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Realization and topological properties of
third-order exceptional lines embedded in
exceptional surfaces

Weiyuan Tang1,2, Kun Ding 3 & Guancong Ma 1

As the counterpart of Hermitian nodal structures, the geometry formed by
exceptional points (EPs), such as exceptional lines (ELs), entails intriguing
spectral topology. We report the experimental realization of order-3 excep-
tional lines (EL3) that are entirely embedded in order-2 exceptional surfaces
(ES2) in a three-dimensional periodic syntheticmomentum space. The EL3 and
the concomitant ES2, together with the topology of the underlying space,
prohibit the evaluation of their topology in the eigenvalue manifold by pre-
vailing topological characterization methods. We use a winding number
associated with the resultants of the Hamiltonian. This resultant winding
number can be chosen to detect only the EL3 but ignores the ES2, allowing the
diagnosis of the topological currents carried by the EL3, which enables the
prediction of their evolution under perturbations. We further reveal the con-
nection between the intersectionmultiplicity of the resultants and thewinding
of the resultant field around the EPs and generalize the approach for detecting
and topologically characterizing higher-order EPs. Our work exemplifies the
unprecedented topology of higher-order exceptional geometries and may
inspire new non-Hermitian topological applications.

Spectral degeneracies in band structure often possess intriguing
topological properties. For example, in Hermitian three-dimensional
(3D) systems, point degeneracies such as Dirac, Weyl, or triple points
are monopoles of Berry flux1,2. Degeneracies can form continuous
geometries, e.g., nodal lines with intricate structures such as rings,
links, and chains3. Nodal surfaces have also been shown to carry
topological charges4,5. Recently, physicists found that non-Hermiticity
further enriches the diversity of band topology6–10. This is partly due to
the fact that the non-Hermitian spectrum occupies the complex plane,
such that the energies themselves can exhibit topological winding
behaviors, leading to an additional layer of “spectral topology”
underneath the wavefunction topology, giving rise to skin effects11–19

and spectral knots20,21. Non-Hermitian degeneracies known as EPs
possess topological properties characterizable by spectral winding
numbers6,8,9,22–24. Most studies focus on EPs formed by two coalescing

states with one being defective, i.e., defective order-2 EPs. Akin to
Hermitian degeneracies, they can also form nodal structures, such as
rings25–29, lines30–32, links and chains30,32,33, and surfaces22,34,35. Higher-
order EP is formed when three or more states coalesce, with two or
more states being defective. Although their realizations were reported
in several experiments36–39, their stable existence demands more
degrees of freedom in the parameter space or a higher level of
symmetries40–43.

Here, we report the experimental realization of EL3 entirely
embedded on ES2. The EL3 (ES2) is formed by order-3 (order-2)
defective EPs. Both the EL3 and ES2 run continuously through the
entire 3D parameter space, which is homeomorphic to a 3-torus by
design. Such geometry presents an unexpected difficulty for topolo-
gical characterization. The prevailingmethods that extract topological
properties of nodal degeneracies are based on the principle of
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homotopy group. Under such an approach, topological invariants are
evaluated either on a 2-sphere enclosing the entire nodal structure,
with the topological charges of a Weyl point being an important case;
or on a 1-sphere encircling the nodal structure, such as the char-
acterization of topological nodal lines3,5–7,44 and order-2 EP lines24,29.
However, any enclosing sphere of a single EL3 would encounter ill-
behaved spectral singularity on the ES2, thus defying the continuous
requirement for spectral winding. In a recent study, it is theoretically
shown that the resultants of the Hamiltonian matrix can be viewed as
auxiliary manifolds associated with but different from the eigenvalue
manifolds40. Here, based on the intersection multiplicity of the resul-
tants determining the location of EPs, we further uncover that a
“resultant vectorfield” canbeuniquely chosen to vanishonly at the EL3
and remain continuous at the ES2, leading to a resultant winding
number for diagnosing the topology of the EL3 while ignoring the
influence of the ES2. The validity of our approach is verified by suc-
cessfully predicting the local evolution of a touching point (TP) of two
EL3 under perturbation. Our study expands the understanding of non-
Hermitian topology by unveiling novel topological scenarios exclusive
to higher-order EP structures.

