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Prediction on X-ray output of free electron
laser based on artificial neural networks
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Xinxin Cheng 1, Alberto A. Lutman 1, Matthew Seaberg 1, Howard Smith1,
Pranav A. Kakhandiki 1,2 & Anne Sakdinawat 1

Knowledge of x-ray free electron lasers’ (XFELs) pulse characteristics delivered
to a sample is crucial for ensuring high-quality x-rays for scientific experi-
ments. XFELs’ self-amplified spontaneous emission process causes spatial and
spectral variations in x-ray pulses entering a sample, which leads to mea-
surement uncertainties for experiments relying on multiple XFEL pulses.
Accurate in-situ measurements of x-ray wavefront and energy spectrum inci-
dent upon a sample poses challenges. Here we address this by developing a
virtual diagnostics framework using an artificial neural network (ANN) to
predict x-ray photon beam properties from electron beam properties. We
recorded XFEL electron parameters while adjusting the accelerator’s config-
urations and measured the resulting x-ray wavefront and energy spectrum
shot-to-shot. Training the ANN with this data enables effective prediction of
single-shot or average x-ray beam output based on XFEL undulator and elec-
tron parameters. This demonstrates the potential of utilizing ANNs for virtual
diagnostics linking XFEL electron and photon beam properties.

Recent advances in X-ray free-electron lasers (XFELs)1–6 at world-wide
facilities such as SLAC7, SACLA8, PAL-XFEL9, SwissFEL10, and the Eur-
opean XFEL11 have demonstrated innovative capabilities and opera-
tional configurations that are expected to greatly impact a wide range
of proposed science experiments12. Tunable devices such as variable
gap undulators and phase shifters have been integrated into the XFEL
to tailor and control the electron beam13, opening up fresh opportu-
nities for science experiments. However, as the number of electron
beam control parameters increases, so does the complexity of accel-
erator optimization and tuning. This, along with the shot-to-shot var-
iations from the self-amplified spontaneous emission (SASE) process
of XFELs, make it essential to understand the relationship between the
electron beam parameters and the actual X-ray beam properties
delivered to a sample.

To understand this relationship, several options are possible.
First, thewavefront and spectrumof the XFEL pulse canbe determined
computationally, though this is a challenging task due to the com-
plexity of the underlying physics, discrepancies between real-world

and computational models, and the multitude of variables and para-
meters involved especially with the more recent generation XFELs.
Second, real-time nondestructive measurements of the energy spec-
tral and spatial wavefront properties of the XFEL pulse delivered to a
sample could also be implemented. One method to do this involves
splitting the X-ray pulse into reference and experimental beams using
a beam splitter and taking measurements on both beams from shot to
shot. This, however, can increase experimental complexity, require
additional instrumentation, which may not be feasible depending on
the physical constraints of the experimental setups, and reduces
photon flux. In addition, accuracy would be highly determined by the
quality and performance of the X-ray beam splitter optic.

To overcome these challenges, we develop a virtual diagnostics
model based on artificial neural networks (ANNs) and shot-to-shot
measurement data of both electron and X-ray beamparameters. ANNs
are powerful tools for modeling complex nonlinear relationships, and
exploration of their utility to overcome the limitations of conventional
methods for accelerator optimization, tuning, and modeling is
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underway14–17. Themajority ofmachine learningmodels for XFELs have
primarily focused only on the electron beam for tasks such as accel-
erator and undulator tuning and optimization18,19, with one study
incorporating X-ray spectrometer data20. These studies were made
possible due to the single-shot diagnostics of the electron beam
implemented in the XFEL. With the recent development of high-
accuracy single-shot X-ray wavefront sensors for both soft and hard
X-rays at XFELs21–23 and the development of single-shot soft X-ray
spectrometers based on off-axis zone plates for spectral
measurements24,25, X-ray properties can now be characterized routi-
nely. Thesediagnostic tools enableus tomeasure the spatial amplitude
and phase, as well as the spectral qualities of the X-ray beam and allow
us to further combine the X-ray diagnostics data with that of the
electron beam diagnostics data into a model based on ANNs.

