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Immune-response 3′UTR alternative poly-
adenylation quantitative trait loci contribute
to variation in human complex traits and
diseases

Lei Li 1,5 , Xuelian Ma1,5, Ya Cui 2,5, Maxime Rotival 3, Wenyan Chen1,
Xudong Zou 1, Ruofan Ding1, Yangmei Qin1, Qixuan Wang 1,
Lluis Quintana-Murci 3,4 & Wei Li 2

Genome-wide association studies (GWASs) have identified thousands of non-
coding variants that are associated with human complex traits and diseases.
The analysis of such GWAS variants in different contexts and physiological
states is essential for deciphering the regulatory mechanisms underlying
human disease. Alternative polyadenylation (APA) is a key post-transcriptional
modification for most human genes that substantially impacts upon cell
behavior. Here, wemapped 9,493 3′-untranslated region APA quantitative trait
loci in 18 human immune baseline cell types and 8 stimulation conditions
(immune3′aQTLs). Through the comparisonbetweenbaseline and stimulation
data, we observed the high responsiveness of 3′aQTLs to immune stimulation
(response 3′aQTLs). Co-localization and mendelian randomization analyses of
immune 3′aQTLs identified 678 genes where 3′aQTL are associated with var-
iation in complex traits, 27.3% of which were derived from response 3′aQTLs.
Overall, these analyses reveal the role of immune 3′aQTLs in the determination
of complex traits, providing new insights into the regulatory mechanisms
underlying disease etiologies.

Genome-wide association studies (GWASs) have identified thousands
of genetic variants associated with common traits and diseases in
humans, and the majority (~90%) of these variants are located in non-
coding regions1–3. Yet, understanding the molecular mechanisms
through which these variants contribute to variation in physiological
and pathological phenotypes remains challenging. Molecular quanti-
tative trait loci (xQTL) analysis, which identifies associations between
genetic loci and specific molecular traits, provides an essential link
between genotype and phenotype and helps elucidate the functional
effects of non-coding genetic variants. Population-scale studies have

enabled the identification of a large variety of xQTLs, including
expression QTLs (eQTLs)4, splicing QTLs5, 3′aQTLs6, DNA methylation
QTLs7, DNA accessibility QTLs8, and RNA methylation (m6A) QTLs9.

Over the last decade, GWASs have largely increased our knowl-
edge of the genetic architecture of human traits and diseases; yet, they
do not provide context-specific information on cell types or environ-
mental factors that affect specific disease risks and outcomes. Recent
large-scale eQTL studies, such as Genotype-Tissue Expression (GTEx),
have provided a rich repository for tissue-specific effects of disease
risk variants, however, on average, only 20% of GWAS loci are
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associated with an eQTL in a disease-relevant tissue4. The poor per-
formance of eQTL studies to identify disease-causing genes is partly
due to the fact that they are generally performed on heterogeneous
cell types, limiting the investigation of cell type-specific genetic effects
in more relevant disease contexts10. Several other eQTL studies, such
as those based on the Database of Immune Cell Expression (DICE),
have been performed on homogeneous cell types from the same
individuals and highlighted the role of cell type-specific eQTLs in
mediating the effects of GWAS loci11,12,. In addition, many disease var-
iants do only manifest in response to external stimuli, i.e., response
eQTLs (reQTLs), wherein the eQTL effect differs between baseline
and immune stimulation13–16. reQTLs can impact the transcriptional
outcome following immune stimulation and highlight gene-by-
environment interactions where the genetic effects are conditioned
by the cellular environment. Still, although context-specific eQTLs
can be informative for understanding disease-causing mechanisms, a
large proportion of trait-associated non-coding variants4 remain
unexplained.

Alternative polyadenylation (APA) plays an essential role during
the post-transcriptional regulation of most human genes. By employ-
ing different polyadenylation (polyA) sites, genes can either shorten or
extend 3′-untranslated regions (UTRs) that contain cis-regulatory ele-
ments, such as microRNAs or RNA-binding protein (RBP) binding
sites17. APA can, therefore, affect the stability and translation efficiency
of target mRNAs and the cellular localization of proteins. More
importantly, our recent work identified ~0.4 million common genetic
variants inGTEx associatedwithAPA (3′aQTLs)6, which co-localizewith
~16.1% of human traits and disease-associated loci. However, because
GTEx does not provide information on cell types or cellular environ-
ments, the use of QTL analyses to explain the etiology of human
disease-associated variants remains limited. Interestingly, APA plays a
critical role in the immune system18–20. For example, widespread 3′
UTR shortening is observed upon T cell activation21, and global 3′
UTR shortening is observed during the innate immune response
to bacterial infections, such as with Listeria monocytogenes and
Salmonella typhimurium22, however, APA variations and contribution
to intra- and inter-population differences in immune responses are
poorly characterized.

