBS, CRYAA, GTF2IRD2, KCNE1, MUC1, and SMN1) HiFi still
showed a better performance than Illumina. Likewise, ONT achieved a
better F-score in these genes than Illumina. Moreover, in SMN1, KCNE1,
and CBS genes, the ONT F-scores are better than HiFi and Illumina.
However, in KMT2C and TERT genes, Illumina outperformed both HiFi
and ONT F-scores (Illumina 67.47% and 59.74%), (HiFi 44.76% and
54.32%), and (ONT 32.47% and 47.78%), respectively.

For AoU samples T668639440 and T662828295, because we do
not have an established benchmark for these samples, first, we com-
pared thepercentageof variants per gene to identify any abnormalities
(Fig. 4b). When we consider the distribution of the variants in the 386
genes across datasets (tissue source and extractions), we found that
the variant distribution is similar and the tissue source or extraction
method did not substantially affect the variant distribution. We then
analyzed the concordance of substitutions and indels across the 386
genes, and found the lowest concurrence in introns between the three
technologies (approximately 60.47% for exons and 57.67% for introns).

Fig. 3 | Comparison across medically relevant genes. a Percentage of gene bases
intersecting with hard-to-map regions in yellow is the 5207 genes and in blue 386
medical gene sets. b Normalized gene coverage (normalized by sample coverage)

for HiFi (yellow) and ONT (blue) for T668639440 and T662828295. c Log percen-
tage of SNVs per gene for the 4641 medical genes for samples T668639440 and
T662828295.
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For these 386 genes, we observed that the variant calling cap-
ability of Illumina seems to be highly impacted, even in exonic regions,
compared to the easier set of 5027 medically relevant genes. This is
most clear in the overall concordance between short and long reads:
For the 5027 genes, we had a high concordance (81.33%) for all three
platforms, while for the 386 the concordance drops to 60.74%. The
latter is impacted by a reduced concordance of Illumina and showing
also higher Illumina-only variants that are likely falsely identified
(Supplementary Data S8). Maybe not surprisingly, this trend is ampli-
fied for the intronic regions (Supplementary Data S8)

We next investigated the coverage of the ClinVar pathogenic
variants that intersect with these genes (see Methods). For HiFi
sequenced samples, we achieved on average ~8× coverage for
T662828295 and ~9× for the T668639440 sample per variant, both are
lower than what the 5027 genes group achieved (9× and 10× respec-
tively) (Supplementary Fig. 15). Likewise, not surprisingly, Illumina
achieved the highest average coverage per variant, followed by ONT
and HiFi respectively (Supplementary Data S4). Interestingly, when we
compare the number of uncovered variants for each sample per
technology, we can see a systematic distribution of variants without
coverage in Illumina (SD: 1.39) compared to the more variable ONT
results (SD: 5.93) (Supplementary Fig. 16 and Supplementary Data S4);
However, we could not find a correlation between the gene composi-
tion (GC, GT, or AT rich) and the coverage (Supplementary Fig. 17).

In summary, HiFi outperformed the other technologies in both
precision and recall (Supplementary Data S7). Furthermore, there are a
few genes that are particularly challenging where all technologies
missed variants like H19, which has one substitution (C/G) (Chr11 at
position 1,996,209) that none of the three technologies managed to
detect; KRTAP1-1,wherein both long-read technologies (HiFi and ONT)
did not call any variants, while Illumina called two false-positive sub-
stitutions; and MDK, where ONT did correctly recall variants, but the
other technologies called false-positive variants.

Interestingly, all the genes that ONT detected variants with low
F-score were caused by uncalled indels (max three indels) like FLAD1
and PIGV (Supplementary Data S7 shows in more details genes names
and F-score and the number of identified variants per technology).
Finally, we compared the identified SVs between tissues and extraction
in these samples (Fig. 4d) in the medically relevant genes. As we can
see, bars 8 and 9 show the unique variants in AoUsamples T662828295
and T668639440 supported by different tissue sources and extraction
methods; likewise, bar 10 shows the effect of low coverage on sample
T668639440 whole blood Chemagen as it lost around 4.4% of SVs that
should share among all tissues and extraction methods.