In the following set of experiments, we modulate the electron
beam parameters via different accelerator operational configurations
in the XFEL, including both that of routine operations with full normal
electron beams and exploration of the effect of detuning, tapering,
and kicking of slotted electron beams, record the electron and X-ray
beam parameters on a single-shot basis, and then train an ANN-based
model using the data. Detuning plays a critical role in determining
XFEL modes through the dispersion relation equation2,3,26–29 and can
excite high-order modes30. In conjunction with tapering of the undu-
lators, amplification of these high-order modes are expected. Both the
routine case and the specialized cases of detuning, tapering, and
kicking were chosen to demonstrate and understand the utility and
limitations of the ANN-based virtual diagnostics model.

Results
These experiments were conducted at the Time-resolved atomic,
Molecular and Optical Science (TMO) instrument31 at LCLS as illu-
strated in Fig. 1a. LCLS was operated in self-amplified spontaneous
emission (SASE)mode, producing ~530 eV X-rays at a repetition rate of
120 Hz. Data from a total of 13 XFEL configurations were recorded, 12
different configurations using the slotted electron beam, and 1 con-
figuration representing routine operations using the normal full SASE
beam. In the 12 different configurations of the slotted electron beam,
an energy chirp along the electron bunchwas introduced for detuning
and the taper and kicking parameters were varied. A slotted foil was
used to create a short, coherent spike in the electron bunchby spoiling
the majority of it when incident upon the foil, leaving an ultrashort
unspoiled portion through the slot in the foil32, as shown in Fig. 1a. The
unspoiled portion then produces an ultrashort XFEL pulse through
lasing. The undulator sectionswere set to twodifferent states: no taper
and optimal taper33, and for each of these states, the electron bunch
was kicked at various locations in the undulator, n sections before the
final section, with n =0, 1, 3, 5, 7, and 9 where 0 indicates no kicking, as
illustrated in Fig. 1b. This resulted in a total of 12 different configura-
tions. For each configuration, we recorded the single-shot wavefront
intensity, phase, and spectrum, aswell as electronparameters from the
undulators (spectrumandwavefrontweremeasured separately for the
same 12 configurations). In addition to the slotted electron beam, the
full SASE beam in routine operation was used to study shot-to-shot
wavefront phase variations, with similar recordings ofwavefront phase
and electron bunch parameters. The X-ray wavefront was measured
using a Talbot wavefront sensor, and the spectrumwas recorded using
an off-axis zone plate on a yttrium aluminum garnet (YAG) screen,
shown in Fig. 1c. See the “Methods” section for further details on the
XFEL configurations and data acquisition.

In Fig. 2, we present the average spectra, wavefront intensity, and
phase for each configuration, including variations with and without
taper and kicking at different points along the undulator. The results
show that different configurations result in distinct spectra and
wavefronts. For instance, the spectra from taper configurations exhibit
a higher energy tail and reduced low energy components compared to

that of the no taper cases. The intensity also increases as the electrons
are kicked further downstream. The differences among the twelve
phase maps indicate the wavefront’s evolution with different kick
locations and taper settings.

Indeed, the experiments revealed interesting XFEL physics when
certain parameters of the electron bunch and the undulators are var-
ied. In the no-taper case, due to the fact that the electrons are con-
tinuously losing energy, the radiation spectrum is skewed toward the
red-shift side. For the taper case, the taper was over-tapered to intro-
duce a detuning to set the resonant frequency in the blue-shift side
compared to the radiation frequency in the exponential growth region,
i.e., before the tapered region. Thus, the microbunching will now
support high-order modes according to the dispersion relation dis-
cussed below in the “Methods” Section. In our case, the donutmode is
excited, as shown in the intensity plot in Fig. 2, while the spectrum
shows spectral tails at high energy, as seen in the normalized spectrum
plot in Fig. 2.

We conducted an investigation into the correlations between
X-ray properties and electron parameters by computing Pearson cor-
relation coefficients between recorded electron beam parameters and
our X-ray measurements (e.g., Zernike coefficients for wavefront
phase). As shown in Fig. 1d, we created a correlation matrix to
demonstrate the relationship between electron beam parameters and
Zernike coefficients. The correlation matrix highlights that electron
parameters exhibit intricate correlations with the resulting X-ray
wavefront. These relationships are often implicit yet complex, invol-
ving a multitude of parameters that become challenging to depict and
solve through conventional methods.