Results
Realization of symmetry-protected EL3
First, wepresent an experiment-feasible lattice system that realizes the
EL3. We begin with a codimension analysis of n-fold non-Hermitian
degeneracy point, denoted EPn. An isolated EPn is found when n
complex eigenvalues become identical, i.e., an EP2 emerges atω1 =ω2,

and an EP3 occurs withω1 =ω2 andω2 =ω3. In other words, an isolated
EPn is a common solution of a set of n� 1 equations to be satisfied42,43,
and the existence of such a solution requires degrees of freedom
(DOFs). In the absence of any symmetry, a d-dimensional structure
constituted by EPn lives in the parameter space with minimal
2 n� 1ð Þ+d dimensions.Henceboth isolated EP3 andES2 are stable in a
four-dimensional (4D) parameter space45,46. The dimensionality
requirement can be reduced by enforcing additional symmetries. In
particular, when parity-time symmetry is respected, the characteristic
polynomial of a Hamiltonian H, denoted p ωð Þ= det H � ωIð Þ=0 where
ω denotes the eigenvalues and I is an identity matrix, has entirely real
discriminant D=

Q
μ<νðωμ � ωνÞ2 (where μ and ν are the eigenvalue

indices), i.e., ImD=0 is always satisfied. Hence theDOF requirement is
reduced to n� 1. Consequently, both ES222 and EL3 are accessible in a
3D PT-symmetric three-state system, serving as our starting point in
designing an experiment-feasible lattice model.

We base our experimental system on coupled acoustic
cavities46,47. Here, we engineer the system such that its parameter
space is mapped to a 3D lattice model. We begin with three air-filled
cylindrical cavities stacked together (Fig. 1a). Within each cavity, a thin
plate is fixed in the radial direction to form standing-wave modes. We
use the second azimuthalmode,whose velocity v profiles andpressure
P are shown in Fig. 1b–d, respectively. The mode is harmonic in the
azimuthal angle ϕ (Fig. 1e, f). Such mode profiles can naturally realize
2π-periodic synthetic coordinates, denoted ϕ1,ϕ2,ϕ3

� �
. Because the

parameter space is clearly a homeomorphism of a 3-torus, we call it a
3D synthetic Brillouin zone (SBZ) henceforth.
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Fig. 1 | Realization of the three-state non-Hermitian model using acoustic
cavities. A photographic image of the ternary acoustic cavity system is shown in a.
b shows the cross-sectional distribution of the squared velocity of a single cavity.
The azimuthal position of the sponge, whichmaps toϕ1, tunes the dissipative rate.
c,d show the squared pressure field in a single cavity. The azimuthal position of the

metal block (coupling hole), which corresponds to ϕ2 (ϕ3), tunes the resonant
frequency (hopping strength). e, f respectively shows v2 as a function of ϕ1 and P2

as a function of ϕ2,3. g–i plot the onsite loss (g), onsite detuning (h), and hopping
strength (i) as functions of ϕ1, ϕ2, and ϕ3, respectively. The blue curves are fitted
from experimental data (red circles).
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The dissipative rate, resonant frequency, and coupling coeffi-
cients can be tuned as independent functions of ϕ1,ϕ2,ϕ3, respec-
tively. Table 1 summarizes the dependence of each physical quantity
on the respective synthetic coordinate and the experimental imple-
mentations. Let ϕ1 tune the imaginary part of onsite resonant fre-
quency in cavities A and C, which is the source of non-Hermiticity in
our system. This is achieved by placing a piece of acoustic sponge to
generate losses, which are linearly proportional to the local kinetic
energy48, given as K / v2ðϕ1Þ / cos2ϕ1. Let ϕ2 modulate the real part
of the onsite resonant frequency of cavity B. A small metallic block is
placed on the circumference for this purpose, and its azimuthal posi-
tion is assigned as ϕ2. Its perturbation to the resonant frequency is
linear to the local acoustic potential energy48 U / P2ðϕ2Þ / sin2ϕ2.
Assign ϕ3 to control the coupling strength between cavities A and B,
also B and C. Acoustic coupling strength is proportional to pressure
intensity, i.e., P2 ϕ3