Discussion
In support of ongoing cutting-edge research in the All of Us project, in
this paper, we evaluate the potential use of long-read for All of Us
participants. We focus on the advantages and drawbacks of each
sequencing technology across different tissues and extraction meth-
ods. Likewise, we evaluated methods to call short variants (point
mutations, small insertions, and deletions) and structural variants and
if usingdifferentmethods separately or through amergingprocesswill
lead to better results. We carried out this analysis across both a set of
non-repetitive medically relevant genes and more complex, challen-
ging medically relevant genes including the ACMG list. From these
comparisons, we conclude long-reads have widespread value for
establishing the most complete and accurate variant calls for All of Us
and potentially for many other projects. Moreover, our findings sug-
gest that while previous observations have indicated the reliability of
assessing dominant-acting pathogenic mutations from OMIM using
short-read whole-genome sequencing (srWGS), our results indicate
that thesemutations can be discoveredwith even higher precision and
at a reasonable cost.

When comparing the different sequencing technologies, one
must consider both the data characteristics (coverage, read length,

Fig. 4 | Comparison across 386 challenging medically relevant genes.
aNormalized gene coverage distribution for the 386 genes in different datasets for
ONT and HiFi. b The percentage of SNVs (substitutions and indels) in the data sets
for the 386 genes. c Percentage of zero-base coverage per gene, where 50%ormore

of the gene body is not covered using HiFi and ONT data. d SVs breakpoints that
intersect with medical genes across samples for different tissue and extraction
methods T40 stands for sample T668639440 and T95 for T662828295, W for
Whole Blood cells, B for WBC, and finally A for Autogen and C for Chemagen.
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error rate, etc.) and the analytical methodologies used. Even though
PacBio Sequel II currently produces the lowest coverage runs per
sample (usually around 6× to 8×), we could nevertheless use it to
accurately identify a majority of SNV and SV calls51. In contrast,
Illumina-based samples had a much higher coverage (>30× coverage)
but suffered frommajor inherent biases in SV detection, in accordance
with previous publications37. Thus, simple comparisons of raw
sequencing coverage or other simple metrics are not sufficient to
evaluate the utility of a sequencing technology. Also, across the two
long-read platforms, we found read lengths were not a major distin-
guishing feature for our variant analysis. For complex variants and
extended repetitive regions, it is of course the case that read length is
an important factor, which is highlighted by the comparison to the
Illumina data sets6,25. Nevertheless, when comparing the two long read
technologies, ONT average read length (N50) was sometimes larger
than that from PacBio, as driven by the tight length distribution for
HiFi versus a highly variable distribution from ONT, yet this had mar-
ginal to no improvement in variant calling accuracy. Interestingly,
while read length is frequently suggested as a dominant factor that
may favor ONT, our results demonstrate that the benefits of read
length are overshadowed by the higher sequencing accuracy of the
HiFi technology. While this is subject to change given sequencing
technologyupdates in chemistry andporedesign fromONTand future
computational methods, it is still interesting to note that single read
accuracy today has a larger impact on variant calling ability. Never-
theless, it is worth highlighting that ONT has recently developed a new
method called duplex sequencing. This approach aims to improve
read accuracy by sequencing both strands of DNA.

To improve the variant calling accuracy and accessibility across
long read cohorts, we release the cloud-based pipeline in Terra (and
make theunderlying codepublicly availableonGitHub). Previously, we
developed a framework called PRINCESS51 that phases and calls all
types of genomic variants, including SNVs, indels, SVs, and methyla-
tion; however, here, wewanted to develop a deliverable pipeline that is
cloud accessible. Using the cloud, we were able to optimize variant
calling strategies as well as leverage the aspect of running multiple
callers, which can be computationally burdensome without elastic
computing resources. These pipelines are available for use in the All of
Us workbench, along with other instances of Terra, such as the NHGRI
AnVIL52. They can also be run on institutional servers using a WDL
compute engine such as Cromwell (https://cromwell.readthedocs.io/
en/stable/) or Miniwdl (https://miniwdl.readthedocs.io/).