Here, we sought to obtain insights into the genetic control of APA
regulation, and used our DaPars2 algorithm23 to construct a harmo-
nized atlas of cell type-specific humanAPA events from 18 immune cell
types and 8 stimulation conditions. Using these datasets, we mapped
3′aQTLs and identified ~0.6 million common genetic variants asso-
ciated with APA, corresponding to a total of 9,493 independent 3′
aQTLs. In doing so, we provide the first evidence of widespread
stimulation-responsive 3′aQTLs. Collectively, our results inform the
genetic architecture of APA in immune cell types, both at the basal
state and upon stimulation, and can be used to understand the reg-
ulatory bases of a significant proportion of genetic variants located in
non-coding regions.

Results
Immune 3′aQTL atlas for 18 immune cell types and 8 stimulation
conditions
To investigate the dynamics of APA events in different cell types, we
applied our DaPars26 algorithm, in which APA was modeled separately
for each possible 3’UTR region, to each of the following 4 population-
scale RNA-seq datasets (Fig. 1a): (i) DICE11, which includes 13 immune
baseline cells types and 2 activated cell types (CD4+ and CD8+ T cells)
across 97 individuals; (ii) BLUEPRINT12, which contains 3 major
immune baseline cell types (CD14+ monocytes, CD16+ neutrophils, and
naïve CD4+ T cells) across 197 individuals; (iii) ImmVar24, which
includes baseline monocyte-derived dendritic cells (MoDCs), and
MoDCs stimulated with type 1 interferon (T1F), or an influenza A virus
engineered to maximize the type 1 interferon-induced response

(IAV-ΔNS1), across 243 individuals; and (iv) EvoImmunoPop25 which
includes baseline primary monocytes and monocytes activated with 3
Toll-like receptors (TLR) ligands (LPS, Pam3CSK4, or R848) or influenza
A virus (IAV H1N1) from 200 individuals of African and European
ancestry. The percentage of distal polyA site usage index (PDUI), which
was based on two polyA-site models and represents APA usage, was
calculated for each transcript in each sample. We further used prob-
abilistic estimation of expression residual (PEER)26 to adjust for the
known and technical covariates of PDUI values.

By applying our 3′aQTL mapping6, we discovered 9,493 loci
associated with APA across 18 immune baseline cell types and 8
simulated conditions, for a total of ~0.6 million common genetic var-
iants (false discovery rate [FDR] < 5%) (Supplementary Data 1). The
average calculated genomic inflation factor was 1.013 (with aminimum
value of 0.9914 and amaximum value of 1.046) (Supplementary Fig. 1).
The immune 3′aQTLs identified are publicly available (http://bioinfo.
szbl.ac.cn/immune_aqtl). As expected, the number of genes with a 3′
aQTL (3′aGenes) correlated with sample size, not cell type or stimu-
lation condition (Fig. 1b; Supplementary Fig. 2). We also found that
46.1% of long non-codingRNAs (LncRNAs) and 54.2%of protein-coding
genes presented a 3′aQTL in at least one cell type (Fig. 1c). Amedian of
3.1% of lncRNAs and 3.8% of protein-coding genes presented a 3′aQTL
per cell type.We further used a linearmixedmodel implemented in the
GCTA program27 to estimate the heritability of APA variation con-
tributed by 3′aQTLs observed in purified immune cell types (immune
3′aQTLs) for each gene within a 1-Mb cis region. At the individual cell
type level, 3′aQTLs explained between 33.1% and 37.6% of APA varia-
tion (Fig. 1d). We also analyzed the relative position of immune 3′
aQTLs and eQTLs across their associated genes, and found that
immune 3′aQTLs are distributed approximately symmetrically around
the 3′UTR region, while eQTLs are positionally distributed within the
transcriptional start site (TSS) region (Fig. 1e, f). Finally, we investi-
gated whether any regulatory variant simultaneously correlated with
both APA (3′aQTLs) and gene expression (eQTLs) on the same set of
genes and found that only 11% of immune 3′aQTLs overlapped with an
eQTL (Fig. 1g). Taken together, our analyses revealed thousands of
immune 3′aQTLs across multiple baseline and stimulated cell condi-
tions and significantly expanded the reported number of APA-
associated genetic variants.

Global patterns of 3′aQTL sharing and specificity across immune
cell-types
To characterize the cell type-specificity of genetic effects in immune
cells, we focused on the DICE dataset and sought to estimate the
sharing of 3′aQTLs across immune cell types. We used themultivariate
adaptive shrinkage method (mash) to re-estimate the 3′aQTL effect
size by leveraging the correlation structure of QTL effect size across all
cell types (Fig. 2a). For example, the 3′aQTL effect for ZNRD1 estimates
varied in sign andwasmodest except for a very strong signal in naïve B
cells. Mash estimates could recognize the strong signal at this 3′aQTL,
which outweighed the background information, and estimate a strong
effect in naïve B cellswith insignificant effects in other cell types.When
clustering cell types based on the mash estimated value at the identi-
fied 3′aQTL, we found that non-stimulated cells are well-separated
from stimulated cells (Fig. 2b). We did not observe, however, a clear
distinction between myeloid and lymphoid cell types, suggesting that
the genetic control of APA is largely independent of commitment to a
specific lineage. Based on these results, we estimated the frequency at
which the same 3′aQTLs are detected among the sixmajor cell types in
theDICE dataset (naïve B cell, naïve CD4+ T cells, naïve CD8+ T cells, NK
cell, classical monocyte, and non-classical monocytes). We found that
55.5% of genes with a lead 3′aQTL were shared (local false sign rate
[LFSR] <0.05) across the six major cell types (Fig. 2c), suggesting that
the genetic effects on APA regulation are, in most cases, the same
across immune cell populations. Furthermore, we observed that
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378 immune 3′aQTLs are specific for certain immune cell groups, as
was the case for 3′aQTL rs59377167 for SRSF1, rs28498977 for YLPM1,
and rs2579396 for ANKRD44, which were detected only in adaptive
immune cell types (Supplementary Data 2). Nevertheless, we also
found that close to 25%of 3′aQTLs are cell type-specific, suchas 3′aQTL
rs2853231 for gene UBR5, which is specifically to naïve B cells. Collec-
tively, we found that 3′aQTLs effects are predominantly shared across
cell types, while observing a small number of cell-type-specific
3′aQTLs.

