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Spatial-linked alignment tool (SLAT) for
aligning heterogenous slices

Chen-Rui Xia1,2,4, Zhi-Jie Cao 1,2,4 , Xin-Ming Tu1,3 & Ge Gao 1,2

Spatially resolved omics technologies reveal the spatial organization of cells in
various biological systems. Herewe propose SLAT (Spatially-LinkedAlignment
Tool), a graph-based algorithm for efficient and effective alignment of spatial
slices. Adopting a graph adversarial matching strategy, SLAT is the first algo-
rithm capable of aligning heterogenous spatial data across distinct technolo-
gies and modalities. Systematic benchmarks demonstrate SLAT’s superior
precision, robustness, and speed over existing state-of-the-arts. Applications
to multiple real-world datasets further show SLAT’s utility in enhancing cell-
typing resolution, integratingmultiplemodalities for regulatory inference, and
mapping fine-scale spatial-temporal changes during development. The full
SLAT package is available at https://github.com/gao-lab/SLAT.

Recently emerging spatial omics technologies enable profiling the
location, intercommunication, and functional cooperation of native
cells through fluorescence in situ hybridization (seqFISH1, MERFISH2,
seqFISH+3 and Xenium4) and spatial barcoding (10× Visium5, HDST6,
Slide-seqV27, Stereo-seq8 and spatial-ATAC-seq9) from multiple tissue
“slices,” revealing tissue structure heterogeneity and shedding light on
the underlying physiological and pathological mechanisms8,10.

Properly aligning cells that share common molecular identity
(e.g., cell type) and spatial context across multiple slices, especially
these generated from distinct sources, is critical for their follow-up
analysis. For example, inter-technology alignment effectively bridges
technologies complementary in spatial resolution and omics
coverage4, while aligning various time points during spatially dynamic
processes like embryogenesis helps identify key spatial temporal
changes and their molecular underpinnings. However, current spatial
alignment algorithms11–13 are mostly designed for homogeneous
alignments (e.g., three-dimensional reconstruction from consecutive
slices14,15), and can hardly handle heterogeneous slices which often
involve complex non-rigid deformations, uneven spatial resolutions as
well as complex batch effects.

Here, we introduce SLAT (Spatially-Linked Alignment Tool), a
unified framework for aligning both homogenous and heterogeneous
single-cell spatial datasets. By modeling the intercellular relationship
as a spatial graph, SLAT adopts graph neural networks and adversarial

matching for robustly aligning spatial slices. In addition to its superior
performance revealed by systematic benchmarks, as the first algo-
rithm capable of aligning heterogenous spatial data, SLAT introduces a
wide rangeof application scenarios including alignment acrossdistinct
technologies and experimental conditions. SLAT is publicly accessible
at https://github.com/gao-lab/SLAT and will be continuously updated
as spatial omics technologies evolve.

Results
Align heterogenous spatial omics data via graph adversarial
matching
By modeling the spatial topology per slice as a spatial graph where
each cell is connected to its nearest neighbors by edges, we reformu-
late the slice-alignment task as a graph-matching problem. In efforts to
correct potential cross-dataset batch effect, SLAT employed a Singular
ValueDecomposition (SVD)-based strategy to project omics profiles of
the cells into a shared low-dimensional space (“Methods”), which in
turn serves as node features of the spatial graphs.

Multilayer lightweight graph convolutional networks are incor-
porated to propagate and aggregate information between cells and
their neighbors via stepwise concatenations, generating a holistic
representationwith information atmultiple scales from individual cells
to local niches as well as global positions. Then, SLAT solves a
minimum-cost bipartitematching problem between the spatial graphs
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through a dedicated adversarial component16 to align cells from dif-
ferent slices (Fig. 1, “Methods”).

Notably, apart from congruent regions that can be well aligned
across slices, heterogeneous alignment often involves distinct regions
that reflect biologically relevant spatial alterations. To avoid artificially
aligning such regions (i.e., over-alignment), SLAT adopts an adaptive
clipping strategy during adversarialmatching to retain only the closest
pairs between slices in terms of their cosine similarity in the embed-
ding space, taken as reliable anchors for guiding the whole alignment
procedure (Supplementary Fig. 1). In particular, SLAT utilizes an
empirical probabilistic matching strategy and returns matches with
high confidenceonly (defaultp value threshold =0.05, see “Methods”).

Systematic benchmarks suggest SLAT is accurate robust
and fast
To evaluate SLAT’s performance over existing algorithms which are
designed for homogeneous alignment12,14, systematic benchmarks
were conducted based on consecutive, homogeneous slices from the
same tissue generatedby three representative technologies spanning a
wide range of throughput, resolution, and technological routes: 10×
Visium5, MERFISH2, and Stereo-seq8 (Fig. 2a, Supplementary Table 1,
and Supplementary Fig. 2).

We first ran synthetic tests where a spatial slice and its rotated and
noise-perturbed copy were fed into the alignment algorithms (“Meth-
ods”). We examined how the alignments could be used to correct the
artificial rotation as well as how they compare with the known ground
truth matching (Supplementary Fig. 3). Both SLAT and PASTE achieved
high accuracy, while the performance of spatially unaware algorithms
Seurat and Harmony degraded substantially with increasing levels of

noise (Supplementary Fig. 3). To our surprise, STAGATE produced low
accuracy across all noise levels, which could be attributed to its lack of
noise reduction and batch correction components.

We then tried to align pairs of distinct slices in the same datasets
(Supplementary Fig. 4). Due to the lack of ground truth matchings, we
quantify alignment accuracy by the fraction of cells correctly matched
in expert-curated cell types and spatial regions, respectively (Fig. 2b, c,
also see Supplementary Fig. 5), and the joint accuracy is defined as the
fraction of cells where both cell types and spatial regions are correctly
matched (Fig. 2d).