Relatedly, we demonstrated that variant calling methods that
adopt machine learning or deep learning approaches (e.g., DeepVar-
iant and Clair) are generally performed better than other software that
does not (e.g., Longshot). Even more fundamentally, because Long-
shot does not call indels, it suffers from overall poor recall and poor
precision, however, it uses less CPU time than other tools, and no
trained model is required. Furthermore, for maximal accuracy, we
recommended using a combination of two SNV callers (e.g., Pepper
and Clair3). Utilizing both, we developed a merging strategy that
yielded high accuracy across both long-read platforms by leveraging
the genotypes produced by Clair3, as these were found to be more
reliable. Nevertheless, it is worth noting that running both programs
also resulted in a large increase in runtime for amarginal improvement
in precision (0.01% for DeepVariant and 0.04% for Clair3) but not the
overall F-score. Still, our pipeline is now capable of producing high-
quality SNV and indel calls across the long-read platforms. The latter
was previously considered a major limitation of long-reads, but our
work shows it is now possible to capture this important class of var-
iation, as it is now well-established that indels have a major role in
many diseases53. For SV detection, we confirmed previous reports
showing that long-read platforms improved the detection compared
to short reads by essentially every metric. As often discussed, this is
mainly due to the complexity of SV being larger (50bp+) than the

Illumina reads itself6. We did not compare the ability to identify large
CNVs (multiple Mbp) in this study because, to our knowledge, there
are currently no specialized tools for long reads that are capable of
calling CNVs, despite their association with numerous diseases54.

We have further showcased the accuracy of long reads across 386
challenging medically relevant genes that are otherwise hard to assess
with short reads alone. As previously postulated, we could confirm a
substantial improvement in variant calling accuracy and completeness
for these genes with long reads20. Assessing the true clinical sig-
nificance of this, however, will requiremuch larger sample sizes, as it is
clear they harbor a high degree of polymorphism55. Beyond thesemost
difficult genes, we also present the interesting result that long-reads
can effectively recover genetic information from a general set of 5000
medically relevant genes. Does the recovery of genetic information
from 386 genes justify the use of long reads at scale? In this paper, we
also present the interesting result that long-reads can effectively
recover genetic information from a general set of 5000 medically
relevant genes. In contrast to the 386, these 5000 are not all as chal-
lenging yet we that long reads yield measurable value across several
metrics. This also holds for the ACMG gene list which is highly
important for the medical field.

Thus, the question is what technology is the most appropriate to
use at scale within AoU. Based on our results, all three platforms have
trade offs. From a production sequencing lab standpoint, Illumina is
the only technology demonstrated to scale to one million clinical-
grade genomes. Additionally, it is worth mentioning that Illumina
continues to develop its analysis platform, DRAGEN, which recently
demonstrated significant accuracy in short variant calling. However,
our work here as well as other projects demonstrate that long-read
technologies are not far behind31,56–58. For long reads to advance to the
scale of millions of genomes, several major considerations must be
addressed including costs, throughput, robustness of software cycles,
and predictable/variable yields from sequence components or DNA
quality fluctuations. Nevertheless, we believe that the long-read tech-
nologies are advancing rapidly in these directions so that AoU and the
genomics community at large can now confidently begin such large-
scale initiatives.

