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Open-loop analog programmable
electrochemical memory array

Peng Chen1, Fenghao Liu1, Peng Lin 1,2 , Peihong Li1, Yu Xiao1, Bihua Zhang1 &
Gang Pan 1,2

Emerging memories have been developed as new physical infrastructures for
hosting neural networks owing to their low-power analog computing char-
acteristics. However, accurately and efficiently programming devices in an
analog-valued array is still largely limited by the intrinsic physical non-
idealities of the devices, thus hampering their applications in in-situ training of
neural networks. Here, we demonstrate a passive electrochemical memory
(ECRAM) array with many important characteristics necessary for accurate
analog programming. Different image patterns can be open-loop and serially
programmed into our ECRAM array, achieving high programming accuracies
without any feedback adjustments. The excellent open-loop analog pro-
grammability has led us to in-situ train a bilayer neural network and reached
software-like classification accuracy of 99.4% to detect poisonousmushrooms.
The training capability is further studied in simulation for large-scale neural
networks such as VGG-8. Our results present a new solution for implementing
learning functions in an artificial intelligence hardware using emerging
memories.

Analog programmability of emerging memories offers a new design
paradigm for non-von Neumann computing hardware1–3. On one hand,
each device in the array can be programmed into thousands of con-
ductance states4, leading to direct implementation of neural network
weights5–9. On the other hand, these analog-valued arrays execute
matrix multiplications in analog-input-analog-weight fashion10–12, pro-
viding a significant upgrade from a digital implementation in terms of
parallelism and computing efficiency7,12,13. Despite tremendous pro-
gresses in using these emerging device arrays for computing
applications14–17, precisely programming a device towards a specific
analog state is still a non-trivial task18,19. In practice, emerging devices
such as memristors20–22 are prone to intrinsic switching variations23–25

and nonlinear conductance change26,27, stemming from their filamen-
tary switching processes. Consequently, write-and-verify is a com-
monly used programming scheme28–31, which employs feedback to
guide iterative programming cycles until an acceptable accuracy is
attained. However, such a closed-loop tuning process can go beyond
100 cycles4,12 and contains undesirable operations such as sensing high

precision analog-valued conductance. For programming intensive
tasks such as training neural networks, closed-loop operation will not
only be inefficient, but could also limit the use of array-level parallel
programming schemes32. As a result, utilizing emerging memories for
in-situ learning functions has been greatly limited.

Ideally, analog programming should be an open-loop, linear and
symmetric process18,33. The conductance change in an analog device,
either increasing or decreasing, can be linearly quantized and trans-
lated to a stimulating parameter such as a pulse number. This linear
and symmetric response34–37 of the device enables accurate program-
ming fromone state to anotherwithout the needof verification. Driven
by this unique advantage, great efforts have been made in search for a
device that could provide the desired open-loop programmability37–40.
For instance, it was found that the filamentary switching process in a
memristor can be regulated by current compliance to produce the
desired conductance values41, which has enabled accurate program-
ming in integrated one-transistor-one-memristor (1T1R) arrays by
precisely controlling the drain current of the selecting transistors41,42.
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However, this method is more effective in programming a device
aiming for an absolute conductance value. In applications such as
training neural networks, the weight changes are relative and depend
on their present values, which makes the use of current compliance
less suitable for the task. In themeantime, ferroelectricmemory device
(FeRAM) has demonstrated good linear and symmetric programming
capability43, but switching linearity and symmetry is achieved by using
voltage pulses with incremental amplitudes, which also adds notice-
able complexity in designing the system.

Recently, three-terminal electrochemical memory (ECRAM)
devices with a transistor-like structure are proposed for the task.
Voltage/current pulses applied at gate terminals drives mobile ions
such as Li+, H+ or O2- across the gate stack and effectively modulates
the channel conductance through controlled doping/dedoping44–49.
Linear and symmetric conductance change has been achieved in
these ECRAM devices with high reproducibility, fine resolution and
good energy efficiency36,38,50. Although these observations have
generated great expectations for ECRAM in accelerating the training
of neural networks, current demonstrations have been more suc-
cessful in standalone devices, while implementations of ECRAM
arrays are still limited by their array size, switching uniformities or
functionalities36,38,51.