� � / sin2ϕ3.
Our discussion is based on PT-symmetric systems. To satisfy PT

symmetry, an equal amount of acoustic sponge is inserted into all
three cavities as the biased loss, and then a specific amount of sponge
in cavity A is relocated to C, such that an effective gain is created in A
and the same amount of loss is added to C. We characterize the
detuning, loss, and coupling, as well as realize the synthetic coordinate
ϕ1,ϕ2,ϕ3 in our systems, and the results are shown in Fig. 1g–i as
functions of the corresponding synthetic momenta. By tuning the
acoustic parameters, the loss in the system follows
L ϕ1

� �
= � 60:68ð0:50 sin2ϕ1 � 1Þ, the detuning of cavity B is described

by M ϕ2

� �
= � 38:62cos2ϕ2, and the coupling between neighboring

cavities obeys N ϕ3

� �
= � 42:91 1� 0:62cos2ϕ3

� �
.

A three-state Hamiltonian H = ω0 � iγ0
� �

I+H3b captures the
acoustic cavity system, where ω0 is the resonance frequency of the
second azimuthal cavity mode and γ0 is the dissipation rate. The sec-
ond term is

H3b ϕ1,ϕ2,ϕ3

� �
=

iLðϕ1Þ Nðϕ3Þ 0

Nðϕ3Þ Mðϕ2Þ Nðϕ3Þ
0 Nðϕ3Þ �iLðϕ1Þ

0
B@

1
CA: ð1Þ

By using the trigonometric identity cos 2ϕð Þ= 2cos2ϕ� 1 =
1� 2sin2ϕ, we obtain L ϕ1

� �
= γ +2κ1 cos 2ϕ1

� �
, M ϕ2

� �
= ϵ+

2κ2 cos 2ϕ2

� �
, andN ϕ3

� �
=β +2κ3 cos 2ϕ3

� �
. It then follows thatmodel

(1) maps to a periodic lattice shown in Fig. 2a. Herein, the constant
parameters are the onsite gain (loss) rate of site-A (C) γ =45:51, the
onsite offset to site-B ϵ = � 19:31, β= � 29:60, κ1 = 7:59, κ2 = � 9:66,
and κ3 = 6:65, all have the unit of rad=s and are obtained by bench-
marking the experimental system. The non-Hermiticity in the
model comes from the function ± iL ϕ1

� �
, which manifests as the

constant gain (loss) ± iγ and the asymmetric long-range hop-
ping ± i2κ1 cos 2ϕ1

� �
.

The emergence of an EPn can be identified by the conditions
R p jð Þ,p j + 1ð Þ� �

=0 with 0 ≤ j<n� 1, andR denotes the resultant, p jð Þ is
the jth-order derivative of the characteristic polynomial with respect
to ω. As such, we identify both ES2 and EL3 in the SBZ (Fig. 2b). We
note that the SBZ here is an extended BZ consisting of eight identical
copies of the first BZ. Physically, this is due to the quadratic

dependence of the physical quantities (loss, hopping, and detuning)
on the synthetic dimension; and mathematically, the trigonometric
double-angle formulas play a role in Eq. (1). The choice of SBZ does
not affect the validity of our analysis that follows. The real-
eigenfrequency Riemann surfaces on three distinct 2D slices are
displayed in Fig. 2c–e. Panels 2d, e show ϕ1ϕ2-planes sliced at
ϕ3 =π=2 and ϕ3 =π=3, respectively. The remaining state (shown in
orange) touches the EL2 at particular isolated points and forms EP3
(purple hexagons and red stars). These EP3 only appear when
ϕ2 = ±π=2. The conditions for EP3 to appear are Mðϕ2Þ=0 and
Lðϕ1Þ±