ANNs can solve real-world problems, such as regression or clas-
sification, by receiving inputs, performing complex calculations, and
providing outputs. To map both X-ray and electron properties, we
employed a conventional multilayer perceptron (MLP) model to pre-
dict X-ray outputs based on electron parameter readings. The MLP we
used in this paper is depicted in Fig. 1e and is comprised of an input
layer, multiple hidden layers, and an output layer. The inputs are
electron parameters and the outputs are X-ray properties like wave-
front or spectrum. Electronparameters consist of readings frombunch
length monitors, beam position monitors at various sections, and
electron attributes such as position, peak current, bunch charge,
coordinates, pulse energy, etc. The X-ray wavefront phase is repre-
sented as Zernike coefficients obtained by decomposing the phase
into Zernike polynomials. The X-ray beam spectrum is represented as
50 numbers obtained through binning. See the “Methods” section for
further details on model training.

We demonstrate the effectiveness of our trained models by pre-
senting predictions for (1) different configurations from different runs
with slotted electron beam varying kicking locations and taper states,
and (2) shot-to-shot variation within a single run with a full electron
beam. Predictions are all single shots, and the averages are calculated
basedon the predicted single shots. These predictions are discussed in
the following subsections.

Analysis of predictions from the slotted electron beam
configurations
In Fig. 3, we present a comparison between the measured and pre-
dicted average wavefront phase in Zernike coefficients for various
configurations. The measurements and predictions are nearly iden-
tical, with only minor phase differences observed. The root-mean-
square (RMS) prediction error for the average wavefront phases was
determined to be 0.0169 rad. Furthermore, the standard deviation of
wavefront phase fromcase to casewas found to be0.236 rad. Based on
these values, the estimated relative error for predicting average case-
to-case fluctuations is ~7%. Refer to the “Methods” section for further
information on the prediction error and accuracy evaluation. The
model accurately captured the differences and changes in wavefront
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phase caused by varying electron parameters and accurately predicted
the resulting X-ray wavefront phase. With the single-shot measure-
ments of a comprehensive collection of electron parameters, we can
determine the X-ray beam wavefront phase delivered to the end
station.

Similarly, in Fig. 4, we compare the measured and predicted
average spectra for various configurations. There is very little

difference between the two. The good agreement observed in the
figures is due to the fact that they represent comparisons of the
averages. The model effectively captured the differences and changes
in the X-ray spectrum caused by varying electron parameters and
accurately predicted the resulting X-ray spectra. For instance, kicking
at a more upstream location results in more symmetrical spectrum
curves, and taper leads to spectral tails at high energy, while no taper
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Fig. 1 | Overview of experimental setup and data analysis. a A schematic of the
experiment in the detuning configuration with undulators and a slotted foil to
produce short electron bunches. The X-ray pulses were delivered to the Time-
resolved atomic, Molecular and Optical Science (TMO) instrument31, where the
X-ray diagnostics were located downstream of the instrument’s Kirkpatrick-Baez
(KB) focusing mirrors. b The electron bunch was kicked at various locations in the
undulator, with n sections before the final section, where n =0, 1, 3, 5, 7, and 9, with
0 indicating no kicking. c Single-shot X-ray wavefronts were measured using a
Talbot wavefront sensor21–23. The single-shot X-ray spectra weremeasured using an
off-axis X-ray zone plate spectrometer24, 25. d From the recorded single-shot elec-
tron and X-ray data, a heat map displaying the Pearson correlation coefficients is

produced, highlighting the relationship between the electron parameter inputs
with the X-ray wavefront parameter outputs (Zernike coefficients of the X-ray
wavefront phase). Each cell represents a correlation coefficient, with red indicative
of a positive correlation and blue for a negative. The heat map shown is a subset of
the data due to the large number recorded. eThe electron andX-ray datawere then
used to train an artificial neural network (ANN). An illustrative diagram is shown
representing a multilayer perceptron (MLP) model. The architecture consists of an
input layer, several hidden layers, and an output layer, with the inputs being elec-
tron parameters and the outputs being X-ray beam properties. The diagram does
not reflect the actual numbers for layers or nodes. The “Methods” section describes
all parameters used.

Article https://doi.org/10.1038/s41467-023-42573-z

Nature Communications |         (2023) 14:7183 3



results in low energy components in the spectra. The mean similarity
between the predicted and measured spectra is 0.999 for average
spectra, and 0.924 for single-shot spectra. Refer to the “Methods”
section for further information on the prediction error and accuracy
evaluation. With the single-shot measurements of a comprehensive
collection of electron parameters, we can determine the overall
spectrum of the X-ray beam delivered to the end station. The spectral
resolution relies on the measurements obtained from the zone plate
spectrometer as detailed in the “Methods” section on data acquisition.
It is worth mentioning that the spikiness observed in a single-shot
spectrum is a random occurrence and cannot be predicted due to the
stochastic nature of XFEL startup and the inability to make measure-
ments at the single-electron level. However, what holds significance is
the envelope of the single-shot spectrum, as it provides information
about the central frequency, bandwidth, and spectral tails at high
energy for tapered cases and the tails at low energy for no taper cases.
These distinctive features are illustrated in Fig. 4.