In this article, we reported an electrochemical memory array with
accurate open-loop analog programmability. Linear and symmetric
conductanceupdate of ECRAMwas faithfully reproduced in integrated
arrays with successful demonstrations in a set of image programming
tasks, showing promising programmability for accurate weight update
operations. We further experimentally employed our ECRAM arrays
for training tasks and in-situ trained a bi-layer neural network to detect
poisonous mushrooms with a software-like classification accuracy of
99.4%. In addition to experimental demonstrations, simulation based
on device characteristics showed that the ECRAM arrays can achieve
highly accurate training of large neural networks such as VGG-8. These

results pave the way for developing an efficient and high precision
learning hardware for analog and neuromorphic computing.

Results
ECRAM array for open-loop programming
ECRAM arrays with 10 × 10 array size were fabricated for analog com-
puting (Fig. 1a). We used oxygen-deficient tungsten suboxide (WOx) as
tunable channel material, yttria stabilized zirconia (YSZ) as ion con-
duction layer and tungsten as top gate/reservoir layer for electro-
chemical gating (Fig. 1b). The YSZ and WOx layers were partially
crystalized during fabrication process which could contribute to bet-
ter ion conductivity for switching (see Methods and Supplementary
Fig. 1). The device exhibited a representative, non-volatile switching
hysteresis in current-voltage (I–V) sweep (Supplementary Fig. 2), and
more importantly, the desired linear and symmetric conductance
update behavior (Fig. 1c). The conductance of the device could be
modulated linearly with different number of up/down pulsing cycles,
showing good reproducibility and robustness. The number of identical
pulses required to program the device from one state to another can
be directly determined by their linear relationship in an open-loop
fashion (Fig. 1d), in contrast to conventional write-and-verify method.
Similar linear responses can also be achieved using pulse-width mod-
ulation (PWM)52,53 which consolidates a series of identical pulses into a
single pulse with variable pulse width (Supplementary Fig. 3). A set of
greyscale images of 10 × 10 pixels were programmed into the ECRAM
array with each pixel tuned by a single PWM pulse without any feed-
back adjustments (Fig. 1e), showing highly accurate open-loop analog
programming capability (See Methods).

ECRAM characteristics
The open-loop analog programmability of our ECRAM arrays can be
attributed to good switching properties of the device. To achieve lin-
ear and symmetric response, two physical requirements must be met:
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Fig. 1 | An electrochemical memory array with good open-loop program-
mability. a An optical image of an integrated 10 × 10 ECRAM array, scale bar:
200μm. b Cross-sectional TEM micrograph of the gate stack (W/YSZ/WOx), scale
bar: 50nm. c Demonstration of linear and symmetric conductance update in an
ECRAMusing a series of up/downpulsing cycles of different pulse numbers (20, 25,

30, 35 pulses, ±5 V, 150ms). d Schematic of open-loop and closed-loop program-
ming with inherently different pulsing sequences. e Programming of five image
patterns in a 10 × 10 array, all image pixels were programmed using open-loop
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(1) a quasi-linear relationship between the conductivity and oxygen
concentration of the WOx channel54, and (2) a stable ion injection/
ejection rate atWOx/YSZ interface during programming. Theoretically,
the use of current source offers better control over the current injec-
tion rate35,51. Nonetheless, we chose voltage source for this work owing
to its simplicity for array implementation51. The device structure and
material compositions were carefully optimized through fine-tuned
fabrication processes (see Methods), and different channel con-
ductance were explored for quasi-linear responses. It was found that
our ECRAM device exhibited linear and symmetric behavior in widely-
spread switching windows, ranging from sub-μS to hundreds of μS
(Fig. 2a). We calculated the asymmetry non-linearity (ANL) factor55 of
these conductance windows to be 0.21 ± 0.05 (Supplementary Fig. 4),
which is significantly lower than those reported formemristors55. For a
continuous sweep over a large dynamic range, the linearity of con-
ductance update was slightly degraded (Supplementary Fig. 5). How-
ever, it was found thatmaintaining switching symmetry is sufficient to

guarantee good convergence in training neural networks while line-
arity mainly affects the effective learning rate of each weight
update18,32,56. Meanwhile, the metrics of a discrete device could be
further relaxed by modifying training algorithms32.