Immune 3′aQTLs alter polyA motif and RNA binding sites
Next,we investigated thepotentialmechanisms throughwhich immune
3′aQTLs contribute to APA events. We systematically examined the
prevalence of polyAmotif-altered immune 3’aQTLs across different cell
types. In total, we identified 1,167 3′aQTLs associated variants that had
thepotential to alter polyAmotifs and influence alternative 3′UTRusage
of associated genes (Fig. 2d). We also investigated the enrichment of
polyA-altered 3′aQTLs and AU-rich elements and found that AU-rich
elements were strongly enriched among 3′aQTLs, as well as canonical
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AAUAAAmotifs to a lesser extent (Fig. 2e). For example,we report a SNP
(rs6852042) where a change from the reference allele T to the alter-
native allele A impaired the canonical polyA motif AAUAAA, leading to
strong APA usage change upon immune stimulation but not in unsti-
mulated cells (Supplementary Fig. 3). APA is also regulated by RBPs6. To
validate the functionality of our detected 3′aQTLs and identify RBP
regulators, we analyzed the correlation between 3′aQTLs and RBP
binding sites by enrichment analysis. Only significantly associated 3′
aQTLs located inside the gene body region were selected. RBP binding
sites were defined as the significant CLIP-seq peaks, and the data for

162 RBPs were obtained from two ENCODE cell lines (HepG2 and K562).
A set of randomly shuffled 3′aQTLs limited inside the gene body region
and within the same chromosome was generated for comparison. We
found 26 RBP regulators in HepG2 cell lines and 29 RBPs in K562 cell
lines significantly enriched with 3′aQTLs (Fig. 2f). Among them, several
polyadenylation and splicing factors were identified, and the recently
experimentally validated LARP4 was also identified6. Collectively, the
results of our analyses suggest that detectable APA events result from
the alteration of polyA motifs and RNA binding sites in thousands of
3′aQTLs.
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Immune stimuli, rather than genetic ancestry, primarily drive
condition-specific APA variation
To investigate the role of APA as a mechanism of local adaptation of
different human populations, we next focused on the EvoImmunoPop
cohort and searched for APA genes that have differential 3′UTR usages
between African- and European-descent individuals. Unsupervised
clustering revealed that samples tend to group by stimulation condi-
tion rather than by population (Fig. 3a), consistent with the idea that
the response to immune stimulation is generally conserved across
populations. Focusing on genes that changed their 3′UTR usage upon
different stimulations, we identified a large number of differentially
regulated APA genes for at least one condition (FDR < 5%) (Fig. 3b;
Supplementary Fig. 4; Supplementary Data 3), with most APA genes
showing differential usages in a stimulus-specific manner. Notably,
the response to viral challenges (R848 and IAV) led to the strongest
APA changes. We observed that PML, which encodes the promyelo-
cytic leukemia protein and is involved in host antiviral defense28

(Fig. 3c), had significantly longer 3′UTR usage following IAV stimula-
tion with respect to other stimuli. A few other genes also presented
differential APA usage upon immune stimulation, such as IRAK3,
which functions as a negative regulator of Toll-like receptor (TLR)
signaling29 (Fig. 3d).

We further analyzed the APA usage in baseline and eight stimu-
lation conditions and observed striking 3′UTR shortening events
upon stimulation compared to baseline conditions (Supplementary
Figs. 5–6). We subsequently analyzed whether differentially regulated
APA genes exhibited expression changes by correlating PDUI differ-
ences with fold-change gene expression values. We found that most
genes that undergo APA modifications upon immune activation only
displayed moderate changes of their RNA levels (Fig. 3e), further
highlighting the importance of studying the role of APA in the context
of immune function. In addition, only 62 APA genes were differentially
regulated between African- and European-descent individuals (FDR <
5%; Fig. 3f). Among these genes, we found thatOAS1 (Fig. 3g), which is
involved in the antiviral innate immune response, had a longer 3′UTR
in Europeans than in Africans. Incidentally, 88–96% of the differences
in 3′UTR usage at OAS1 could be explained by the rs10774671 allele,
located on aNeanderthal-inherited haplotype that has been previously
shown to be adaptively introgressed in European populations and
protective against severe COVID-1930,31. Taken together, we found that
while different stimuli, rather than genetic ancestry, are the main dri-
vers of APA variation, differences in ancestry-related APA can also
contribute to population differences in disease susceptibility.