As we and other recent works show, long-reads have matured
significantly over the past 1–2 years, reaching high accuracies for var-
iant identification and also delivering the promises of phasing and
methylation (data not shown here). Likewise, in the ACMG36, which
represents a crucial list of genes in the medical field, long-read
sequencing demonstrated its efficiency in sequencing those genes and
reporting variants more accurately compared to short reads, which is
currently the de facto approach for analyzing this gene set. Longer
term, the question rises if we have entered the age of using long-reads
exclusively. We conclude that despite currently scaling and costs
considerations, we should continue developing population-scale
cohorts sequenced with long reads only. Currently, the primary
remaining downside to this approach is a slight reduction in accuracy
across small indels, which we anticipate will soon disappear given
improvements to the sequencing platforms and their associated
computational methods.

Thus, this study shows the strong value of long-reads for simple
and complex medically relevant genes and gives clear indications that
long-reads are onparwith if not better than short-reads. AoUandother
population-scale projects should investigate the usage of long-reads at
scale and how to utilize andunderstand the clinical relevance of the so-
obtained novel alleles in the setting of larger short-read cohorts.

Methods
Ethics
The research held in this manuscript complies with all relevant ethical
regulations and is conducted in accordance with the Declaration of
Helsinki. Samples were consented with the protocol F-641-5 and
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collected from BioChain. The BioChain Institutional Review Board
(IRB), chaired by Dr. Zhongdong Liu and comprised of Dr. Vidyodhaya
(Vidya) Sundaram as Director of IRB, Dr. Lutong Zhang as Director of
IRB, Grace Tian as Director of IRB, and Dr. Ruhong Jiang as Director
of IRB, thoroughly reviewed the project application titled “Collection
of Leftover Human Specimens that are Not Individually Identifiable.”
All contingencies have been addressed, leading to the approval of the
application by the IRB. All participants provided written informed
consent prior to their participation in the study. The data used in this
study are subject to controlled access due to privacy concerns.
Researchers who wish to access the data can do so by submitting an
access request to https://workbench.researchallofus.org/.

Variant detection coverage analysis
For this analysis, we considered an idealized scenario where reads are
error-free and always correctly mapped so that we could isolate the
impact of coverage and read length. Following widely used
approximations59, the sequencing coverage is modeled using the
Poisson distribution centered on a given overall coverage level. We
further assume that a variant must be covered by at least two reads
(e.g., min_support = 2), and the coverage will be evenly distributed
across maternal and paternal haplotypes following the binomial dis-
tribution with p =0.5. We then model the recall of variants as the
fraction of genomic positions having coverage with at least 2× cover-
age. For this, we use the Poisson cumulative density function in R and
plot using ggplot. This provides a theoretical upper bound for variant
detection for substitutions, deletions, and other small variants where
all or nearly all bases of the read align to the reference genome.

We next consider insertion variants where the length of the
variant is an appreciable fraction of the read length. This requires
additional consideration over deletions or small variants since the
insertion sequence will generally not align to the reference genome,
at least not at the position of the insertion. In contrast, deletions will
have split read alignments, so can be more easily spanned for any
length. For this analysis, we consider HiFi-like reads that are all
uniformly 20kbp long with a given amount of coverage overall, and
at least 2 reads must span the insertion to recall it. For this analysis
we again use the Poisson cumulative distribution function in R, but
we reduce the effective coverage by the fraction of the insertion
length compared to the read length. To derive this, consider N is the
total number of reads, G is the length of the genome, R is the length
of each read, L is the length of the insertion, and C is coverage. Note
by definition, C = NR/G. The probability that a given read spans the
insertion is (R-L)/G, so the total number of reads that span the
insertion is N(R-L)/G. This can be refactored as (NR/G)(1-L/R) and
since (NR/G) defines coverage C this reduces to C(1-L/R). For
example if a variant is half as long as the read length (10kbp inser-
tion with 20 kb reads), it will effectively reduce the available cov-
erage in half. This over simplifies the analysis since in practice the
read needs to span more than the insertion to be confidently
aligned, but establishes an upper bound on recall. As plotted, the
recall represents the recall of homozygous variants, although het-
erozygous variants follow the same distribution as a function of the
haplotype specific coverage. The full model and additional simula-
tions are available at: https://github.com/mschatz/coverage_
analysis.