In addition, we found that the linear and symmetric update in our
ECRAM is highly reproducible and uniform from device-to-device
(D2D) and cycle-to-cycle (C2C). To assess the uniformity of the
switching behavior, a cycling test consisting of 50 potentiation/
depression pulses (±5 V, 100ms)were repeated among 10devices for 5
cycles (Fig. 2b), exhibiting a low spatial-temporal variation of 2.3% (σ/
μ). The same test could be repeated for >40 consecutive up/down
cycles with consistent linearity and symmetry (Supplementary Fig. 6)
and maintaining good switching properties after >50 million pulse
stimulations (Supplementary Fig. 7).

While good programmability of ECRAM is highly favorable, in-
memory computing functions such as multilevel storage and matrix
multiplications are also required for training neural networks.
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Fig. 2 | Characterizations of the ECRAM. a Linear and symmetric conductance
update across different dynamic ranges of (i) 0.1 ~ 0.2μS, (ii) 0.4 ~ 1.0μS, (iii)
2 ~ 4μS, (iv) 15 ~ 30μS, (v) 60 ~ 100 μS and (vi) 170 ~ 230μS, each cycle consists of
100up/downvoltagepulses ( ± 5 V/100ms).b Superimposedplot of cycling testsof
10 ECRAMdevices over 5 repeated cycles (±5 V/100ms), showing good uniformity.
c I–V plots of an ECRAMwith 256monotonically potentiated states, demonstrating
good I–V linearity and wide range programmability. d Retention test of 20 analog

states over a wide switching window. e Analog-input-analog-weight multiplications
between different pairs of device conductance and input voltages. The uniform
color gradient of output current levels indicates good computing accuracies.
f Statistics of experimental VMM in the 10 × 10 ECRAM array from 1000 random
input voltage vectors. The experimental outputs are in a good agreement with
expected values. g Histogram plot of the output error from the VMM.
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Figure 2c shows an I-V plot of an ECRAM device with 256 states gra-
dually potentiated by 256 set pulses. The conductance of the device
increased monotonically and uniformly. A small voltage sweep (0–1 V)
was applied after each pulse to readout the programmed state, which
shows linear I-V conduction between the source and drain contact.
Additional data retention tests further confirmed the stability of the
programmed analog states ranging from sub-μS to over 200μS
(Fig. 2d). The linear I-V relationship and multilevel storage capability
were previously demonstrated in oxide memristors, which are highly
desired properties for analog-analog matrix-multiplications28.
Figure 2e shows the analog-analog multiplication capability of our
ECRAM array, in which a column of nine ECRAM devices were pro-
gramed into equally-spaced conductance states of 31, 32, 33,…, 39μS,
and subsequentlymultiplied by the input voltage vector of 0.1,0.2, 0.3,
…, 0.9 V. The output current of each input-weight pair was plotted in
the figure and shows a uniform color gradient. Vector-matrix multi-
plication (VMM) in a 10 × 10 ECRAM array was also evaluated. During
read and VMM operations, input voltage pulses were applied at the
source terminals through the select line electrodes, and the current
were readout at the bit line outputs (Supplementary Fig. 8). 1000
randomly-generated binary input voltage vectors were applied serially
to the ECRAM array with randomly initiated device conductance. The
VMM results were readout and analyzed, which were in a good
agreement with the expected results (Fig. 2f) and demonstrated low
computing errors (Fig. 2g).