Immune stimulation drives robust response 3′aQTL
To further investigate the stimulus-specificity of 3′aQTLs, we first
analyzed the effect size estimates of the lead 3′aQTL for each gene and
assessed the sharingof these3′aQTLs across the various stimuli used in
the EvoImmunoPop study25. Among the genes with at least one 3′aQTL
(LFSR <0.05), we estimated that 37.3% of 3′aQTLs were shared
between baseline and the four stimulated conditions (Fig. 4a), indi-
cating that a large proportion of 3′aQTL were stimulus dependent.
Comparing each stimulus to the non-stimulated state, we estimated

that an average of 28.3% of 3′aQTLs were either induced or lost upon
immune stimulation (Fig. 4b), with 501, 431, 443, and 377 genes pre-
senting a 3′aQTL specific for IAV, LPS, Pam3CSK4, and R848 stimula-
tions, respectively (i.e., response 3′aQTLs; Supplementary Data 4).
Among these, the variant rs240704 forNPIPB8had a strong response 3′
aQTLupon IAV infection (Fig. 4c), and the variant rs6846553 for TNIP3,
an inhibitor of NF-κB activation, showed genotype-dependent effects
for all stimulation conditions but not at baseline level (Fig. 4d).

We next explored the presence of response 3′aQTLs in the other
datasets. In dendritic cells, 51 genes had 3′aQTLs specific for IAV
infection, and 27 genes had 3′aQTLs specific for T1F stimulation
(Supplementary Data 5). The 23 genes that shared response 3′aQTLs
among all stimulations were enriched in interleukin-12-mediated sig-
naling pathway (P = 0.0012), neutrophil activation involved in immune
response (P =0.0017), and cytokine-mediated signaling pathway
(P = 0.0043). Notably, GSTO1 encodes glutathione S-transferase
omega-1, and the rs45441599 variant, which regulates APA of GSTO1,
was the most significant response 3′aQTLs in both IAV and T1F-
stimulated cells. A similar trend was observed in T cells (Fig. 4e; Sup-
plementary Data 6), with 31% of 3′aQTLs either induced or lost upon T
cell activation. Interestingly, T cells and dendritic cells shared more
response 3′aQTLs across stimulation conditions compared to mono-
cytes. Taken together, we observed a large proportion of responsive 3′
aQTLs in activated immune cells.

Co-localization analysis identifies additional trait-associated 3′
aGenes
GWASs do not provide context-specific information on cell types or
environmental factors that affect specific disease risks and outcomes.
We hypothesized that cell type- and stimulus-specific 3′aQTLs could
help interpret the underlying mechanisms at non-coding GWAS loci.
We thus investigated the extent to which 3′aQTLs share the same
putative causal variants with trait-associated variants. To do so, we
compiled a set of well-powered GWAS summary statistics for 52
common human diseases and traits, including 40 autoimmune and
blood-related traits and 12 other traits collected from previously
published literature (Supplementary Data 7). We performed co-
localization analysis using the coloc method32 and identified 2,912 3′
aQTLs that co-localized with GWAS loci (PP4≥0.75; Supplementary
Data 8). In total, 9.1% of GWAS loci co-localized with a cell type-specific
3′aQTL. Among co-localized 3′aGenes, we identified CD226, whose 3′
aQTL strongly co-localized with seven immune-related trait variants
(PP4 = 0.97). As expected, we noticed that 3′aGenes were significantly
linked to autoimmune and blood-related traits (P = 1.098 × 10−8), with
respect to non-immune traits (Fig. 5a). We also cross-referenced these
co-localized 3′aQTLs with co-localized eQTLs for each trait, and found
that the majority of traits co-localized 3′aQTL are not eQTL. This
observation is consistent with our recent findings6 that co-localized 3′
aQTLs are largely distinct from eQTLs.

To further investigate the contribution of response 3′aQTLs to
disease susceptibility, we performed co-localization analysis only on
stimulated data. We found a substantial expansion of trait-associated
genes upon immune stimulation (Fig. 5b), and these geneswere largely

Fig. 2 | 3′aQTL sharing and specificity across immune cell types in the DICE
dataset. a The original estimates and mash estimates of 3′aQTL effect size for
ZNRD1. The sample size (n) for each cell type varied from 79 to 88. The lines depict
the median and the shadings the 95% confidence intervals (CIs). b Matrix showing
pairwise sharing based on 3′aQTL effect size among all DICE immune cell types. For
each pair of tissues, we considered the top 3′aQTLs that were significant (LFSR <
0.05) in at least one of the two tissues. The scale 0–1 on the right-hand side
represents the proportion of these 3′aQTLs that were shared in magnitude—that is,
that had effect estimates that were the same sign and whose sizes were within a
factor of 2 of one another. The plot was clustered by ‘ward.D2’ implemented in
hclust function in R. cNumbers of genes in which 3′aQTLs are shared among the six