Long read library preparation, QC, and sequencing methods
The following was performed by HudsonAlpha Discovery, a division of
Discovery Life Sciences. For all long read assays, stock DNA con-
centration was measured using the Picogreen assay (Invitrogen), and
the DNA size was estimated using the Fragment Analyzer (Agilent).
Post DNAQC, approximately 5 µg of stockDNAwas sheared to a target
size of 20–30kb on a Megaruptor 3 (Diagenode). The DNA was then
purified using 0.45× Ampure XP PB beads with a final elution of 40 µL

Elution Buffer (EB; Qiagen). Post purification, the concentration of the
sheared and purifiedDNAwasmeasured using theQubit DNAHS assay
(Invitrogen), and the DNA size estimation was done using the Frag-
ment Analyzer. Sheared DNA was then size selected using the Pippin
HT instrument (Sage Science) with a target range between 15–22 kb.
Post size selection, the DNA was then purified using 0.45x Ampure XP
PB beads with a final elution of 50 µl EB. Post purification, the con-
centration of the size-selected and purified DNA was measured using
the Qubit DNA HS assay, and the DNA size estimation was done using
the Fragment Analyzer. Independent aliquots of the fragmented,
purified and size-selected DNA were used in library preparation
methods for the Pacific Biosciences Sequel IIe and Oxford Nanopore
PromethION platforms For the Pacific Biosciences platform, DNA was
taken into circular consensus sequencing (CCS) library prep using the
SMRTBell Express Template Prep Kit 2.0 and Enzyme Cleanup Kit 1.0
(PacBio). Each library was barcoded using PacBio Barcoded Overhang
Adapters 8 A and 8B (PacBio). Post enzyme cleanup, the libraries were
purified 2 times using 1x and 0.6x Ampure XP PB beads with a final
elution in 22 µL EB. Post library prep, the concentration of the library
DNA was measured using the Qubit DNA HS assay, and the DNA size
estimation was done using the Fragment Analyzer. The library con-
centration and size were entered into SMRTLink (PacBio) for each of
the libraries. The target loading concentration was 85 pM with Adap-
tive loading and no pre-extension with a 30 h movie time. The library
annealing, binding, and loading plate worksheet was generated auto-
matically from SMRTLink. Final library binding was done using the
Sequel II Binding Kit 2.2 with Sequencing Primer v5. Sequel II DNA
Internal Control Complex 1.0 was added to each sample as per man-
ufacturer’s recommendation. Sequencing was done on PacBio Sequel
IIe running SMRT Link Version 10.1.0.119588.

For the Oxford Nanopore platform, approximately 1 ug of frag-
mented, purified and size-selected DNA in a volume of 47 ul was used
in the SQK-LSK109 library preparation protocol per manufacturer’s
instructions. This is a ligation-based protocol for the production of
libraries compatible with the nanopore sequencing platform. Briefly,
the DNA was end-repaired using the NEBNext FFPE DNA Repair Mix
and NEBNext Ultra II End Repair/dA-tailing Module reagents in accor-
dance with manufacturer’s instructions and placed on ice. The
polished DNA was then purified with AMPure XP beads (1:1 vol ratio)
and eluted to a final recovered volume of 60 ul. The purified, polished
DNA was ligated to sequencing adapters in a 100 ul volume using
adapters provided in the LSK109 library preparation kit. Following
ligation, the ligatedDNAwaspurifiedwithAMPure beads andusing the
Oxford Long Fragment Buffer per the manufacturer’s direction. Fol-
lowing purification and elution in 51 ul total volume, 1 ul of sample was
used to prepare a 1:10 dilution for sample QC using High Sensitivity
Qubit and dsDNA Fragment Analysis. Resulting final library yield was
1.2–2.2 ug per sample. Samples were loaded onto the Promethion
Flowcells with 20 femto Molar loading. After 24 h, all samples were
nucleasewashed and reloadedwith 20 fMof library. Datawas collected
on the PromethION platform for a total of 72 h over the
sequencing run.