Robust analog programmability in ECRAM array
For training neural networks, the weights are directly stored in mem-
ory arrays and updated through repeated training cycles. The accuracy
of the neural network is determined collectively from the update
precision of each device. Therefore, reproducible analog program-
ming from an entire array is highly important. Figure 3 shows a series
of open-loop programming tasks performed in our ECRAM array. Each
device is updated from its present conductance state to a target state
using a single voltage PWM pulse with pulsewidth solely determined
from its switching linearity (see methods). Two 10 × 10 gradient pat-
terns with different orientations were chosen for the task (Fig. 3a). A
programming cycle to switch between these two gradient patterns can
comprehensively evaluate the analog programmability of our ECRAM
array because weight changes of the 100 pixels uniformly cover dif-
ferent update amplitudes and polarities (see insets of the conductance
update matrix in Fig. 3a). Figure 3b shows the experimental results of
the programming process. The two gradient patterns were serially
programmed into the array from a random initial state, and could be
programmed back and forth for multiple cycles, all using the open-
loop PWM scheme. Notably, a single PWMpulse cycle was sufficient to
program a new gradient pattern from the previous one, showing good
spatial uniformity of the analog programming process. By iteratively
switching between two patterns, we further demonstrated good
reproducibility and robustness of our ECRAM in carrying out these
programming tasks. Figure3c shows theprogramerrors of eachdevice
in the cascaded programming cycles. Most of the program errors fell
below 3% (for 90% of the devices) and 1uS (Supplementary Fig. 9), and
the average write error was calculated to be 1.07% (Fig. 3c), defined as
the ratio of conductance mismatch over target values. The program-
ming accuracy of our array using open-loop scheme is already com-
parable with memristor arrays tuned by dozens of write-and-verify
operations12.

For tasks demanding even higher programming accuracy, such as
for data storage or downloadingweights fromanex-situ trained neural
network, feedback may be used to further reduce the programming
errors. Figure 3d shows the evolution of programmed pattern in three
consecutive pulsing cycles. 99 out of 100 devices have achieved pro-
gramming error <1μS after three cycles (Supplementary Fig. 10). The
average conductance mismatch |Gactual −Gtarget| between the

programmed pattern and the target values were reduced from0.46μS
to 0.21μS in the 2nd cycle, and further lowered to 0.16μS after three
cycles, achieving high programming accuracy with average program-
ming error of only 0.41%. It shows that the linear response of the
ECRAM devices was also beneficial in closed-loop programming
scheme, providing fast convergence ability during iterative write-and-
verify cycles.

Multilayer neural network training with ECRAM array
Combining the in-memory computing capability demonstrated in
Fig. 2 and reproducible analog programming capability in Fig. 3, our
ECRAM array provides a promising toolset for in-situ training tasks. To
show that our ECRAM can be used for accurate learning tasks, we
trained a 10 × 5 × 2 bi-layer neural network to separate poisonous
mushrooms from esculent ones, using a database taken from The
Audubon Society FieldGuide toNorthAmericanMushrooms, available
at UCI machine learning repository57 (Fig. 4a). The database contains
8124 samples of mushrooms (poisonous: edible = 48.2%:51.8%), char-
acterized by 22 attributes scored from 0 to 11. We used the first 10
attributes (e.g., cap-shape, odor, gill-size, etc.) to train our network
(Fig. 4b). The 10 × 10 ECRAM array was partitioned to host two neural
network layers, whichwere placed in different columns using a total of
60 devices (Fig. 4c). Each signed weight was mapped to a single
ECRAM cell by an offset (seeMethods). For hardware implementation,
only synaptic functions have been implemented in arrays, while the
processing of activation function, routing data between first and sec-
ond neural network layers, as well as the calculation of gradients for
back-propagation were done in software. The bilayer network was
trained by backpropagation tominimize themean square error (MSE).
A single PWMpulsewas applied to programeach device for the weight
update by using a global weight-to-pulsewidth coefficient. After the in-
situ training, the bi-layer neural network reaches a classification
accuracy of 99.4% on the whole database (Fig. 4d). To understand how
our ECRAM performed during the training process, we recorded the
conductance evolution of the 60 devices during 70 training epochs
(Fig. 4e) and calculated the programming errors for each update
(Fig. 4f). Most devices have shown small program error within 1 μS
through the training process, thanks to the linear and symmetric
responses. Since we used a global mapping between the weight and
pulsewidth, some devices have exhibited relatively larger errors than
the others, due to spatial variations of the devices. However, the neural
network and its in-situ training process is highly adaptive to small
percentage of non-ideal cells, as we noticed that the programming
errors were gradually minimized during the training process (Fig. 4g).
Overall, the ECRAM array has demonstrated highly accurate and
robust analog programming capability for the demonstrated train-
ing task.