Furthermore, we also built and trained neural network models to
perform classification tasks. We used either the wavefront phase Zer-
nike coefficients or the electron parameters to predict the operation
configuration from among the twelve options. The prediction

accuracy is remarkable, reaching 99% when given the electron para-
meters and 87% when given the wavefront phase Zernike coefficients
at the single-shot level.

Shot-to-shot variations
We utilized a similar technique to predict shot-to-shot variations in the
single-shot X-ray wavefront phase within a single run using full SASE
beams. Specifically, we employed a neural network to map electron
parameter readings from the undulators to the measured single-shot X-
ray wavefront phase. The results, depicted in Fig. 5a, illustrate the stan-
dard deviations of (1) the measured wavefront phase, (2) the predicted
wavefront phase, and (3) the RMS prediction errors of the wavefront
phase over all shots in the test dataset. The measured and predicted
wavefront phases exhibit similar shot-to-shot variations, as evidencedby
their comparable standard deviations for each Zernike term, particularly
the two primary Zernike terms that contribute the most to shot-to-shot
variations. The decrease in the variation of the difference between the
measured and predicted wavefront phases indicates that the model has
learned something that has reduced the difference to a level below shot-
to-shot variations, and the remaining variation is likely due to shot-to-
shot noise. Based on the single-shot wavefront phase data, the RMS
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Fig. 2 | X-ray spectra andwavefronts for different kicking locations and tapers.
The X-ray wavefront and spectrum were measured for various operating config-
urations, and each subplot displays the averagemeasurement result of a particular
case. The six columns correspond to six different kicking positions along the
undulator, with n =0, 1, 3, 5, 7, and 9 sections before the final undulator section,
where 0 indicates no kicking. The six rows are grouped into three categories,
displaying the normalized X-ray spectra, wavefront intensities, and phases,
respectively. Within each category, the two rows show the results with and without

undulator taper, respectively. The color bar at the bottom is only applicable to the
phase maps. The wavefront phase plots have had the defocus and astigmatism
terms removed and used the no taper no kick case as the reference to enhance the
illustration of high-order phase differences. It is evident to see the differences in
spectrum,wavefront intensity, andphase amongcases. Please note that all plots are
displayed in pixel units and are not calibrated to energy or length units due to
experimental limitations during the run. For the purpose of this study, they are not
required, but it would be desired for future studies.
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prediction error between the predicted and measured wavefront phase
is determined to be0.141 rad. Additionally, the standard deviation of the
wavefront phase from shot to shot is calculated to be 0.269 rad. Con-
sequently, the estimated relative error for predicting shot-to-shot fluc-
tuations is ~52%. Refer to the “Methods” section on prediction error and
accuracy evaluation for further details.

Figure 5b presents the measurement and prediction results from
the test dataset, based on Zernike coefficients (Z3-Z8) versus an
example electron beamparameter (electron x coordinate froma beam
position monitor). It is worth noting that while a single electron
parameter is depicted against Zernike coefficients in this figure, these
coefficients are multivariate and rely on the complete set of electron
parameters. The figure demonstrates how Zernike coefficients change
as electron beam parameters vary and how the model’s predictions
compare to the measured data. Figure 5b indicates that the model has
captured the correlations between Zernike coefficients and that
selected single electron parameter, as well as the variation or disper-
sion among shots that arises from other electron parameters. The
slight reduction in variationor dispersion from theprediction in Fig. 5b
and the difference between measured and predicted wavefront phase
in Fig. 5amaybothbe indications of noise sources (either systematicor
measurement noise) that were not learned by the model.

Single-shot prediction is vital for XFEL X-ray imaging that relies on
wavefront phase, as well as any other experiment that depends on
X-ray intensity or spectra on the sample. This capability enables us to
determine the wavefront phase in cases where direct, single-shot, in-
situ wavefront measurements are not feasible, particularly for the
exact shot pulse beingused for single-shot imagingdue to shot-to-shot
variations of XFEL pulses. Although using a grating to split XFEL X-ray
beams and measure the wavefront phase and spectrum to determine
the X-ray delivered to experiments is possible, it would significantly
increase the complexity of the experimental setup, consume more
time and space, and result in a loss of photon flux.