Overall, SLAT outperformed PASTE14 and STAGATE12 in all three
datasets (Fig. 2b–d).Of note, PASTE exhibited particularly low cell type
accuracy in the MERFISH dataset (Fig. 2c and Supplementary Fig. 5)
where different cell types are spatially interlaced (Supplementary
Fig. 6), probably due to its excessive reliance on the spatial distance
between cells over molecular features. Consistent with the synthetic
test, we found that STAGATE produced suboptimal alignments, while
its performance improved for split sliceswhich are free of batch effects
(“Methods,” Supplementary Fig. 7). By combining spatial context with
transcriptome profiles, SLAT is better equipped to distinguish tran-
scriptionally similar but spatially distinct cell groups. Consistently, we
found that SLAT also achieved significantly higher alignment accuracy
than the conventional spatially unaware algorithms Seurat17 and
Harmony18 (Fig. 2c, d). In particular, although these algorithms mat-
ched cell types reasonably well, their alignment largely disarranged
spatial regions (Fig. 2b and Supplementary Figs. 4 and 5). The com-
parisons were also consistent in alternative metrics based on micro-
and macro-F1 scores (Supplementary Fig. 8), as well as the correction
of artificial rotation (Supplementary Fig. 9).

Fig. 1 | Architecture of SLAT framework. The SLAT algorithm can be divided into
three main steps: model, represent and align. We model omics data from two
single-cell spatial slices as low dimensional representations X1 2 RN1 ×M ,X2 2
RN2 ×M obtained via SVD-based cross-dataset decomposition, where N1,N2 are cell
numbers of each slice andM is the SVD dimensionality. We use spatial coordinates
of the cells to build K-neighbor spatial graphs G1 = ðV1,E1,X1Þ,G2 = ðV2,E2,X2Þ in
each slice, respectively. The neighbor size can be set dynamically to adjust for

uneven spatial resolution across technologies. To encode local and global spatial
information, SLAT uses L-layer lightweight graph convolution networks to propa-
gate and aggregate information across the spatial graph into cell embeddings
X̂1,X̂2, which are then projected into alignment space Z1,Z2 with a multi-layer
perceptron trained adversarially against a discriminator f DðZÞ to align the two
graphs byminimizing theirWasserstein distance (see “Methods”). Node labels with
the same letters (e.g., A1, A2) represent corresponding cells in different slices.
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Meanwhile, we noticed a gap between cell type macro and micro
F1 scores (by ~0.15) in the MERFISH and Stereo-seq datasets for all
methods (Supplementary Fig. 8), which is largely due tomismatches in
rare cell types (Supplementary Fig. 10). E.g., “ODmature 3” (6 cells) and
“OD mature 4” (10 cells) in the MERFISH dataset tend to be aligned to
“OD mature 2”, a transcriptionally similar cell type, by SLAT. Similar
matchings were also produced by Seurat and Harmony, while PASTE

and STAGATE incorrectly alignedmost “ODmature 3” and “ODmature
4” cells with “Inhibitory,” “Endothelial,” or “Ambiguous.” Tran-
scriptionally more distinct rare cell types such as “Pericytes” and
“Microglia” were well-aligned by SLAT, Harmony and Seurat, but mis-
aligned by spatially aware algorithms PASTE and STAGATE, suggesting
that SLAT’s combinationof graph convolution and adversarial learning
could integrate spatial context and molecular features more
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effectively. On the other hand, mismatches in the Stereo-seq dataset
could mostly be attributed to inconsistent taxonomies in the source
annotation, e.g., cells annotated as various organs were partially
aligned with “connective tissue,” which does exist in most organs.

SLAT’s lightweight graph convolutional component effectively
improves model robustness. Evaluation with subsampled data of var-
ious sizes (spanning from 200 to 102,400) showed that SLAT con-
sistently provides the best results, even with as few as 200 cells
(Supplementary Fig. 11, “Methods”). Further inspection confirmed that
the performance of SLAT remains highly robust to a wide range of
hyperparameter settings and against random corruption of the spatial
graph (Supplementary Fig. 12a, b, “Methods”).

As technologies continue to evolve, the throughput of spatial
single-cell experiments is constantly increasing19. Implemented as a
neural network and optimized for parallelism, SLAT is highly scalable:
benchmarks showed that SLAT is consistently the fastest method
across all data sizes and aligns slices each with over 100,000 cells in
just 3min (Fig. 2e). We also noticed that PASTE fails to run as cell
number exceeds 25,600, partly due to its memory intensive imple-
mentation for optimal transport.

Matching heterogeneous datasets across distinct technologies
and modalities
Spatial alignment across multiple technologies and modalities amal-
gamates complementary information towards a comprehensive in situ
view of cellular states20. Benefiting from its unique design, SLAT pro-
vides reliable alignment across heterogeneous datasets, which is lar-
gely beyond the capability of current alignment algorithms.

We first used SLAT to align spatial transcriptomic datasets gen-
erated by two distinct technologies with varying scale and
detectability8,21. Specifically, the seqFISH dataset contains over 10,000
cells with only 350 genes detected in total3,21, whereas the Stereo-seq
dataset contains about 5,000 cells covering over 20,000 genes8.
Meanwhile, the cell types in the two datasets were annotated at dif-
ferent resolutions: the seqFISH dataset has finer-grained annotation
(21 cell types, Supplementary Fig. 13a) than the Stereo-seq dataset (11
cell types, Supplementary Fig. 13b). The high-quality alignment pro-
duced by SLAT (Fig. 3a) enables an accurate label transfer for cell
typing improvement (Supplementary Fig. 13c). For example, cells
labeled as “Neural crest” in the Stereo-seq dataset were aligned to
seqFISH regions with fourmajor cell types (Fig. 3b and Supplementary
Fig. 13d), refining cell typing which was further validated by known
marker genes (Fig. 3c and Supplementary Fig. 13e). Notably, slices in
the two datasets also differ in spatial structure with substantial non-
rigid deformations (Supplementary Fig. 13a, b). Such challenging sce-
nario effectively failed methods other than SLAT (Supplementary
Figs. 14 and 15a). Similar cross-scale alignment can also be achieved on
Visium and Xenium slices4, where SLAT accurately pinpoints a rare
group of triple positive breast tumor cells, while all other methods
failed (Supplementary Fig. 16).