ffiffiffi
2

p
Nðϕ3Þ=0, where the ± sign suggests two possible solu-

tions (Supplemental Materials). The EL3 are plotted in Fig. 2b, c. Two
EL3 form a linear crossing at ϕ1 = 0, ±π, which we denote as the TP.
The TPs are previously defined to the points where two nodal lines
touch49, and here we generalize it to EL3.

The ES2 and EL3 are observed in our acoustic experiments. The
acoustic pressure responses at each cavity are measured near ω0 at
different synthetic momenta. The real and imaginary parts of the
eigenfrequencies are then extracted from the acoustic responses using
the Green’s function36,46,47(Supplemental Materials). We fix ϕ2 = 0:5π,
then choose five different ϕ3 indicated by the horizontal dashed lines
in Fig. 3a, and for eachϕ3, the acoustic system is tuned to five different
ϕ1. Both the real and imaginary parts of the eigenfrequencies from the
measured data are depicted in Fig. 3b, which show good agreement
with the theoretical results (solid curves). Therein, the EP3s aremarked
by red arrows. These positions are thenmarked in Fig. 3a with the stars
and fall on the computed EL3.We then observe the ES2 by performing
similar experiments in different ϕ1ϕ2-planes at ϕ3 =0:5π (Fig. 3c) and
ϕ3 =0:33π (Fig. 3e), which intersect with the ES2 and the EL3. The
coalescence of two of the three states or all three states is clearly seen
(Fig. 3d, f), and the measured locations of the EP2s and EP3s also
conform well with the theoretical results.

Characterization of the EL3
The presence of both ES2 and EL3 gives rise to intriguing topological
characteristics. The ES2 formclose, continuous 2D surfaces that kiss at
the TPs, which separate the eigenvalue manifold into disjoint regions.
The topological properties of ES2 protected by PT symmetry are
characterized by aZ2 topological invariant

22,35, which is equal to 1 here.
Yet the topological characterization of EL3 is more challenging. The
EL3 are entirely embedded in the ES2 and alsoosculate at the TPs. Also,
both the ES2 and EL3 run through the SBZ in the ϕ1-direction. Such
geometry entails difficulties in their topological characterization. As
mentioned before, the topology of a nodal structure is diagnosed by
invariants computed on the m-spheres with 0≤m≤d � 1, which
enclose the nodal structures. Examining the ES2 and EL3, it is clear that
no 2-sphere can enclose them. Yet it remains possible to encircle both
the ES2 and EL3 together using the zeroth or first homotopy group
(Supplemental Materials). Under the zeroth homotopy group count
equivalence classes of 0-sphere, i.e., two separate points, the ES2 and
EL3 together form a manifold that is Z2 classified22,35. Under the first
homotopy group, a 1-sphere, i.e., a closed loop, can encircle the ES2
and EL3 together. An example is shown in Fig. 2b as the green dashed
loop. We have computed the eigenvalue winding number, defined as

Table 1 | Experimental implementations of the synthetic coordinates

Synthetic
coordinate

Physical quantity Physical mechanism Function relation Implementation

ϕ1 Onsite dissipative rate (non-
Hermiticity)

Dissipation proportional to local kinetic
energy v2 ϕð Þ.

v2 ϕ1

� � / cos2 ϕ1

� �
Variation of the azimuthal position ϕ1 of the
sponge.

ϕ2 Onsite resonant frequency Resonant frequency sensitive to the local pres-
sure intensity P2 ϕð Þ.

P2 ϕ2

� � / sin2 ϕ2

� �
Variation of the azimuthal position ϕ2 of the
metal block.