Discussion
Our recent experiments at LCLS have confirmed that ANNmodels can
be trained on experiment data to accurately predict XFEL pulse
properties such as wavefront and spectra using electron bunch

parameters as inputs. The study aims to emphasize the valuable
insights provided by electron diagnostics in predicting X-ray output.
While acknowledging the complexity of XFEL physics, the study
demonstrates the efficacy of theMLPmodel in capturing the nonlinear
relationships between electron parameters and X-ray characteristics.
This capability will simplify virtual diagnostics for single-shot X-ray
pulses and facilitate electron diagnostics, optimization, and tuning to
achieve optimal or desired X-ray output.

Optimal performance in ANN training and tuning necessitates a
large dataset encompassing a diverse sample space. In this work, we
utilized readily available shot-to-shot recorded electron beam para-
meters while measuring the XFEL beam, without investing additional
effort in obtaining innovative electron measurements. However, to
explore further avenues for improvement, it is worth considering to
introduce additional parameters that provide a more comprehensive
and in-depth characterization of electron information. By incorporating
such parameters, the method presented here has the potential to
enhance the model’s robustness, reliability, and overall performance.
For instance, the Convolutional Neural Network (CNN) can serve as a
subnet for processing 2D electron parameters, specifically electron
time-energy distribution images obtained from the X-band Transverse
CAVity (XTCAV) diagnostic system34. By leveraging its ability to recog-
nize learned patterns in these 2D inputs, the CNNcan effectively extract
relevant features. Moreover, to capture temporal pulse-pulse correla-
tions, alternative models such as recursive neural network or transfor-
mer can be employed. These sequential models excel at extracting
features related to the contextual information within the pulses,
thereby providing a more comprehensive understanding of the data.

Similarly, further avenues for improvement can be made in the
areas of X-raydiagnostics aswell. Improvements in the performanceof
existing diagnostic tools as well as introduction of additional mea-
surement capabilities in the future, for example the ability to measure
temporal characteristic of the X-ray beam, can improve the overall
performance of this type of model. Incorporation of the various
instrument optics performance modeling and their optomechanic or
other tuning parameters specific to each instrument can allow the
integration of information from any X-ray optics induced character-
istics or fluctuations in the beam prior to interaction with the sample.
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This can lead to a higher fidelity predictive capability in the model as
well as improved overall tuning of the accelerator and optics systems
for an experiment.

Methods
The slotted electron beam configurations
To understand the mechanism behind the presence of high-order
modes in XFEL pulses, we intentionally generate short electron bun-
ches that resemble a single coherent spike. If we used a long electron
bunch, it would result in many (order of 100) coherent spikes4, which
would be different transverse eigenmodes in the post-saturation
regime of the XFEL. Observing these differentmodes becomes difficult
when many spikes interfere with each other as they hit the wavefront
sensor.

Weutilized a slotted foil to spoil themajorityof the electronbunch,
leaving only a small, ultrashort portion32, as shown in Fig. 1a. This
ultrashort, unspoiled portion lases and generates an ultrashort XFEL
pulse, which allows us tomanipulate the electron bunch properties and
undulator configuration to excite different high-order eigenmodes.
Additionally, to effectively excite high-order modes, we perturb the
electron orbit in the undulator by kicking it at specific locations, shown
in Fig. 1b. The kicking occurs at n sections before the final undulator
section with n =0, 1, 3, 5, 7, and 9, where 0 means no kicking.

In the high-gain XFEL, the slowly varying envelope function of the
electric field has the form:

E = e�iΩτeiqkζψðxÞ, ð1Þ

where the dimensionless variables measuring spatial and temporal
variations are:

τ =ωwt, ζ = krðz � v0tÞ,x =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0kw

q
r, ð2Þ

with rbeing the transverse coordinates, z the longitudinal coordinate, t
the time, v0 the electron bunch longitudinal velocity,
ωw = kwc = (2π/λw)c and λw being the undulator period, c being the
speed of light in vacuum, kr = k0 + kw = 2π/λ0 + kw and λ0 being the
radiation wavelength.