The performance of our ECRAM in training large-scale neural
networks was further evaluated by simulation using VGG-8 network
and CIFAR-10 dataset58 (Fig. 5a). The convolutional neural network
consists of 3 convolutional blocks and 2 fully connected layers with
total of 8 network layers. The software-based weight update processes
weremodified to include the impact of device nonlinearity, spatial and
temporal variations, all extracted from experimental data (see Meth-
ods). The simulation based on device characteristics achieved a clas-
sification accuracy of 87.1% after 175 epochs, which is close to ideal
device with perfect linearity, symmetry and uniformity. For simulation
conditions with increased variability, gradual degradations in classifi-
cation accuracies were observed, suggesting that securing uniformity
and reducing outlier devices may be important in the training process
of larger neural networks.

In summary, we reported a highly functional ECRAM array for
efficient pattern programming and in-situ training of neural networks.
Open-loop analog programmability in array-level demonstrations
was achieved utilizing the intrinsic device properties such as good
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spatial-temporal uniformity, programming linearity and symmetry.
Training neural networks with open-loop analog programming in our
ECRAM array can significantly reduce the design complexity of the
system, which is highly advantageous over existing write-and-verify
methods. The demonstrated analog programmability of our ECRAM
have contributed to software-comparable training accuracy for neural
networks. The efficacy of the ECRAM arraymay be further improved in
future studies by optimizing switching speed and reducing outlier
devices in large-scale integrations. The CMOS compatibility of the
ECRAMarray should also be addressed in integrated systems, ensuring
consistent device performance undergoing BEOL fabrication process
and low voltage operations matching CMOS designs in advanced
technology nodes. In the new era of artificial intelligence which

trending for large language models (LLMs), development of highly
functional learning hardware for training neural networks could be
even more important. Our ECRAM may fill in the gaps of current in-
memory computing technologies with excellent programming and
learning capabilities.

Methods
ECRAM array fabrication
ECRAM arrays were fabricated on top of a silicon substrate with a
100nm thick SiO2 layer. The fabrication process is schematically illu-
strated in Supplementary Fig. 11. First, Ti (3 nm) / Pt (40nm) selectlines
were formed by photolithography and DC sputtering. A 100nm SiO2

layer was then deposited using PECVD to provide isolation between
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bitlines and selectlines, followed by photolithography and ICP-RIE pro-
cess to selectively expose bottom selectlines electrodes for electric
contact to source terminals. Ti (3 nm) / Pt (40nm) / W (5nm) stack
bitlines and source contacts were formed at the same time by photo-
lithography and DC sputtering. After that, 100nm thick WOx channel
were patterned and deposited using reactive DC sputtering with a W
target under the Ar / O2 (4:3) mixing atmosphere. The sputtering power
density was set to 4.5W/cm2. A rapid thermal process at 400 °C for 30 s
was subsequently conducted for modulating the crystallinity and elec-
trical properties of obtained WOx channels. 50 nm thick 8 wt. % YSZ
electrolyte layer was further formed by RF sputtering under Ar ambient.
Both WOx and YSZ layer were patterned by photolithography for good

electrical isolation between different cells in the array. Finally, wordlines
of 50nm tungsten were formed by photolithography and DC sputtering
to complete the array fabrication process. All patterns, including metal
electrodes, WOx channel and YSZ layers, were formed using lift-off
process. The overall fabrication processwas designed to avoid excessive
thermal and chemical exposures that could degrade the device perfor-
mance, which should be further optimized for the BEOL process to build
an integrated ECRAM chip.

Characterizations
The cross-section of the device was captured using a transmission
electron microscope (FEI Tecnai G2 F20 S-TWIN) after focus ion bean
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thinning to a thickness of 100nm (FEI Quanta3D FEG). Electrical
measurements of ECRAM device were mainly conducted at ambient
temperature by using semiconductor parameters analyzer (B1500A,
Keysight) equipped with functional pulse measurement unit (B1530A).
The DC transfer characteristic curves were recorded by scanning gate
voltage while monitoring the source and drain with a readout voltage
of 0.1 V. Pulse measurement was carried out by applying a sequence of
positive and negative voltage pulses to the device, then the con-
ductance changes were obtained by sampling the recorded source-
drain current with a read pulse. The evaluation of the programming
speed of the ECRAM should not only consider the pulsewidth of the
write pulse, but also the amount of conductance change and signal/
noise ratio. The settling timebetween thewrite and read pulses, i.e. the
read-after-write delay, should also be considered when evaluating
the overall programming speed of ECRAM59. For the up/down test, the
time interval between write and read pulses was set to 100ms. The
Device-to-device variation is calculated from 10 devices, in which all
states including potentiation and depression (5 cycles) are aligned
according to pulse number, then the average conductance (μ) and
standard variation (σ) of each state is calculated for evaluation of
average variation (σ/μ). For reading the device’s conductance usingDC
sweep, we used sweep voltages from 0 to 1 V across the source and
drain electrodes at a sweep rate of 0.8 V/s.