ϕ3 Hopping Coupling strength sensitive to the local pressure
intensity P2 ϕð Þ.

P2 ϕ3

� � / sin2 ϕ3

� �
Variation of the azimuthal position ϕ3 of the
coupling holes.
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W=
P

μ≠ν ½� 1
2π

H
S1 ðd~ϕ � ∇ϕargðωμ � ωνÞ� with μ, ν = 1,2,3 indexing the

states, which is a topological invariant for the spectral topology of the
eigenvalue manifold. The result is W=0. Apparently, both methods
“enclose” the ES2 and EL3 together, therefore they cannot reveal the
topological details carried by the ES2 or EL3 individually.

Hencewe need to find an alternative approach to characterize the
topologyof the EL3.Webeginby re-examining the fundamentals of the
well-established approaches that characterize the topologyof EPs.One
approach is by counting the winding of the discriminant D

(: =Re Dð Þ+ iIm Dð Þ), which gives an invariant called the discriminant
number (DN). The DN captures the intersection multiplicity of
Re Dð Þ=0 and Im Dð Þ=0 since it reflects the sense of rotation for the
discriminant fields ∇ argDð Þ23. For an EP2 in a two-state system, the
winding of the discriminant fields is equivalent to ∇ϕarg½ðωμ � ωνÞ2� –
the latter directly leads to eigenvaluewinding numberW that captures
the topology of the EP2 and EL223. But for systems with more than two
states, e.g., the three-state system in this work, the condition D=0,
which is commonly used as the condition for identifying an EPn,
merely indicates two or more identical eigenvalues. However, this
condition does not distinguish EPs of different orders n. It follows that
what we need is a quantity that vanishes only at the EP3 but is insen-
sitive to any EP2. To this end, we observe that our three-state Hamil-
tonian has three different resultants, R p,p 1ð Þ� �

, R p,p 2ð Þ� �
, and

R p 1ð Þ,p 2ð Þ� �
. The fact that D=�R p,p 1ð Þ� �

rules out R p,p 1ð Þ� �
, and the

other two resultants, R p,p 2ð Þ� �
and R p 1ð Þ,p 2ð Þ� �

, fulfill our needs. We
then define a vector field as Λ ~ϕ

� �
: =η+ iζ , with

η=R p 1ð Þ,p 2ð Þ� �
,ζ =R p,p 2ð Þ� �

. This way, Λ vanishes only at EP3 and
completely ignores EP2 (Supplemental Materials). Such a choice is
proper and unique and cancapture the topology of EL3 by establishing
the connection between the intersectionmultiplicity and the resultant
field50.

In Fig. 4b, we plot the ∇ϕIm lnΛð Þ as a vector field (dubbed the
resultant field or Λ-field) on the ϕ1ϕ2-plane at ϕ3 =0:7π (the green
plane in Fig. 4a), which intersects with twoEL3.Λ is indeed vanishing at
the EP3, but it does not generate any vortex. Protected by the PT
symmetry, the resultants η and ζ purely real, and the topology
embedded in the Λ-field can be described by the winding numbers of
Λ, defined as

WΛ = � 1
2π

I
S1
∇ϕ argΛð Þ � d~ϕ: ð2Þ

WΛ for both EP3 (red stars in Fig. 4a) are zero, suggesting
that they both are unstable. To further reveal the local evolution of
the EP3,we introduce two types of symmetry-preservingperturbations
(δL and δM): L ϕ1

� �
= � 60:68ð0:50 sin2ϕ1 � 1 + δLÞ and M ϕ2

� �
=

�38:62ðcos2ϕ2 + δM Þ. When the perturbation is off, i.e.,δM = δL =0, the
two surfaces defined by η=0 and ζ =0 are respectively shown by
orange andblue surfaces inFig. 4a.According toBezout’s theorem, the
number of intersection points of two algebraic curves, including
points at infinity, is determined by the product of their degrees50. In

. . . . . . 