Pipeline description/method (ONT and HiFi)
Aligning and coverage. PacBio data were aligned with pbmm2 (1.4.0)
with the parameters (--preset ccs --strip --sort --unmapped);
MD tags are then added by the samtools60 calmd command (sam-
tools 1.10). ONT data were aligned with minimap2 (2.17-r941)61 with
the parameters (--aYL --MD -x map-ont). Aligned BAMs of each
flow-/SMRT-cell are then merged by sample with samtools merge
(samtools 1.10). We calculated coverage at the sample level using
mosdepth (0.3.1)62 and per gene average coverage also collected by
mosdepth.

Additionally, we calculated per-base coverage using samtools
depth (1.15.1) with the parameters (-a).
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Calling SNVs. We used Clair343 (v0.1-r6) for each sample, calls are
madeper chromosomewith default parameters, and thenmerged, and
followed with bcftools sort (bcftools 1.13)63.

We additionally applied PEPPER-Margin-DeepVariant64 for CCS
data. For computational efficiency, we parallelized execution per
chromosome arm. We then executed the Pepper pipeline42 (from
official docker image kishwars/pepper_deepvariant:r0.4.1) in the fol-
lowing way: run_pepper_margin_deepvariant call_variant
--ccs --phased_output.

The haplotagged bamoutput by the previous step is then used by
then DeepVariant (from official docker image google/deepvar-
iant:1.2.0) via /opt/deepvariant/bin/run_deepvariant --mod-
el_type=PACBIO --use_hp_information. The per-chromosome
VCFs and gVCFs are thenmerged by bcftools concat (bcftools 1.13),
and followed by bcftools sort (bcftools 1.13). The single sampleVCF
is then phased with MarginPhase (from docker image kishwars/pep-
per_deepvariant:r0.4.1) via margin phase /opt/margin_dir/
params/misc/allParams.phase_vcf.json -M.

For ONT data, for each sample, the bam is first split in a way that
balances the interval sizes. Then Pepper (from official docker image
kishwars/pepper_deepvariant:r0.4.1) is run the following way: run_-
pepper_margin_deepvariant call_variant --gvcf --phased_output --ont.
The per-chromosome VCFs phased VCFs, and gVCFs are then merged
by bcftools concat (bcftools 1.13), and followed by bcftools sort
(bcftools 1.13).

Finally, for Longshot41, calls are made on each chromosome with
version 0.4.1 and default parameters, and then merged, and followed
with bcftools sort (bcftools 1.13).

For phasingWe usedMarginPhase, phasing is done (using docker
kishwars/pepper_deepvariant:r0.4.1) via margin phase /opt/mar-
gin_dir/params/misc/allParams.phase_vcf.json -M.

Annotating SNVs. We utilized SnpEff version 5.1 to annotate the
identified SNVs and indels. The annotation process involved using the
default parameters, and we made use of the GRCh38.99 reference
from SnpEff to annotate the variants. In order to filter out the variants
with high impact annotations, we employed bcftools view version
1.13 with the option “--include” set to 'ANN~"HIGH"'. This allowed
us to specifically select and extract variants that were annotated as
“HIGH” impact according to the annotation information.

Calling SVs. For each sample, Sniffles (1.0.12)12 calls are made per
chromosome with custom parameters (-s 2 -r 1000 -q 20 --num_-
reads_report −1 --genotype), and then merged by bcftools
concat (bcftools 1.13), and followed with bcftools sort
(bcftools 1.13).

Pbsv: for each sample, PBSV (2.6.0)65 calls are made per chromo-
some, and then merged, and followed with bcftools sort
(bcftools 1.13).