More challenging is the cross-modality spatial alignment, which
is partly due to the disjoint feature spaces that invalidate the use of
our SVD-based cross dataset matrix decomposition strategy as well
as other canonical batch correction methods. Benefiting from the

modular design of SLAT (Fig. 1), we employed the graph-linkedmulti-
modality embedding strategy we proposed before22 to project cells
of differentmodalities into a shared embedding space before feeding
them into the LGCNs (“Methods”). With this extension, SLAT suc-
cessfully produced a spatial alignment across RNA (Stereo-seq) and
ATAC (spatial-ATAC-seq) slices. While the different modalities fea-
tured drastically different spatial resolutions (0.2μm for Stereo-seq
but 20 μm for spatial-ATAC-seq), SLAT managed to align them well
(Fig. 3d and Supplementary Fig. 17a). Cell-type labels transferred
from Stereo-seq to spatial-ATAC-seq based on the alignment were
consistent with anatomical features and with the accessibility of
tissue-specific genes (Fig. 3e, f and Supplementary Fig. 17b). We also
experimented with other spatial alignment methods by feeding the
same multi-modality embeddings as input, but found suboptimal
results (Supplementary Fig. 15b and 18). Joint regulatory analysis
using the aligned cell pairs and transferred labels effectively identi-
fied various key regulators in the heart, such as Jund and Ctnnb123,24

(“Methods,” Supplementary Fig. 17c), which could not be identified
using the spatially unaware GLUE embeddings (Supplemen-
tary Fig. 19).

Mapping fine-scale spatial-temporal transitions by develop-
mental alignment
Embryonic development is a highly dynamic process with extensive
spatial-temporal transitions involving the generation, maturation, and
functional alteration of organs and tissues at specific timepoints. To
probe spatial-temporal dynamics during early development, we used
SLAT to align two spatial atlases of mouse embryonic development at
E11.5 and E12.58 (Fig. 4a).

Most cells in the brain, heart, and liver werewell aligned with high
alignment similarity scores, consistent with their spatial-temporal
conservation at the two timepoints (Fig. 4b and Supplementary
Fig. 20a–c). In addition, several regionswereenrichedwith less-aligned
cells of lower alignment similarity scores, which may be attributed to
both biological development (e.g., the newly emerged organs kidney
and ovary at region I8,25–27, the rapid enlargement of lung primordium
and its displacement from the upper part of the heart to the lower part
at region II28 as shown in Supplementary Fig. 20d, and the dis-
appearance of branchial arch at corresponding position of region III in
E11.58) and technical variation (e.g., tissue loss at corresponding posi-
tion of region IV in E11.5).

We next followed up on kidney and ovary, two newly emer-
ging organs at around E11.5–12.58,25–27. SLAT accurately identified
them both as developing from the “Urogenital ridge” at E11.5
(highlighted by the green box in Fig. 4c). Consistent with previous
reports, SLAT alignment showed precisely that the ovary devel-
ops directly from a single area29 (left panel of Fig. 4d) while the
kidney develops from two separate areas corresponding to the
mesonephros and metanephros structures in early kidney
development25,30,31 (right panel of Fig. 4d and Supplementary
Fig. 20e). In addition, based on the clustering analysis of
aligned cells, we further identified a group of rare nephron
progenitor cells located in the mesonephros, likely correspond-
ing to an ephemeral mesonephric tubule during mesonephros

Fig. 2 | Evaluation on homogeneous spatial alignment. a Summary of the three
benchmark datasets. b Visualization of alignment results of different methods on
the benchmark datasets in (a). Slices are colored according to alignment correct-
ness of cell type and spatial region. For example, green means both cell type and
region are corrected aligned. Only alignments between the first two slices are
shown. PASTE failed to run on the Stereo-seq dataset due to GPUmemory overflow
(capping at 80 GB). cHeatmaps quantifying the regionmatching accuracy and cell-
typematching accuracy, respectively, in (b), in the formof contingency tables. The
number in each cell is the average proportion across eight repeats with different
random seeds. d Joint accuracy (“Methods”) of different methods on the

aggregated datasets. PASTE failed to run on the Stereo-seq dataset due to GPU
memory overflow (capping at 80 GB). n = 9, 11 and 2 for Visium, MERFISH and
Stereo-seq datasets, respectively. Error bars indicate mean ± s.d. p values were
calculated using the two-sided paired Wilcoxon rank sum test for Visium and
MERFISHdatasets. The p values of SLATagainst PASTE, STAGATE,Harmony, Seurat
are 0.16, 0.13, 0.02, 0.02 in Visium dataset (left panel), and 9.8×10-4, 9.8×10-4,
9.8×10-4, 9.8×10-4 in MERFISH dataset (middle panel). *p <0.05; ***p <0.001; ns
p ≥0.05. e Running time of each method on subsampled datasets of varying sizes.
n = 8 repeats with different subsampling random seeds. Error bars indicate mean ±
s.d. Source data are provided as a Source Data file.
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development32 (Fig. 4e, f). Interestingly, the results show that the
mesonephros is spatially adjacent to the ovary, which is con-
sistent with the well-documented developmental cascade
whereby a part of the mesonephros develops into the fallopian
tube after degeneration (Fig. 4d). Our findings revealed the
unique value of heterogeneous spatial alignment for interrogat-
ing the spatial-temporal process of organogenesis.

We also attempted the same alignment task with other
methods (Supplementary Fig. 21). The spatially unaware algo-
rithms (Seurat, Harmony) simply missed mesonephros, while the
spatially aware algorithms (PASTE, STAGATE) align them to
incorrect cells. Of interest, SLAT’s unique capability on hetero-
geneous spatial alignment further enables spatiotemporally pro-
gressive alignment across multiple development stages: applying
SLAT to mouse embryo slices spanning E9.5–E16.5 effectively
recapitulated the development dynamics of multiple organs
across all three germ layers8 (Supplementary Fig. 22).

Discussion
One of the essential challenges in spatial omics alignment is to
appropriately model spatial context. Early methods such as Splotch13

and Eggplant33 model slices as rigid bodies and require manual anno-
tation of landmark spots to guide the alignment. PASTE14 eliminates
the need for landmark annotation by considering gene expression of
all spatial spots, but its reliance on exact spatial distance impedes
application to heterogeneous alignments involving complex non-rigid
structural alterations. By combining spatial graph convolution and
adversarialmatching, SLAT achieves reliable spatial alignment for both

homogeneous and heterogeneous slices in an unsupervised, data-
oriented manner.