major immune cell types. Thenumber outside thepie chart indicates the numberof
cell types where the 3′aQTL is active. d Summary of the PAS altered by 3′aQTLs
across cell types. The x-axis shows the cell type, and the y-axis lists the number of 3′
aQTLs that altered the PAS. e Enrichment of 3′aQTLs (n = 3,206) that altered PAS
and uridylate-rich motifs and were proximal to polyA sites, compared with the rest
of the genome. Data are presented as odds ratio. The lines depict the median and
the shadings the 95% CIs. f Heatmap showing the 3′aQTLs significance for RBPs
identified by ENCODE in each cell type by two-sided Fisher exact test. The bottom
color bars represent theK562 andHepG2cell lines. Values in the heatmap represent
the degree of enrichment for 3′aQTLs in RBP binding peaks compared with the
control.
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associatedwith autoimmune- andblood-related traits (P = 3.145 × 10−15)
(Fig. 5c). For example, we identified response3′aQTLs for ERAP2, which
were co-localized with Crohn’s disease for the CD4T-cells and R848
stimulation conditions (Supplementary Fig. 7). Variants associated
with changes in ERAP2 isoforms have previously been shown to
increase Crohn’s disease risk upon immune stimulation24. Interest-
ingly, we also found response 3′aQTLs for genes like NPIPB9, which
only strongly colocalized with Crohn’s disease under IAV stimulation
conditions (Fig. 5d). We also analyzed the immune disease-associated
3′aQTLs and found they are significantly enriched in regions that
located <50bp away from the upstream or downstream polyA sites
(Fig. 5e). Collectively, our analysis revealed that 3′aQTL largely overlap
with GWAS loci, with response 3′aQTLs encompassing a distinct group
of disease-associated genes.

Mendelian randomization analysis identifies trait-associated 3′
aGenes
To further prioritize APA events that may play a causal role in deter-
mining disease-risk and complex traits, we used a summarydata-based
Mendelian randomization (SMR) approach33 to test for significant
genetic correlation between APA and GWAS loci. SMR analysis
uses summary-level GWAS data to identify variants that associate with
the APA usage of a gene and a complex trait of interest, suggesting
either a pleiotropic or causal relationship. SMR analysis integrating
these GWAS and 3′aQTLs data identified 37 3′aGenes that had pleio-
tropic effects or were potentially causal for GWAS diseases and
traits (Fig. 6a; Supplementary Data 9). Taken together, co-localization
and SMR analyses of immune 3′aQTLs identified 678 genes where 3′
aQTL are associated with complex traits. When comparing the
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SMR and colocalization results, we found that although SMR detec-
ted 3′aQTL-associated genes significantly overlap with colocalized
loci (P = 7.59 × 10−16, hypergeometric test), only 2.7% of colocalized
signals are identified by SMR as putatively causal, highlighting
the value of the SMR approach for gene prioritization. We then com-
pared the set of 3′aGenes detected in the 8 stimulated conditions with
3′aGenes from other non-stimulated conditions and found that
27.3% of all trait-associated 3′aGenes were detected only in stimulated
conditions (Fig. 6b), indicating that stimulation-specific 3′aGenes are-
more likely to contribute to variation in complex traits.

Functional enrichment analysis of stimulation-specific 3′aGenes
revealed that they were highly enriched for several immune response-
related GO terms, including regulation of CD8-positive, alpha-beta
T cell activation (P = 5.12 × 10−4) and cellular response to type I inter-
feron (P = 1.44 × 10−5) (Fig. 6c). However, we did not observe any rele-
vant pathways for non-stimulated genes. Our SMR analysis identified
several interesting response 3′aGenes that are potentially causally
associatedwith traits. For example, SMRdetectedCISD2 as a response-
associated 3′aGene associated with the estimated glomerular
filtration rate (eGFR) GWAS trait (PSMR = 2.49 × 10−15) (Fig. 6d). In

addition, we identified KDELR2 as response 3′aGenes influencing
blood immune traits (PSMR = 1.20× 10−16, respectively) (Fig. 6e). KDEL-
R2 is unfolded protein response gene and involved in multiple
important cellular functions such as regulating ER stress, cell pro-
liferation, and immune response34. Taken together, the identification
of putatively causal cell type-specific response 3′aQTLs that co-localize
with GWAS loci may help elucidate the mechanism through
which genetic variation may contribute to disease pathophysiology.