The eigenfrequencies Ω =Ωn(q∥) and the eigenfunctions
ψ =ψn(q∥, x) are determined by the dispersion relation26:

Ω� qk +∇
2
? +

α

Ω2 ðΩ� qk � 1ÞuðxÞ
� �

ψðxÞ=0, ð3Þ

whereα = ðn0μ0e
4A2

wÞ=ð2m3γ30ω
2
wÞwithn0 being the peakdensity of the

electron bunch, γ0, e, andm being the Lorentz factor, the charge, and
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Fig. 5 | Measured and predicted single-shot Zernike coefficients and shot-to-
shot variations. aThe standard deviations (SD) ofmeasurements, predictions, and
RMS prediction error for the Zernike coefficients of all single shots from the test
dataset are displayed for a single routine run with a full SASE beam. The mea-
surement and prediction variations are similar, particularly for the two primary
Zernike terms, Z4 andZ8. The smaller RMSprediction errors compared to the SDof
measurement indicate that the model has accurately learned the systematic shot-
to-shot variations. b The figure shows examples of measurements and predictions

from the test dataset for Zernike coefficients (Z3-Z8) versus an example electron
parameter (electron x-coordinate from a beam position monitor at a specific
location within the Linac-To-Undulator Soft Line area, in units of standard devia-
tion). The plot illustrates how the Zernike coefficients change as the electron
parameters vary. The predictions not only capture the correlations between the
Zernike coefficients and electron parameters shown but also demonstrate the
variation or dispersion that results from other electron parameters.
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overlapwith each other. The intensity of the spectrumdatawasnormalized, so only
the spectral shape was considered, without the intensity information. The spectra
were plotted against pixels on the yttrium aluminum garnet (YAG) screen, without
any calibration to energy units, as it was not necessary. A downstreamkick resulted
in a larger variation in the spectrum compared to an upstream kick. Moreover, the
taper and non-taper cases exhibit opposite skewness in the spectrum.
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the mass of the electron, respectively, μ0 being the vacuum perme-
ability, and Aw being the vector potential of the undulator.

It is now clear that to excite high-order eigenmodes ψn(q∥), the
system should be detuned to support that particular eigenfrequency
Ωn(q∥). In our experiment, we then introduced an energy chirp along
the electron bunch to efficiently excite high-order modes.

Besides introducing energy chirp along the electron bunch for
detuning, we can also adjust the taper of the undulator, since the XFEL
wavelength is: λFEL = λwð1 +K2=2Þ=ð2γ20Þ, tapering the undulator
strength K will directly detune λFEL. In the experiment, we study the
evolution of high-ordermodes by setting the undulator sections in two
states: no taper and optimal taper33. On top of these states, the
undulator can be over-tapered to introduce the proper effective
detuning for efficient excitation, guiding, and amplification of high-
order eigenmodes.

Data acquisition and preparation
The single shot data was recorded as two distinct datasets—one for
the X-ray beam wavefront/spectra on the photon side and another
for the electron parameter readings from undulators on the accel-
erator side. Both datasets recorded the single shot pulse energies,
which were used to synchronize the two datasets on a single shot
basis, thus ensuring that the X-ray and electron data is aligned for
each individual shot.

The X-ray data includes the X-ray wavefront and spectrum.
Highly accurate wavefront measurements were conducted using a
Talbot wavefront sensor35, which has recently been successfully
demonstrated with XFEL radiation21–23. The number of Zernike terms
required for an accurate representation of a wavefront phase
depends on the complexity of the wavefront and the desired level of
accuracy. To most XFEL experiments, the most important photon
beam characteristics are focused beam position and profiles, which
typically fluctuate shot-to-shot in current generation XFELs due to
the SASE nature of lasing. Low order Zernike terms (up to Z15-Z21)
can effectively capture the aberrations associated with those fluc-
tuations, allowing a reasonably accurate determination on the beam
features. In our specific case, considering both the absolute values
and standard deviations of the higher-order Zernike coefficients to
be very small compared to the dominant terms, we retrieved the
wavefront phase and decomposed it into 21 Zernike coefficients (Z0-
Z20) following the OSA/ANSI convention. By utilizing these Zernike
coefficients, we were able to represent and characterize the wave-
front phase. Each coefficient corresponds to a specific property of
the wavefront, such as oblique and vertical astigmatism (Z3, Z5),
defocus (Z4), trefoil (Z6, Z9), and coma (Z7, Z8). Decomposing the
wavefront into Zernike polynomials serves as a featurization step,
converting diverse forms of data into numerical representations
suitable for basic machine learning algorithms.