3D reconstruction from consecutive slices is a common applica-
tion of spatial alignment. SLAT supports reconstruction frommultiple
slices via progressive pairwise alignment (e.g., Supplementary Fig. 23
for a consecutive stack of four slices from the same E15.5 mouse
embryo). While similar 3D stacking can also be achieved with PASTE14,
SLAT is better equipped to account for non-rigid structural shifting
and alteration among slices, enabling adaptive correction for potential
deformation artifacts (see Supplementary Fig. 24 for a quantitative
assessment).

We noticed that other topology-based metrics have been pro-
posed as performance measurements, such as the edge score which
quantifies preservation of spatial neighbors34 (see Supplementary
Fig. 25a and “Methods”). However, we’d argue that thesemetrics could
be intrinsically biased as they measure the continuity of matching
solely which could be particularly problematic with the existence of
structural changes (see Supplementary Fig. 25b and “Methods” for a
counterexample).

SLAT’s unique ability to conduct heterogeneous spatial align-
ments promises a wide range of biological applications. In particular,
such spatial alignment enables identifying spatially-resolved changes
such as key alterations of spatial patterns during development.
Meanwhile, aligning slices from the same tissue generated by different
technologies could enable in silico data enhancement, and ultimately
combining their complementary advantages in spatial resolution and
genomic coverage. Meanwhile, proper cross-modal alignment further
sheds lights on key regulators and corresponding regulatory circuits.

Fig. 3 | Spatial alignment across distinct technologies and modalities.
a Visualization of the alignment of E8.75 seqFISH mouse embryo and E9.5 Stereo-
seq mouse embryo datasets, colored by cell types (subsampled to 300 alignment
pairs for clear visualization).bHighlighting the alignmentof cells labeled as “Neural
crest” in Stereo-seq (top) to seqFISH (bottom), alignment lines are colored by cell
type of aligned cells in seqFISH. One of the cells in the head region of Stereo-seq
that aligned to the abdomen region of seqFISH is a neural crest cell whichmigrates
throughout the whole embryo. c UMAP visualization of cells labeled as “Neural
crest” in Stereo-seq, colored by cell type of aligned cells in seqFISH, cell types with

fractions less than 5% are collectively labeled as “Other”. Dashed circles indicate
manual annotation by marker genes (corresponding to Supplementary Fig. 7d, e).
d Visualization of the alignment of E11.5 spatial-ATAC-seqmouse embryo and E11.5
Stereo-seq mouse embryo datasets, with spatial-ATAC-seq dataset colored by
clusters and Stereo-seq colored by cell types, respectively (subsampled to 300
alignment pairs for clear visualization). e Cell-type labels of spatial-ATAC-seq
transferred from Stereo-seq via SLAT alignment. f Showing chromatin accessibility
score and gene expression pattern of heart marker Tnnt2 on SLAT alignment.
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SLAT is fast. In fact, generating the input cell embeddings is the
most time-consuming step, while training and inferring with the SLAT
core model takes only about 10 s for 106 cells. Once the input
embeddings are ready, aligning millions of cells can be completed in
near real-time, enabling an efficient search of a massive database
within an affordable timeframe. SLAT’s blazing speed sets the stage for
someexciting applications suchas inferring spatially dependent causal
mechanisms by systematically comparing multiple Perturb-map
slices35, or constructing whole organ 3D atlases involving thousands
of slices36.

Last but not least, designed as a flexible framework, SLAT can be
readily adapted and extended. For instance, additional information
such as expert curation may be incorporated into the coordinate
matching module to help distinguish symmetric structures and polish
the final alignment (“Methods”). Meanwhile, the spatial graph model-
ing technique employed in SLATmay also be adapted to address other
problems, such as comparative alignment across species.

Overall, SLAT provides a unified framework for various spatial
integration scenarios. To promote its application by the research

community, the SLAT package, along with detailed tutorials and demo
cases, is available online at https://github.com/gao-lab/SLAT.

Methods
SLAT framework
Joint modeling of spatial coordinates and omics features. We
denote a spatial omics dataset as D= g ið Þ, s ið Þ� �

, i= 1, 2, . . . ,N
� �

, where
N is the number of spots or cells, g ið Þ 2 RG, and s ið Þ 2 R2 are the raw
omics features (e.g., genes) and spatial coordinates of cell i, respec-
tively, where G is the number of omics features. For datasets con-
taining non-identical omics features, weuse their overlapping features.
For ease of notation, wedenote the combination of omics features and
spatial coordinates across all cells in a dataset as matrices G 2 RN ×G,
S 2 RN × 2, respectively. Subscripts such as G1,G2 and S1,S2 are added
to distinguish two datasets being aligned.

In attempts to correct inter-sample batch effects, we employ an
SVD-based cross-dataset matrix decomposition strategy as a pre-
processing step. To begin with, we denote the log-normalized and
scaled omics matrices of two spatial datasets as eG1 2 RN1 ×G and

Fig. 4 | Developmental alignment of mouse embryo. a Visualization of the
alignment of E11.5 and E12.5 mouse embryo Stereo-seq datasets, colored by cell
types (subsampled to 300 alignment pairs for clear visualization).b Similarity score
of the alignment. Higher scores indicate higher alignment confidence. Dashed
circles highlight five regions with low similarity scores. c Sanky plot showing cell
type correspondence of SLAT alignment between the two datasets. The green box

highlights cells labeled as “Kidney” and “Ovary” in E12.5. d Alignment visualization
highlighting cells labeled as “Ovary” (left) and “Kidney” (right) in E12.5 and their
aligned cells in E11.5, respectively. eUMAP visualization of cell type annotations for
cells labeled as “Kidney” in E12.5 and their aligned cells in E11.5. f Dot plot showing
marker gene expression of cell types in (e). Source data are provided as a Source
data file.
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eG2 2 RN2 ×G. We then apply SVD on their dot product as follows:

eG1
eG2

>
=UΣV> ð1Þ

Using the decomposed matrices, we obtain the batch-corrected
embeddings of the two datasets as:

X1 =U1:MΣ1:M
1
2

X2 =V1:MΣ1:M
1
2

ð2Þ

where U1:M 2 RN1 ×M , V1:M 2 RN2 ×M , Σ1:M 2 RM ×M are truncated
decompositions corresponding to the M-largest singular values.