Discussion
The human immune system plays a key role not only in host defense
against pathogenic agents but also in autoimmune and inflammatory
diseases, cancer,metabolism, and aging. In light of this central role in a
large variety ofmanyhumanpathologies, it is crucial to understand the
natural levels of variability of immune responses at the population
level and their relation to disease susceptibility or progression.
Investigating the role of genetic variation on the immune response is
challenged by the complexity of the immune system, which consists of
many different cell types that respond to a plethora of signals by
activating intricate signaling cascades with diverse kinetics. With

●
●

●

●

●

●
●

−0.4

−0.2

0.0

0.2

TT TC CC

●

●
●

●

●

●

●

●●
●

●

●

●

●
●●
●

●

●
●

●
●●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

IAVLPS

LPS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4

−0.2

0.0

0.2

0.4

N
or

m
al

iz
ed

 P
D

U
I

TT TC CC

●

●●●
●

● ●● ●●

●

●

●

●

●●●●●● ●

●

● ● ●●

●

●●●

●

●●●●

●

●

●

●

●

●● ●

●

●

●

●

● ●●
●
●●●

●

● ●

●

●●

●

●●●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●●● ●

●

●● ●

●

●

●

●●

NPIPB8 (rs240704)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−0.4

−0.2

0.0

0.2

0.4

TT TC CC

●●●●

●

●

●

● ●● ●●●●●●● ●●● ●●●

●

●●

●

●● ●●●

●

●

●●

●

●●● ●●●●●●

●

●●

●

●●●● ●

●

●●●

●

●●● ●
●

●

●●●

●

●

●● ●●●

●

●
●

●● ●● ●●● ●●●●●
● ● ●

●

●● ●

Baseline PAM3CSK4

●

●

●

●

●

●

●

●

●

●

●

●

−0.2

0.0

0.2

0.4

TT TC CC

● ●

●

●●●●● ●●●●●●● ●● ●●● ●● ●● ●●● ●●● ●●●

●

●
●
●

●

●

●● ●● ●●●● ●●● ●
●

●

● ●

●

●● ●●●● ●●●●●●●●

●

●

●

●●● ●● ●

●

● ●●● ●●● ●

●

●● ●● ●●●●

R848

−0.2

−0.1

0.0

0.1

0.2

N
or

m
al

iz
ed

 P
D

U
I

TT TC CC

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

−0.10

−0.05

0.00

0.05

0.10

TT TC CC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−0.10

−0.05

0.00

0.05

0.10

TT TC CC

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

−0.2

−0.1

0.0

0.1

0.2

TT TC CC

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

IAVBaseline PAM3CSK4 R848
TNIP3 (rs6846553)

b

c

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●−0.4

−0.2

0.0

0.2

0.4

TT TC CC

●

●● ●
●

●

●●●●●●●● ●● ●

●

●

●

●● ● ●●● ●

●

●● ●

●

●●●●● ●

●

●

●

●

●

●

● ● ●● ●

●

●

●●●

●

●

●

● ●

●

●

● ●●●

●

●

●

● ●●

●

●●● ●
●

●

●

●

●

● ● ●

●

●

●

●

−0.10

−0.05

0.00

0.05

0.10

0.15

TT TC CC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

500

1000

1500

IAV LPS PAM3CSK4 R848

N
um

be
r o

f i
m

m
un

e 
3'

aQ
TL

  

stimulation-altered 3'aQTLs
stimulation-unaltered 3'aQTLs

Baseline
LPS
IAV
PAM3CSK4
R848

Naive CD4+ T cell 
Activated naive CD4+ T cell 
Naive CD8+ T cell 
Activated naive CD8+ T cell

2

1

3

4

504

61 56

105

a

e

d

1

2

3

4

5

1003257

1126
172

126

Fig. 4 | Immune stimulation induces robust response 3′aQTLs. a Numbers of 3′
aQTLs shared between baseline and the four stimulated conditions in the EvoIm-
munoPop dataset based on mash analysis. b Distribution of response 3′aQTLs and
shared 3′aQTLs upon immune activation. c PDUI values plotted by genotype for
rs240704 (NPIPB) and (d) rs6846553 (TNIP3) across stimulation conditions. For (c)

and (d), the center horizontal lines of the box plot show the median values and the
boxes span from the 25th to the 75th percentile (n = 200). e The estimated number
of cell types in which 3′aQTLs are inferred to be shared across T cells from the DICE
dataset based on mash analysis.

Article https://doi.org/10.1038/s41467-023-44191-1

Nature Communications |         (2023) 14:8347 7



increasing evidence to suggest that APA regulation has an essential
role in driving immune response variation, there is a strong need to
characterize the genetic basis of APA events. Therefore, we developed
an atlas of immune 3′aQTLs and response 3′aQTLs using a diverse set
of immune cell populations and stimuli. We found these immune 3′
aQTLs can explain 33.1–37.6% of APA variation, higher than the pro-
portions we observed in GTEx data. Comparingwith immune eQTLs, 3′
aQTLs are distributed around 3′UTR region. We also demonstrated
that condition-specific APA variation is primarily driven by immune
stimuli rather than genetic ancestry. More importantly, we observed
extensive response 3′aQTLs upon immune stimulations, and these
response 3′aQTLs colocalized with a distinct group of disease variants.
We observed that many 3′aQTLs colocalized with various blood cell
count traits suggesting 3′aQTL may affect the level of blood cell
counts. In doing so, our study provides new insights into the role of

APA in thediversity of human immune system, andpresents apowerful
resource to map genetic variants to cell- and context-specific func-
tional regions genome-wide and, therefore, to their context-specific
effects on disease phenotypes.