Array measurement
The functionality of the ECRAM array was tested using a PCB testing
board combined with a probe card, which can apply voltage pulses to
onecolumnordevice cell andmeasure currents (Supplementary Fig. 12).
The fabricated arrays were connected to the test system through a 128
pins probe card. The testing system allows addressing and operating an
array with customized Python programs. The testing system is con-
trolled by a series of Python scripts. For array programming, the ECRAM
devices were updated in series using 1/2 V scheme to mitigate crosstalk
in the array, utilizing the nonlinear relationship between the con-
ductance change andprogramming voltage amplitudes (Supplementary
Fig. 13 and 14). Single pulses with variable pulse durations were used to
change devices from one conductance state to the other. We first esti-
mated the unit conductance change (ΔGmin) per 1ms pulse, and which
value was adopted as a global parameter for all devices to calculate the
pulse duration of each update. For open-loop programming, a single
programming pulse was applied to each selected device without feed-
back, while for closed-loop programming, the device was programmed
using iterative read-program-read cycles. For reading operations, the
word lines (WL), as well as all unselected bit lines (BL) and select lines
(SL) were grounded (Supplementary Fig. 8). Read voltages of 0.5 V were
applied at the SLs while current was readout at selected BL.

Hardware incorporated neural network training
For bilayer neural network training in ECRAM array, we employed
softmax activation for both the first and second layers, and the acti-
vations were implemented in software. The first 10 attributes of the
mushroomdatasetwere selected as the inputparameters to thebilayer
neural network, as summarized in Supplementary Table 1. Different
descriptions of each input parameter were encoded numerically (e.g.,
different Cap-shapes were encoded from 0 to 5). The conductance (G)
of all used crosspoints devices were initialized with a linear mapping
relationship with weight (w): w = (G −Gmin)/(Gmax − Gmin)—offset,
where Gmax and Gmin represent the conductance window we used for
training, and the offset can be done either in software or using a
reference column in the array. The weights (from -1 to 1) were linearly
mapped to conductance ranges between 25μS and 50μS, which pro-
videsfine granularity forweight updates and good signal-to-noise ratio
for inference tasks with around 200 resolvable steps using a write
pulse width of 100ms. This conductance range was chosen empiri-
cally, which provided us with consistent training results for current

task. During the training process, we employed the MSE error back-
propagation algorithm to generate weight gradients in the neural
network. After the forward process in each epoch, the neural network
loss and weight gradients were calculated in software, and linearly
mapped to required conductance change. Then the ECRAMarray were
updated according to derived gradients for each training epoch. Here,
single pulsewith calculatedpulsewidthswasemployedelement-wisely
update all devices in the hardware neural network.

Simulation of large neural network
The simulation is conducted based on the Python framework of ‘DNN
+NeuroSim’58. The VGG-8 network consists of 3 convolutional blocks
and 2 fully connected layers with total of 8 network layers, which was
trained with CIFAR-10 dataset. After training with 50,000 images, the
neural network is tested with 10,000 images for benchmarks of dif-
ferent devicesmodels. Behavioral devicemodel of ECRAMwas built by
fitting the experimental data shown in Fig. 2b. Cycle-to-cycle variation
of 0.8% and device-to-device variation of 2.3% was used for the simu-
lation. To provide a coarse estimation of outlier devices in large-scale
integrations, additional simulation with enlarged variation value of
(× 1.2, × 1.4) was performed. The large variation ratio was applied to
both device-to-device and cycle-to-cycle variations, while keeping
other parameters unchanged.

Data availability
The data that support the plots presented in this paper as well as other
findings derived from this study are available from the corresponding
author upon reasonable request.

Code availability
The codes used in this paper are available from the corresponding
author upon reasonable request.
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