The SVD-based correction performed well with comparable (and
somewhat superior) joint accuracy over state-of-the-art method
Harmony18,37 (Supplementary Fig. 12c). Notably, this preprocessing
step is also flexible and allows for modular input (e.g., embedding
produced by dedicated algorithms like GLUE22 for cross-modality
integration).

We model the spatial information of cells in D as a spatial graph
G= ðV,E,XÞ, where each node vi 2 V corresponds to a cell with the
batch-corrected embedding x ið ÞRM as its node attribute, and the edges
connect the K-nearest neighbors in the spatial space. We also denote
the adjacency matrix of the graph as A 2 0,1f gN ×N . Ai,j = 1 if the edge
ðvi, vjÞ 2 E, otherwise Ai,j =0. In particular, for cross-technology
alignment, different technologies may have distinct spatial resolu-
tions, in which case we can select different K ’s for each slice according
to its spatial resolution. SLAT also supports building the spatial graph
by radius, where all cells located within a specific radius are taken as
neighbors.

SLAT formulates the alignment of two spatial datasets

D1 = x ið Þ
1 , s ið Þ

1

� �
, i= 1, 2, . . . ,N1

n o
andD2 = x ið Þ

2 , s ið Þ
2

� �
,i= 1, 2, . . . ,N2

n o
as

a minimum-cost bipartite matching problem of their corresponding
spatial graphs G1 = ðV1,E1,X1Þ and G2 = ðV2,E2,X2Þ:

min
M

X
vi , vjð Þ2M

jjz ið Þ
1 � z jð Þ

2 jj, s:t:M�V1 ×V2, Mj j=m, ð3Þ

where z ið Þ
1 , z jð Þ

2 2 RP are node embeddings of vi and vj in G1 and G2,
respectively, M is a set of matches of fixed size, and P is the dimen-
sionality of node embeddings. Similarly, we use matrices Z1 2 RN1 ×P

and Z2 2 RN2 ×P to denote the combination of cell embeddings of all
cells in the two datasets.

It has been demonstrated in a previous work, that the above
matching problem is equivalent to minimizing the Wasserstein dis-
tancebetweennode embeddings fromdifferent graphs16. SLAT follows
the same approach with adaptations for spatial omics data. Below, we
explain how node or cell embeddings Z1,Z2 can be obtained and
optimized for spatial graph alignment.

Construction of holistic cell representations. An accurate alignment
of spatial omics datasets should align cells that are similar in both the
molecular modality and the spatial context. In particular, the spatial
context can involve various resolutions, ranging from microenviron-
ments to global positions within the tissue. Inspired by previous
work16,38,39, wefirst employ the lightweight graph-convolutional network
(LGCN) to derive a holistic cell representation with all such information
integrated for each dataset. A LGCN propagates and aggregates infor-
mation along the spatial graph through stepwise concatenations:

eX= f LGCN A,Xð Þ=Concat X, ÂX, Â
2
X, . . . , Â

L
X

� �
, ð4Þ

where Â= eD�1
2eAeD�1

2, eA=A+ I, eD is the diagonal degreematrix of eA, and
L is the maximal number of steps. The resulting cell representation

eX 2 RN × L+ 1ð ÞM is a concatenation of multi-level information. The first
M dimensions correspond to no graph propagation, which is simply a
copy of the omics data X. The second M dimensions correspond to
one-step graph propagation, reflecting the composition of a cell’s
immediate neighbors, which form its microenvironment. The informa-
tion coarsens as the number of steps increases, gradually becoming a
representation of rough locations within the tissue. Thus, eX contains
informative features for spatial alignment at multiple levels of spatial
context.

The cell representation eX is constructed separately for each
dataset by using dataset-specific omics profiles and adjacency matri-
ces:

eX1 = f LGCN A1,X1

� �
,

eX2 = f LGCNðA2,X2Þ:
ð5Þ

Adversarial graph alignment. Based on the holistic cell representa-
tions eX1, eX2 described above, we use adversarial alignment to learn cell
embeddings Z1,Z2 that minimize the Wasserstein distance for graph
matching16.

Specifically, we apply a multilayer perceptron denoted as f Z to
mitigate systematic bias in eX1 and eX2 thatmay arise fromdifferences in
omics distribution or spatial topology across datasets:

Z1 = f Z eX1

� �
,

Z2 = f Z eX2

� �
:

ð6Þ

We then introduce the Wasserstein discriminator f D, which uses
Z1,Z2 as input and tries to maximize the followingWasserstein loss LW
to estimate the Wasserstein distance:

LW =
1
V1

�� ��
X
vi2V1

f D z ið Þ
1

� �
� 1

V2

�� ��
X
vj2V2

f D z jð Þ
2

� �
, ð7Þ

where z ið Þ
1 is a row in Z1 corresponding to cell vi, and z jð Þ

2 is a row in Z2

corresponding to cell vj . The transformation f Z can then be adver-
sarially trained to minimize (7), for aligning the distribution of cell
embeddings in the two datasets properly. However, different single-
cell spatial datasets may contain different cell-type proportions or
distinct spatial regions. It is thus unreasonable to assume identical
distribution of their cell embeddings as assumed in the standard
scheme described above40. Inspired by a previous study16, we use the
output of the Wasserstein discriminator f D as a dynamic clipping
criterium to select c×N1 and c×N2 cells from the two datasets with
minimum Wasserstein distance for adversarial training (Supplemen-
tary Fig. 1):

V0
1 = argkmin

vi2V0
1�V1

f D z ið Þ
1

� �
,jV0

1j= c×N1,

V0
2 = arg kmax

vj2V0
2�V2

f D z jð Þ
2

� �
,jV0

2j= c ×N2,
ð8Þ

where c is a hyperparameter between 0 and 1. These cells correspond
to the most reliable anchors to guide the alignment. The Wasserstein
discriminator loss LW is then modified accordingly as follows:

LW =
1

V10
�� ��

X
vi2V1 0

f D z ið Þ
1

� �
� 1

V20
�� ��

X
vj2V2 0

f D z jð Þ
2

� �
: ð9Þ

This approach ensures that distinct regions across two spatial
datasets will not be forcibly aligned. The results show that SLAT per-
forms best when c=0:6, although the performance depends only
weakly on c (Supplementary Fig. 12a).
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To avoid a degenerate solution where all embeddings collapse to
a singular point, we adopt an additional reconstruction term to ensure
that the embeddings have sufficient information to reconstruct input,
essentially enhancing model stability. We use a simple multilayer
perceptron network denoted as f R for data reconstruction,making the
following reconstruction loss:

LR =
1
V1

�� ��
X
vi2V1

������f R z ið Þ
1

� �
� x ið Þ

1

������+ 1
V2

�� ��
X
vj2V2

������f R z jð Þ
2

� �
� x jð Þ

2

������: ð10Þ

We assessed the necessity ofWasserstein discriminator though an
ablation study on the homogenous (Stereo-seq) and heterogenous
(spatial-ATAC-seq vs. Stereo-seq) alignments, respectively. We found
that ablation of Wasserstein discriminator did not significantly affect
accuracy in homogeneous alignments where difference in the spatial
domain is negligible (Supplementary Table 2). However, it did sub-
stantially influence accuracy in the heterogeneous alignment of
Stereo-seq (0.22μm) vs. spatial-ATAC-seq (20μm) where the spatial
domain is drastically different in resolution (Supplementary Table 3).

Overall objective. Finally, the overall training objective of SLAT can be
summarized as follows:

max
f D

α � LW, ð11Þ

min
f Z,f R

α � LW + 1� αð Þ � LR, ð12Þ

where LW and LR are defined by Eqs. (9) and (10), respectively, α is a
hyperparameter balancing the contribution of adversarial alignment
and data reconstruction. We use stochastic gradient descent (SGD)
with the Adam optimizer to train the SLAT model.

Coordinate matching. Apart from the core model described above,
we also provide options to use additional information to match the
spatial coordinates S of two slices which can help distinguish sym-
metric structures (e.g., left and right hemispheres of the brain) and
improve the finalmatching quality. The goal of coordinatematching is
to roughly align different slices in terms of their overall direction by
estimating an affine transformation matrix M. The exact strategy
depends on the type of information available.

First, guided by expert knowledge of tissue structures, M can be
computed by combining the scaling, rotation, and translation opera-
tions required to obtain a rough alignment between the two slices.
Second, if imaging data like H-E staining images are available,M can be
estimated following our tutorial based on SimpleElastix41, which is a
state-of-the-art medical image registration tool. Finally, if no other
information is available, we also provide a default solution based on
iterative closet point (ICP)42, a point-cloud registration algorithm,
where we treat the spatial datasets as point clouds on a two-
dimensional plane and uses geometric features for registration. With
the obtainedMmatrix, we consort the coordinates of the two datasets
by the following transformation:

S0
2 =S2 �M: ð13Þ

Quality assessment and probabilistic matching. With the cell
embeddings Z1,Z2 learned by the SLAT core model and the matched
spatial coordinates S1 and S0

2, we match dataset D2 with D1 using the
following strategy: For cell i in datasetD1, SLAT first selects the closest
K cells fromD2 in matched spatial coordinates S as a candidate set Ci.
We then compute the cosine similarity between the embeddingof cell i
and each candidate cell in Ci, and evaluate their significance by com-
paring with a null distribution obtained from 1,000 randomly sampled
cell pairs. The final match set Mi consists of cells from the candidate

set with p-values less than 0.05:

Ci = argkmin
vj2Ci�V2

������s ið Þ
1 � s02

jð Þ
������,���Ci

���=K , ð14Þ

p� value vi, vj
� �

=P cos z1, z2
� �

> cos z ið Þ
1 , z jð Þ

2

� �� �
ð15Þ

Mi = fvj 2 Cijp� valueðvi, vjÞ<0:05g, ð16Þ

where s ið Þ
1 and s02

jð Þ are rows in the coordinate matrices S1 and S0
2,

respectively. K is the size of spatial neighborhood as described above.
For convenience of 3D visualization, we only plot the alignment

with the smallest p-value for each cell in 3D plots (Figs. 3 and 4 and
Supplementary Figs. 4, 14, 16, 18, 21–23, and 29).

Systematic benchmarks
Benchmark datasets. We selected 10× Visium, MERFISH and Stereo-
seq as representative spatial technologies for benchmarking alignment
methods. The 10× Visium dataset comes from consecutive slices of
human dorsolateral prefrontal cortex, containing about 3,000 spots
per slice, each spanning 50μmwith over 20,000genes detected43. The
MERFISH dataset comes from consecutive slices of mouse hypotha-
lamic preoptic, with subcellular resolution but only 151 genes detected
in total21. The Stereo-seq dataset comes from consecutive slices of an
E15.5 mouse embryo, containing over 100,000 single cells per slice,
divided into 25 cell types with complex spatial organization, and
detects over 20,000genes in total8.Weused all available slices in these
datasets (9 Visium slices, 12 MERFISH slices and 4 Stereo-seq slices),
results of the first two slices of each dataset were presented in Fig. 2,
while the accuracy statistics reported were aggregated across all slice
pairs. Cell type annotation and tissue region segmentation were
obtained from the original authors whenever possible. Since the
Stereo-seq dataset does not provide tissue segmentation, we seg-
mented the most prominent regions in the embryo, including Brain,
Jaw and face, Spinal cord, Heart, Lung, Liver, and Belly under the gui-
dance of an expert inmouse anatomy. The spatial segmentation of the
MERFISH dataset is provided in publication figures but not in rawdata,
so we re-segmented the data as guided by the figures.

Slice processing. For each technology, we first removed the cells/
spots that are unannotated in both slices, then rotated the second slice
with a random angle before feeding to the alignment methods.