Methods
Datasets
Weanalyzed the transcriptomedata from13 immunecell types across91
individuals11 from the DICE dataset. These cell types included three
innate immune cell types (CD14highCD16— classical monocytes,
CD14—CD16+ non-classical monocytes, and CD56dimCD16+ NK cells), four
adaptive immune cell types that have not encountered cognate antigen
in the periphery (naïve B cells, naïve CD4+ T cells, naïve CD8+ T cells, and
naïve regulatory T cells [Tregs]), six CD4+ memory or more differ-
entiated T cell subsets (Th1, Th1/17, Th17, Th2, follicular helper T cell
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[Tfh], andmemory Tregs), and two activated cell types (naïve CD4+ and
CD8+ T cells thatwere stimulated ex vivo).We also analyzed 563 samples
from the ImmVar project24. These samples included monocyte-derived
dendritic cells at rest and stimulated with influenza infection or type 1
interferon. In addition, we analyzed 970 samples from the EvoImmu-
noPop project25, which included 200 healthy male donors of self-
reported African and European ancestry. The samples were collected
fromnon-stimulatedmonocytes andmonocytes exposed for 6 h to four
stimuli, including LPS, Pam3CSK4, R848, and a human seasonal influenza
A virus. TheDICE and Immvar datasetswere composedof all Europeans,
aged between 18 and 61 years (median age of 27 years) and with a 1-to-1
sex ratio between males and females. The EvoImmunoPop dataset was
composed of only males, aged 20–50, and balanced between African
and European ancestry, with all individuals recruited in Belgium.

Mapping of RNA-seq data across different cell types
Original RNA-seq reads were aligned with the human genome
(hg19/GRCh37), using STAR35, version 2.5.2b 51, with the following
alignment parameters: outSAMtype, BAM; SortedByCoordinate; out-
SAMstrandField, intronMotif; outFilterMultimapNmax, 10; out-
FilterMultimapScoreRange, 1; alignSJDBoverhangMin, 1; sjdbScore, 2;
alignIntronMin, 20; and alignSJoverhangMin, 8. The resulting sorted
BAM files were converted into bedgraph formats using bedtools, ver-
sion 2.17.0.

Genotype imputation
We imputed variants into the 1000 Genomes reference panel using
SHAPEIT36 and IMPUTE237. We filtered out variants with an ‘info score’
<0.9, amultiallelic, Hardy–Weinberg equilibrium threshold P < 1 × 10−5,
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and a MAF < 1% in Europeans/Africans of the 1000 Genomes
referencepanel and indels.We include the top 3 principal components
(PCs) as known genotypic covariates, while for the traits with genomic
control lambda are larger than 1.05, the top 10 PCs were included as
covariates.

DaPars2 analyses
We applied DaPars223 to multiple RNA-seq data. For the quantification
step, the proximal polyA sites were identified by joint analyzing all
samples. We further calculated the percentage of distal polyA site
usage index (PDUI) for each transcript in each sample. We required
that the average normalized reads for each RefSeq 3′UTR region be
> 20; otherwise, the PDUI for this transcript was assigned as a missing
value, “NA”. For a given tissue, transcripts withmissing values in > 50%
of individuals were removed.

Identifying differentially regulated APA events
Differentially regulated APA genes were assessed using the two-sided
Wilcoxon rank test, and P values were corrected for multiple testing
across all conditions using the Benjamini-Hochberg false discovery
rate (FDR) method. We defined the significant APA events as when the
PDUI differences > 0.1 and FDR<0.05.

Immune 3′aQTL mapping for each cell type
SNPs with a minor allele frequency of < 0.01 were filtered, and at least
10 counts per allelewere required. For each tissue,we thenusedMatrix
eQTL38 with a standard additive linear model to test associations for
SNPs within a linear regression framework.

Permutation analysis was conducted to identify significant 3′
aQTL-associated gene pairs. Individual labels were randomly sampled
1000 times, and the minimum P value for each SNP and gene was
recorded after each 3′aQTL mapping. These empirical P values were
adjusted using the q value R package. Genes with a q-value of <0.05
were considered to be significant APA genes. All APA gene-associated
3′aQTLswere subsequently identifiedwith the FDR set to 5%.We tested
each ancestry groups individually and the effect of merging both
ancestry groups and found that ancestry group had a minimal impact
on APA variations; thus, we merged the populations in this analysis,
and ancestry groups (AFB, EUB) were included as known covariates for
3′aQTL mapping.

Estimating immune 3′aQTL heritability
The genome-wide complex trait analysis-genome-based restricted
maximum likelihood (GCTA-GREML)27 program was used to estimate
the heritability of immune 3′aQTLs.

Immune 3′aQTL sharing and specificity analyses among tissues
3′aQTL sharing and specificity among tissues were analyzed using
multivariate adaptive shrinkage (mash)39. Briefly, we converted 3′
aQTL association statistics to mash formats. Lead 3′aQTLs and
random SNP sets for each APA gene were extracted from each
tissue to calculate mash priors. Prior covariance matrices were
inferred via Empirical Bayes matrix factorization and imple-
mented in factors and loadings by adaptive shrinkage (FLASH);
the multivariate 3′aQTL model was constructed using mash.
Posterior effect sizes were computed by applying the trained
model to the lead 3′aQTLs sets. The mash method aims to eluci-
date the heterogeneity of 3′aQTL effect sizes across tissues. It
also provides a local false sign rate to calculate the probability
that the estimated effect size has the incorrect sign.