A

B

C

Fig. 2 | EL3 and ES2 in the SBZ mapped to a 3D lattice model. a The lattice that
maps to Eq. (1). b The EL3 (red curves) and ES2 (blue surfaces) in the SBZ. The
purple hexagons denote the TPs of EL3. The green dashed line denotes an S1 loop
encircling a TP. There are eight identical copies of EL3 and TPs in the SBZ because
applying the trigonometry double-angle formula to the Hamiltonian (1) indicates

that the minimal SBZ is only one-eighth of the entire SBZ. c–e Real-eigenfrequency
Riemann surfaces in the ϕ2 =π=2 plane (c), ϕ3 =π=2 plane (d), and ϕ3 =π=3 plane
(e). The EP3s and EL3 are denoted by the red stars and dashed curves, respectively.
The blue dashed curves show the EL2, which are cuts of the ES2.
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our case, the number of intersection points is four inϕ1ϕ2-plane when
considering both the complex domain and intersection multiplicity
(Supplemental Materials). However, in Fig. 4b, only two intersections
are found, which are the EP3s. This indicates a two-foldmultiplicity for
both intersections. Further changing ϕ3 to π=2, two EL3 merge and
form the TP, which clearly has a multiplicity of four.

The two-foldmultiplicity of the EL3 combinedwith their vanishing
WΛ together suggests that the EL3 in Fig. 4a can bemade locally stable
without breaking the symmetry (Supplemental Materials). This is ver-
ified by letting either δM or δL be non-zero. Figure 4c shows that when
δM = � 0:1, the EL3 split into two pairs symmetric about the ϕ2 =π=2
plane, and they do sowithout dropping the order. Figure 4d plots the
Λ-field and the solutions for η =0,ζ =0 in theϕ1ϕ2-plane atϕ3 =0:7π.
Clearly, four EP3s are seen, indicating the removal ofmultiplicity. The
EP3s can be separated into two pairs by the opposite vortices they
carry, indicatingWΛ = ± 1, whichmeans they are topologically stable.
Note that the TPs from the crossings of the two oriented order-3 ELs
possess zero WΛ, and their multiplicity is reduced to two. Based on
the winding of Λ, we can assign each EL3 with a “topological current”
using the right-hand rule, as indicated by the arrows in Fig. 4c.
Indeed, the currents cancel when the two pairs of EL3 merge at
δM =0. When δM is increased to positive, the EL3 vanishes from our

system. In other words, the topological currents defined by the
winding of Λ are able to capture the merging and annihilation of
the EL3. The topological currents are also informative in revealing
the local evolution of the TPs. Such a configuration discloses two
possible local evolutions in the natural projective plane (ϕ1ϕ3 plane).
When the TP is open, the two linear-crossed EL3s can only separate
without violating the orientation defined by the currents. The two
possible cases are shown in Fig. 4e, f.

Discussion
We compare different choices of the resultants in order to further
digest the relationship between the resultantfields and the topologyof
EPn. As mentioned before, if the goal is to only determine the location
of EPn in an n-level non-Hermitian system, there can be multiple
choices of resultantsR p jð Þ,p ið Þ� �

with0≤ j, i<n� 1 and j ≠ i. Figure 5a–c
plot the three possible choices of resultant fields for our model [Eq.
(1)]: Λ =η+ iζ in Fig. 5a (the one in focus in our work), Λ0 = χ + iζ in
Fig. 5b, and Λ00 = χ + iη in Fig. 5c, with χ =R p,p 1ð Þ� �

( =�D). However, as
we will show next, only Λ is the proper resultant field.