Benchmarked methods. The benchmarked methods Harmony,
PASTE, STAGATE, and SLAT were executed using the Python packages
“harmonypy” (v0.0.6), “paste-bio” (v1.3.0), “STAGATE_pyG” (latest
commit 8b9c8ef), and “scSLAT” (v0.2.0), respectively, in Python (v3.8).
Seurat was executed using the R package “Seurat” (v4.1.1) in R (v4.1.3).
For each method, we used the default data preprocessing steps
recommended by the original authors, and searched for the best
hyperparameters for each method starting from their default settings
(Supplementary Fig. 26). For all experiments involving SLAT, we used
the default hyperparameters (SVDdimensionality: 30, graph neighbor:
50, LGCN layer: 3, MLP hidden layer dimension: 256, embedding hid-
den size: 2048, learning rate: 1e-4, dynamic clipping ratio: 0.6) unless
otherwise stated.

Benchmark tasks. We benchmarked the alignment methods based on
the following four tasks: (1) duplicate slice alignment, (2) real world
alignment, (3) split slice alignment, and (4) scalability test:

In duplicate slice alignment, we duplicate and add noise to the
first slice of each benchmark dataset by sampling from a negative
binomial distribution centered at the measured expression count.
We set the inverse dispersion parameter to different values to
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simulate varying noise levels:

NB x;μ, θð Þ= Γ x +θð Þ
Γ xð ÞΓ x + 1ð Þ

μ
θ+μ

	 
x θ
θ+μ

	 
θ

ð17Þ

where μ and θ are the mean and inverse dispersion, respectively. The
duplicate slices were also rotated by 60° to avoid leaking information
in spatial orientation14.

In real world alignment, the slices to be aligned are different slices
in the benchmark datasets produced from the same position of the
same tissue5,8,43 (Supplementary Fig. 2).We also rotate the slices by 60°
before feeding to the alignment algorithms. Each algorithm was run
eight times with different model random seeds.

In split slice alignment, we split the first slice of each benchmark
dataset into two pseudo-slices of equal size by randomly sampling the
cells without replacement. Each algorithm was run eight times with
different model random seeds.

For scalability benchmark, we randomly subsampled the Stereo-
seq dataset used in real world benchmark to a range of cell numbers
(3200, 6400, 12800, 25600, 51200, 102400). The subsampling process
was repeated eight times with different random seeds.

Evaluation metrics. For synthetic tests on duplicated slices, the
ground truth one-to-one matching is known. For each cell i in the
original slice, we find cell j* with maximal matching score on the
duplicate slice j* = argmaxvj2Ci

cos z ið Þ
1 , z jð Þ

2

� �
and compute the ground

truth accuracy as follows:

ground truth accuracy =
1
N

XN
i = 1

1j* = i ð18Þ

where 1j* = i is an indicator function that evaluates to 1 when j* = i and 0
otherwise.

In real world spatial alignments, the exact ground truth matching
does not exist, but intuitively, a proper spatial alignment should align
cells matched in both molecular profile and spatial context. Thus, we
reported the cell type matching accuracy and spatial region matching
accuracy simultaneously in the form of contingency tables. For con-
venience, we also defined a “joint accuracy” as the proportion of cells
with both cell type and spatial region matched correctly, which cor-
responds to the upper right corner of the contingency table. We also
report the micro and macro F1 score of cell type matching and spatial
region matching and joint matching, respectively.

For more comprehensive assessment, we also used the following
alternativemetrics to quantify the quality of alignments. The first is the
estimation of rotation angle that corrects artificial rotation. Specifi-
cally, based on the spatial alignment of each benchmarkedmethod, we
estimated the optimal corrective rotation angle by solving the Pro-
crustes problem44, which is then compared with the ground truth to
calculated the deviation. However, it is worth noting that rotation
estimation may not reliably reflect alignment quality when non-rigid
deformations exist.

The second is the edge score, which quantifies how well an
alignment preserves neighborhoods34,45:

Anm =
1, if n0 ∼m0

�1, if n0m0

�

edge score= 1
N

PN
n = 1

P
m2N nð Þ

Anm

ð19Þ

However, we found that the edge score could be deceived in
certain situations. For example, see Supplementary Fig. 25b shows two
graphswith knownground truthnodepairing information. “Alignment
1” is the correct matching (gray lines) and “Alignment 2” has four

mismatched pairs (highlighted by red lines), but the two alignments
get the same edge score.

Benchmark workflow. We used Snakemake (v7.12.0) to manage the
whole benchmark workflow. All benchmarkedmethods were allocated
16 cores of Intel XeonPlatinum8358CPU, 128GBof RAM,and aNVIDIA
A100 GPU with 80 GB VRAM by the Slurm workload management
system.

Hyperparameter robustness. We tested SLAT’s robustness to key
hyperparameters including: (1) SVD dimensionM, (2) number of LGCN
layers L, (3) learning rate of the SLAT model, (4) MLP hidden layer
dimension, (5) dimension P of SLAT embedding, (6) dynamic clipping
ratio c.

We ran SLAT on the same slices as in Fig. 2b. For Stereo-seq slices
containing more than 100,000 cells, we randomly subsampled 8,000
cells from each slice to save time. Every experiment was run 8 times
with different model random seeds.

In this test, we also demonstrated the advantage of LCGN archi-
tecture, especially in MERFISH dataset, where cell type and spatial
region are not significantly correlated (Supplementary Fig. 3). We
found substantial decrease in joint accuracy without LGCN (Supple-
mentary Fig. 12a), mainly caused by deteriorated spatial region
matching (Supplementary Fig. 28).

Robustness to noise in the spatial graph. In practice, the spatial graph
may be imperfect due to technical limitations. Therefore, we tested
SLAT’s robustness to graph corruption in the same dataset used in
hyperparameter robustness evaluation. Specifically, we randomly
masked the edges in the graph by increasing ratios (from 0.1 and 0.9).
Every experimentwas run 8 timeswith differentmasking random seeds.