Determining overlap between immune 3′aQTLs and eQTLs
3′aQTLs and eQTLs were considered to overlap when the lead 3′aQTL
(top APA-associated SNPs) or its LD tag (R2 ≥ 0.8) mapped with the
lead eQTL (top expression-associated SNPs) for the same gene.

Collection of GWAS summary statistics
We collected 52 GWAS summary statistics from previous published
literatures. These traits include 40 autoimmune and blood-related
traits and 12 other traits, which is listed in Supplementary Data 7.

Co-localization analyses
We applied a Bayesian co-localization approach to identify GWAS
signals that couldexhibit the samegenetic effectwith immune3′aQTLs
and eQTLs using coloc R (version 5.1.0) package32. The eQTL summary
statistics are obtained from eQTL catalogue40. We used the default
coloc priors for Bayesian co-localization analysis, in which the prior
was assigned 1 × 10−4 for representing the probability that the SNP was
associated with either trait or 3′aQTL/eQTL, and 1 × 10�5

for representing the probability that the SNP was associated with both
trait and 3′aQTL/eQTL. For each GWAS trait, we extracted the GWAS
SNPs with a P-value < 5 × 10−8 and located at least 1Mb away frommore
significant variants. The co-localized signals were searched within a
surrounding region of 100 kb of GWAS SNPs. Five posterior prob-
abilities (PPs) were calculated for the colocalization analysis using all
variants in the region of interest. PP0 represents the null model of no
association. PP1 and PP2 represent the probability that causal genetic
variants are either associated with disease signals only or 3′aQTL only.
PP3 represents the probability that the genetic effects of disease sig-
nals and 3′aQTL/eQTL are independent, and PP4 represents the
probability that disease signals and 3′aQTL/eQTL share causal SNPs.
The genes were defined as co-localization events if PP4≥0.75 and PP4/
(PP4 + PP3)≥ 0.9 and with significant 3′aQTLs. Region visualization
plots were constructed using LocusZoom41. LD associations between
reference SNPs and 3′aQTLs/eQTL were calculated using PLINK42 v2.0.

Summary data-based Mendelian randomization (SMR) analysis
We performed SMR analysis using SMR43 version 1.0.2 on the GWAS
summarized data and immune 3′aQTLs to test for a joint pleiotropic
association between APA and each trait due to a shared causal variant.
The lead 3′aQTL was used to estimate the APA effect on the outcome.
We used the following settings: --maf 0.01, --thread-num 10, --diff-freq
1. We considered SMR p-value < 3.5e−9 to be significant by taking into
account of the number of genetic regions, the number of traits and the
number of cell types. To distinguish pleiotropy/causation from link-
age, we also used the heterogeneity statistic and required that p_heidi
> 0.05 to exclude genes due to linkage.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human reference genome hg19 and gene annotations were
obtained from the UCSC genome browser (https://genome.ucsc.edu).
Genome-wide SNP genotype, whole-exome sequencing, and RNA-
sequencing data of EvoImmunoPop project used are deposited in the
European Genome-phenome Archive (EGA) under accession code
EGAS00001001895. Genotype and RNA-sequencing data from the
BLUEPRINT project are deposited in EGA under accession code
EGAD00001002671, EGAD00001002674 and EGAD00001002675. In
accordance with the General Data Protection Regulation (GDPR) in
force in the European Union, the aforementioned data from EGA can
be accessed only from the institutional data repository after author-
ization by the relevant Data Access Committee (DAC). The DAC
ensures that data access and use is authorized for academic research
relating to the variability of the human immune response, as defined in
the informed consent signed by research participants. Further details
of the application procedure can be obtained from EGA. Genotype and
RNA-sequencing data from the DICE project are deposited in the
Genotype and Phenotypes (dbGaP) database under the accession code
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phs001703.v4.p1. Genotype and RNA-sequencing data from the
ImmVar project are deposited in dbGaP under accession code
phs000815.v2.p1. All relevant data from dbGaP are available under
controlled access. The data described in this study are freely available
for querying, visualizing, and downloading at http://bioinfo.szbl.ac.cn/
immune_aqtl/index.php, a website portal dedicated to immune 3′
aQTLs. Immune 3′aQTLs are also freely available in Synapse (accession
number: syn51899720, https://doi.org/10.7303/syn51899720), ensur-
ing the availability of a wide range of information related to this study.
List of APA genes and 3′aQTLs identified in this study is provided in
Supplementary Data 1. Immune 3’aQTLs specific to the major immune
groups are provided in Supplementary Data 2. List of significant APA
events comparing the stimulated conditions with baseline conditions
is provided in Supplementary Data 3. The data for response 3’aQTLs
generated in this study are provided in Supplementary Data 4–6. List
of human diseases and complex traits examined in this study is pro-
vided in Supplementary Data 7. The co-localization data generated in
this study are provided in Supplementary Data 8. The SMR data gen-
erated in this study are provided in Supplementary Data 9.
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