Annotating SVs. We utilized vcfanno version 0.3.3 to annotate the
structural variants (SVs) using the default parameters. For the anno-
tationprocess,we employed a toml configurationfile that specified the
GRCh38 annotation bed file. To filter out variants that had no anno-
tations, we utilized bcftools view version 1.13 and set the
“--exclude” option to “gene_name = "."'‘. This allowed us to
exclude variants that did not have any gene name annotations,
ensuring that our analysis focused only on variants with relevant gene
information.

Illumina analysis.WeusedDragenpipeline (v3.4.12) to call variants for
Illumina with the default parameters, and we called SVs using Manta46

(v1.6.0) with the default parameters. Furthermore, we calculated the
genome coverage using mosdepth (v0.3.2) with four threads, and we
set --by to 10 kbp and --mapq to 20. Additionally, we usedmosdepth

to calculate per gene coverage using bed file of genes coordinate with
the --by option and for the normalized gene converge we divided the
average gene coverage from the previous step with the average gen-
ome coverage of the sample.

Calculate mappability. We intersected the gene coordinate for both
genes groups (386 and 5027) with themappability track from the GIAB
project (version 2) available at (ftp://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/
mappability/GRCh38_lowmappabilityall.bed.gz) using bedtools66

(version 2.30.0) intersect -wo where -a is the genes and -b is the
mappability track, and sum all intersect lengths within the gene divi-
ded by gene length to calculator the gene mappability intersect
percentage.

Filter SNVs. We calculated the number of variants (SNVs and indels)
for each tool (Clair3, DeepVariant, and Longshot) and technology (HiFi
and ONT) before and after filtering, using AWK and Bcftools view63. To
select SNVs we used ‘bcftools view -H -v snps‘, ‘bcftools view -i
'strlen(REF)<strlen(ALT)' -H -v indels‘ for insertions, and
‘bcftools view -i 'strlen(REF)>strlen(ALT)' -H -v indels‘
for deletions. Later, we filter the identified variant and choose only
pass variants using bcftools `bcftools view -Oz -i 'FILTER="-
PASS"'‘, and count them as mentioned earlier.

We benchmark identified variant (calculate precision, recall, and
F-score), for sample “NA24385/HG002” using available truth set from
GIAB and RTG67 tools version 3.12.1 using baseline and bed file sup-
ported from GIAB, and for the medical relevant genes (386) we used
the specified bed files for these genes from GIAB. For the rest of
HapMap samples (HG00514, HG00733, and NA19240) we bench-
marked the variant (SNVs and Indels) using the truth set available from
Chaisson et al.44, with RTG tools as mentioned previously. Later, to
identify the best combination of technology and tool, we merged the
detected SNVs between the two technologies and three tools using
Bcftools ‘bcftools merge -Oz --threads 2 --force-samples
--merge all‘ and updated the variant ID with bcftools ‘bcftools
annotate -Oz --set-id '%CHROM\_%POS\_%REF\_%ALT'‘. Fur-
thermore, we identified the permutation for all technologies and tools
in the VCF file using ‘bcftools query -f '%ID\t[%GT\t]\n'‘ and
awk, followed by extracting each permutation by ID using bcftools
`bcftools view -Oz -i ID=@IDs.txt‘. Additionally, we bench-
marked each permutation using RTG and truth set from GIAB for
sample “NA24385/HG002” and for the rest of HapMap sample
(HG00514, HG00733, and NA19240), first we identified regions in
which the truth set did not call variant in it using in house script where
SNVs absent in 500 bp or more, later, we removed these regions from
our call set and benchmarked themwithRTGand appropriate truth set
and tools the average of recall, precision, and F-score as an indicator
for performance.