For spectral measurements, we utilized an off-axis zone plate and
captured the spectra on a YAG screen using a CCD camera. The
spectrometer demonstrated a sub-eV spectral resolution (0.5–0.7 eV)
in the vicinity of 530 eV.On the CCD, the pixel-to-eV ratiowas 29 pixels
per eV around 530 eV. To facilitate training and prediction, the
resulting spectrum was subsequently binned into 50 values at a 6:1
ratio (equivalent to 0.2 eV per value after binning), offering a com-
prehensive representation of the overall spectrum shape.

We did not intentionally choose specific electron parameters and
attributes; instead, we utilized all the directly accessible single-shot
parameters. Themodel relied on a total of 192 parameters to generate
theX-ray output. These electronparameters encompass readings from
a range of sources such as bunch length monitors and beam position
monitors at different sections (undulator soft line, linac-to-undulator
soft line, electron dump soft line) and include electron beam positions
(x and y coordinates), bunch charges, peak current, raw waveform,
X-ray pulse energy, etc.

Model training
To prepare the data for model training, we initially screened the pulse
energy data to eliminate outliers by removing shots that were excep-
tionally weak or empty. In order to capture the intricate relationship
between the electron beam parameters as input and X-ray output, we
employed anMLPmodel. TheMLP functions as a black box, taking the
electron input and generating predictions for the corresponding X-ray
output. Its focus is on establishing a nonlinear mapping rather than
simulating the complex physics of XFEL systems.

The architecture of theMLP comprises several layers, including an
input layer, three hidden layers with 256, 128, and 64 nodes respec-
tively, and an output layer. The number of nodes in the input layer
corresponds to 192 electron beam parameters, while the output layer
consists of either 18 nodes for wavefront phase or 50 nodes for the
spectrum. The electron parameters, which encompass parameters of
the electron bunch and the undulators, serve as the input for the
neural network. Prior to training, these parameters are normalized to
enhance performance.

The output of the network is either the wavefront phase, repre-
sented by Zernike coefficients, or the normalized spectrum numbers.
To ensure that the model accurately captures the nonlinear relation-
ship and maintains generalization capability, we carefully select
hyperparameters to prevent both underfitting and overfitting. The
MLP utilizes the hyperbolic tangent (tanh) activation function, which
allows for output normalization within the range of (−1, 1), effectively
capturing both positive and negative influences from the input data.

For training the model, we employ the Mean Squared Error (MSE)
as the loss function, along with dropout regularization (rate of 0.1) to
prevent overfitting. An Adam optimizer and a batch size of 256 are
utilizedduring the trainingprocess.We trained themodel using80%of
approximately 10,000 total shots, while the remaining 20% was
reserved for evaluating its predictive capabilities. To ensure the relia-
bility of the model, we performed 5-fold cross-validation. This process
involved dividing the data into 5 subsets and conducting training and
evaluation on different combinations of these subsets. The con-
sistently minimal errors observed during cross-validation indicated
that the model was not prone to overfitting or selection bias.

Prediction error and accuracy evaluation
When we have two 2D wavefront phase maps, the RMS difference

between these wavefronts can be computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k ΔXk22

q
. Here, ΔX

represents the phase difference within the circular aperture. Alter-
natively, this difference can be expressed in terms of Zernike coeffi-

cients as k ΔZk2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j ΔZj

� �2
r

, where ΔZj signifies the discrepancy on

each Zernike coefficient. This formula is used to calculate the RMS
error between the measured wavefront and the predicted wavefront.
Additionally, we can assess the shot-to-shot or case-to-case variations
by considering ΔZj as the standard deviation of each Zernike coeffi-
cient. By dividing the RMS prediction error by the standard deviation
of thewavefronts, thewavefront prediction error can be evaluated as a
relative error.

To evaluate the accuracy of spectrum shape prediction, we mea-
sure the similarity between the predicted and measured spectra using
the cosine similarity formula SC ðA,BÞ= A�B

Aj j2 Bj j2. This calculation allows
us to quantify the level of resemblance between the predicted and
measured spectra, providing ametric for assessing the accuracy of the
prediction.

Data availability
The processed data subset can be accessed on Zenodo. Additional raw
datasets that support the findings of this study are available from the
corresponding authors upon request. Source data are provided with
this paper.
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Code availability
The codeused for thedata analysis is available from the corresponding
authors upon request.
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