First of all, in all three choices, EP3s can be identified as the
intersection of the curves at which the real and imaginary parts of the
resultant fields vanish. However, the winding of the resultant fields
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Fig. 3 | Observation of EL3 and ES2. a The EL3 in the ϕ2 =0:5π plane. b The
measured real (upper panels) and imaginary (lower panels) parts of eigen-
frequencies along the dashed lines in a. An EP3 occurs when both real and ima-
ginary parts of three eigenfrequencies coalesce. c–f Two slices of the ES2 at
c ϕ3 =0:5π and e ϕ3 =0:33π. The measured real and imaginary parts of

eigenfrequencies along the dashed lines in c and e are shown in d and
f, respectively. The circles in b, d, and f are experimental results. The stars and
circles in a, c, and edenote theobservedpositions of EP3andEP2. The red arrows in
b, d, and f point at the EP3s.
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around the EP3s may not match the intersection multiplicity of the
corresponding resultants. For example, in Fig. 5b, c, cusps are seen on
the green curves indicate χ =R p,p 1ð Þ� �

=0. A cusp carries an intersec-
tionmultiplicity of 2 because it canbe viewedas a self-intersection, and
the net multiplicity at the EP3s is 3 and 2 when diagnosed using Λ0 and
Λ00. However, the winding of Λ0 and Λ00 around the EP3 is 1 and 0,
respectively (Fig. 5e, f), which clearly does not match the multiplicity.
The reason for this failure is because the condition χ =R p,p 1ð Þ� �

=0 is
satisfied as long as two roots of the discriminant are equal, hence χ =0
contains singularities in itself (EP2s), and thus the connection between
intersection multiplicity and resultant winding number fails. In com-
parison, the resultant field by Λ detects only EP3, and its winding
around the EP3 matches the intersection multiplicity, as shown in
Fig. 5a, d. The detailed calculation of the intersection multiplicity is
presented in the Supplementary Information.

The resultant field approach can be generalized to characterize
EPnwith n> 3. The choice of resultants simply needs to exclude all the
resultants already used in the lower-order EPs. For example, Fig. 5g
depicts the resultant choice for EP4. Explicitly, the proper choice for
the EPn is R p jð Þ,p n�1ð Þ� �

with 0 ≤ j<n� 1. The topological description
of the EPn then becomes the problem of characterizing the
(n� 1)-component complex vector. And in the presence of additional
symmetry, such as the PT symmetry here, the problem further reduces
to characterizing the (n� 1)-component real vector.

The EL3 demonstrated here together with previous works show
that the higher-order EPs possess far richer topological properties that
are absent for both EP2 and Hermitian degeneracies. The hybrid
topological winding number and the associated fractional Berry pha-
ses have been demonstrated to be a unique feature of higher-order EPs
using the eigenvectors36,46.Within the context of non-Hermitian bands,
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The red arrows in b, d are guides to the eye.

Article https://doi.org/10.1038/s41467-023-42414-z

Nature Communications |         (2023) 14:6660 6



the higher-order EPs serve as the cusp singularities of multiple EL2s in
the 3D space46, and the topological characterization of EL2s viewing
from the eigenvalue manifold necessitates the braid group51,52, giving
rise to the eigenvalue knots20,21,53 and non-Abelian conservation
rule47,54. Such the fact that the EL2s possess much more fruitful topo-
logical properties than the single EP2s also holds for the higher-order
ELs, but the approach applied to the EL2s fails in the higher-order ELs.
Our work here uncovers that EPs of different orders may form struc-
tures that challenge the conventional wisdom of topological char-
acterization, and they necessitate an auxiliary resultant manifold,
which remains well-behaved at the EP2 and only detects the EP3.
Although the EL3 in this work is embedded in the ES2 originate from a
single band gap, the resultantmanifold approach can not only apply to
the EL3 intersected by the ES2 from adjacent band gaps55 but also be
generalized to higher-order ELs (SupplementalMaterials), whichpaves
the way to digest the topology of higher-order ELs in higher-
dimensional non-Hermitian bands. The exploration of these proper-
ties may lead to new phenomena and applications relating to non-
Hermitian energy transfer56,57 or wave manipulations58.

Data availability
The data that generate the results of this study are available from the
corresponding authors upon request.

Code availability
The codes supporting the findings of this study are available from the
corresponding authors upon request.
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