For samples T662828295 and T668639440, we agreed to use HiFi
data with and merge variants from Clair3 and DeepVariant for each
tissue and extraction method using bcftools merge ‘bcftools merge
--threads 2 --force-samples --merge all ‘. To identify which GT
touse from themerge,webenchmarkedGT forClair3 andDeepVariant
against the truth set using sample NA24385; first, we merged Clair3
calls with DeepVariant as mentioned above and updated their IDs,
later, we selected only variants that both tools agreed on using
bcftools ‘bcftools view -Oz -i 'count(GT = "RR") = = 0 &&
count(GT = "mis")==0’‘, then we merged it with the truth set from
GIAB NA24385 sample, and selected unmissed variant `bcftools
view -i 'count(GT="mis")==0’‘ and compared the GT between
Clair3, DeepVariant, and truth set. We found that Clair3 agrees more
with the truth set; thus, we selected it to represent the GT for further
analysis. Later, we applied that to samples T662828295 and
T668639440 to merge GT before phasing using MarginPhase.
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Additionally,we calculated thenumber of substitutions and indels
per gene by intersecting the identified variants with the Bed file for
each group of genes (386 and 5027) using bedtools intersect.

Filter SVs. We called SVs using Sniffles and pbsv (methods section
above). We counted the SVs before filter, later, we filtered SVs
based on SV size, where 50 bp is the minimum SV size and con-
sidered only pass SVs in case of pbsv using bcftools ‘bcftools
view -Oz -i '(SVLEN > = 50 | SVLEN < =−50 | SVLEN = 0 | SVLEN
= 1 | SVLEN=".") & (FILTER = "PASS")'‘ and we counted them
after that. For Sniffles, we further used an in house script to select
~25k SVs based on coverage. Likewise, we selected only deletions
and insertions using bcftools ‘bcftools view -i 'SVTYPE = "
DEL" | SVTYPE = "INS"‘, then we merged the identified SVs from
technologies (HiFi and ONT) and tools (pbsv and Sniffels) using
‘SURVIVOR merge‘with the following parameters ‘1000 1 1 0 0 50‘.
Afterwards, we benchmarked each permutation by filtering them
using `bcftools view -i "SUPP_VEC~ 'X'"‘, where X is the
permutation we wanted to benchmark, and we used Truvari68

version 3.0.0 with the following parameters ‘ --multimatch
--passonly -r 2000 --includebed‘. For samples, T662828295
and T668639440, we merged the SVs from HiFi call using SUR-
VIVOR merge69 with the following parameters ‘1000 2 1 0 0 50‘.

Source of pathogenic variant and extraction. We downloaded the
ClinVar variants (SNVs and indels) from “https://ftp.ncbi.nlm.nih.gov/
pub/clinvar/vcf_GRCh38/clinvar_20220320.vcf.gz”. We selected only
pathogenic variantswith aprovided criterion,multiple submitters, and
no conflict using bcftools `bcftools view -i 'CLNSIG = "
Pathogenic" & CLNREVSTAT = "criteria_provided\,_multi-
ple_submitters\,_no_conflicts" & CHROM! = "X" & CHROM! = "
MT"'‘ (hereafter referred to as pathogenic variants). Further, we
renamed the chromosomes to match our data using ‘bcftools
annotate-Oz--rename-chrs‘. Later,we intersected the variantwith
both gene groups (386 and 5027) bed files using `bedtools
intersect`.

To calculate coverage, we transform the pathogenic variant VCF
file to bed using bedops70 vcf2bed, for deletions ‘vcf2bed
--deletions‘, insertions ‘vcf2bed --insertions‘, SNVs ‘vcf2bed
--snvs‘ and lastly we merged them all using bedops --everything,
then intersect it with per-base coverage file for each gene group using
bedtools intersect `bedtools intersect -wo‘ and -a is the patho-
genic variant and ‘-b‘ is per-base coverage.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome data generated in this study have been deposited in the
All of Us workbench database under https://www.researchallofus.org/
data-tools/workbench. The genomic data are available under restric-
ted access for human subjectdata, access canbeobtainedby following
the instructions under All of Us workbench.

Code availability
The pipeline code can be found at https://doi.org/10.5281/zenodo.
10419695.
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