Heterogeneous alignment across distinct technologies and
modalities
VisiumandXeniumdata alignment. The Visium and Xeniumdatasets
were generated from consecutive slices of the human breast cancer
tissue sample4. In order tomaintain the comparability with the original
paper, we chose the exact same slices used in their analysis (see Fig. 4c
of ref. 4). We further selected the shared region between the two slices
as the original authors reported4 for follow-up analysis.

Considering that the Xenium slice contains more than 100,642
cells while Visium only contains less than 3841 spots in same physical
region, we used different neighbor sizes proportional to cell density
(K = 5 for Visium, and K = 130 for Xenium) when constructing the
spatial graphs, in order to ensure that the GCNs have similar spatial
receptive fields. SLAT is then run with otherwise default parameters.
We selected Visium triple positive spots based on the number of
aligned Xenium triple positive cells (Supplementary Fig. 29c). 7 spots
with more than 2 aligned cells were chosen. Following the original
paper, we did differential gene expression analysis of the SLAT iden-
tified andmanually curated triple positive spots against all other spots,
respectively, using the Scanpy46 function “scanpy.tl.rank_gen-
es_groups” with parameter “methods=‘wilcoxon’”. For comparison, all
methods included in the benchmarks (PASTE, Harmony, Seurat, and
Harmony) were applied to the same Visium and Xenium datasets with
their default parameters.

For comparison, all methods benchmarked (PASTE, Harmony,
Seurat, and STAGATE) were applied to the same datasets with their
default parameters (Supplementary Fig. 16).

SeqFISH data and Stereo-seq data alignment. For Stereo-seq and
seqFISH, we chose the E9.5 slice with the most complete cell type
annotation by the original authors (i.e., the slices with the least pro-
portion of unannotated cells), respectively. To align the chosen seq-
FISH and Stereo-seq slices,we run SLATusingK =20 for the Stereo-seq

Article https://doi.org/10.1038/s41467-023-43105-5

Nature Communications |         (2023) 14:7236 9



slice and K = 50 for the seqFISH+ slice to balance cell density, while
using default value for other parameters. We next refined cell type
annotations in the Stereo-seq dataset based on the higher resolution
annotation in seqFISH through label transfer for “Neural crest” cells
(Fig. 3b). We also manually annotated “Neural crest” cells for inde-
pendent validation. Scanpy46 was used for the analysis following its
official tutorial: the data were log-normalized using the functions
“sc.pp.normalize_total” and “sc.pp.log1p”. Highly variable genes were
identified with “sc.pp.highly_variable_genes”. The first 50 principal
components after PCA (“sc.tl.pca”) were used to generate neighbor-
hood graphs (“sc.pp.neighbors”) for computing UMAP embeddings
(“sc.tl.umap”) and Leiden clustering (“sc.tl.leiden”). The “Neural crest”
cells were annotated via marker genes of different germ layers (Foxc2
and Vcan for mesoderm, Msx1, Mif, and Dik1for ectoderm, see Sup-
plementary Fig. 13e).

For comparison, all methods benchmarked (PASTE, STAGATE,
Seurat and Harmony) were applied to the same datasets with their
default parameters (Supplementary Fig. 14).

Spatial-ATAC-seq and Stereo-seq data alignment. For cross-
modality alignment, the slices to align were two 11.5-day mouse
embryo datasets from Stereo-seq (RNA) and spatial-ATAC-seq (ATAC),
respectively. For Stereo-seq, we chose the E11.5 slice with the most
complete cell type annotation by the original authors (i.e., the slice with
the least proportion of unannotated cells). For spatial-ATAC-seq, we
chose the E11.5 slice with the highest spatial resolution (20 μm). Given
that the current spatial-ATAC-seq data did not cover the entire embryo
due to technical limitations, we extracted the anatomically corre-
sponding regions from the Stereo-seq dataset under expert guidance.

To project cells from different modalities into a shared latent
space, we employed the graph-linked multi-modality embedding
strategy we proposed before22, and built the graph with K = 50 for
Stereo-seq, and K = 20 for spatial-ATAC-seq, then run SLATwith default
hyperparameters. Based on the outputted alignment, we transferred
cell type labels from Stereo-seq to spatial-ATAC-seq which was not
annotated, and then applied SCENIC+47 for joint regulatory inference.

To comparewith benchmarkedmethods (PASTE, Harmony, Seurat
and Harmony), we also used the same multi-modality embedding as
their input followed by their default pipeline. Exceptions are Seurat and
STAGATE, which do not support low dimensional embeddings as input,
thus cannot be compared. In addition, we also compared with the ori-
ginal multi-modality embeddings22 directly (Supplementary Fig. 18).

Spatial-temporal alignment. We applied SLAT to align E11.5 and E12.5
heterogeneous mouse embryo Stereo-seq datasets with the default
hyperparameters. In order to maintain the comparability with the
original paper, we chose the exact same slices used in their analysis
(see Fig. 3a of ref. 8). Regions with lower SLAT similarity scores were
marked in Fig. 4b. To focus on kidney development, we extracted cells
labeled as “Kidney” in E12.5 and their aligned cells in E11.5, then clus-
tered these cells by using the standard Scanpy clustering pipeline
mentioned above and annotated them via well-defined kidney
markers31,32 (Osr1, Foxc1 and Podxl for nephron progenitors; Uncx,
Nr2f2, Dach, Wt1, Nphs1, and Cd44 for kidney; see Fig. 4f). To further
demonstrate the robustness of SLAT, we rerun the analysis against two
additional slices randomly chosen from E11.5 and E12.5, and obtained
similar results (Supplementary Fig. 30).

For comparison, all methods benchmarked (PASTE, STAGATE,
Seurat and Harmony) were applied to the same datasets with their
default parameters (Supplementary Fig. 21).

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses. The experiments were not

randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment. More information was pro-
vided in the Reporting summary file.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study were already
published and were obtained from public data repositories. The data
used in this study are provided in Supplementary Table 1, including
publication and downloadingURLs. All benchmarking data and Source
data are provided with this paper.

Code availability
The SLAT framework was implemented in the “scSLAT” Python pack-
age, which is available at https://github.com/gao-lab/SLAT48. For
reproducibility, the scripts for all benchmarks were assembled using
Snakemake (v7.12.0), which is also available in the above repository.
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