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Deep reinforced learning heuristic tested on
spin-glass ground states: The larger picture
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In ref. 1, the authors present a deep reinforced learning approach to
augment combinatorial optimization heuristics. In particular, they
present results for several spin glass ground state problems2, for which
instances on non-planar networks are generally NP-hard, in compar-
ison with several Monte Carlo-based methods, such as simulated
annealing (SA) or parallel tempering (PT)3. Here, we examine those
results in the context of well-established literature and find that, albeit
fast and capable for small instance sizes, the presentation lacks signs of
the claimed superiority for larger instances, unless one competes with
Greedy Search for speed.

Indeed, the results of ref. 1 demonstrates that the reinforced
learning improves the results over those obtained with SA or PT, or at
least allows for reduced runtimes for the heuristics before results of
comparable quality have been obtained relative to those other meth-
ods. To facilitate the conclusion that their method is “superior”, the
authors of ref. 1 pursue two basic strategies: (1) A commercial GUROBI
solver (see https://www.gurobi.com/) is called on to procure a sample
of exact ground states as a testbed to compare with, and (2) a head-to-
head comparison between the heuristics is given for a sample of larger
instanceswhere exact ground states arehard to ascertain. Here, weput
these studies into a larger context, showing that the claimed super-
iority is at best marginal for smaller samples and becomes essentially
irrelevant with respect to any sensible approximation of true ground
states in the larger samples. For example, this method becomes irre-
levant as a means to determine stiffness exponents θ in d > 2, as
mentioned by the authors, where the problem is not only NP-hard but
requires the subtraction of two almost equal ground-state energies
and systemic errors in each of≈ 1% found here are unacceptable4. This
larger picture of the method arises from a straightforward finite-size
corrections study over the spin glass ensembles the authors employ,
using data that has been available for decades5,6.

In our investigation here, we focus on mainly two ensembles of
NP-hard problems the authors utilize: The Edwards–Anderson spin
glass on a cubic lattice (EA in d = 3) with periodic boundary conditions7

and the mean-field (all-to-all connected) Sherrington–Kirkpatrick spin
glass (SK)8. The ensemble for both models consists of instances where
all bonds are chosen randomly from a normal distribution of zero
mean and unit variance. The ensemble is parametrized by its size, i.e.,
the number of variablesN in a spin configuration σ!, whereN = L3 in the

case of EA. With those hard combinatorial problems, there are many
ways to find exact solutions for instances of small N, such as a solver
like GUROBI, however, for any practical application at large N, the
super-polynomial rise in complexity necessitates the use of heuristic
methods. Thus, the scalability of a heuristic is of particular concern. In
the formal study of computational complexity, this is typically
addressed by establishing bounds on an all-encompassing worst-case
scenario9. For many complicated meta-heuristics10, such as the case of
the method presented here, insights into the capability of a heuristic
can be gained only from comparative studies over widely accepted
testbeds of instances or those selected from specific ensembles. The
authors have clearly adopted the ensemble approach1.

Especially with regard to scaleability, the ensemble picture
deserves particular attention, for the following reasons. Those
ensembles typically have a “thermodynamic limit”, i.e., their avera-
ges are well-defined and possess a clearmeaning forN→∞, which is a
typical large instance approach. At times, that limit may even be
solvable, such as in the case of SK11, but that is not essential here, as
exemplified by EA. More importantly, that limit is usually attained in
an equally well-defined manner through finite-size corrections
(FSC). To be specific in this context, for the cost function a heuristic
is trying to minimize, the authors have chosen the ground state
energy density, e0 = min

σ!H σ
!� �

=N, of the Hamiltonian H for each
of their (physically motivated) spin glass ensembles. Instances are
generated via random choices of bonds Jij from a characteristic
distribution P(J), see Eq. (1) in ref. 1. If the thermodynamic limit for
the ensemble-averaged ground-state energy density e0

� �
N =1 exists,

FSC assumes the asymptotic scaling form

e0
� �

N ∼ e0
� �

N =1 +
A
Nω + . . . , ðN ! 1Þ, ð1Þ

for a constantA andacorrectionexponentω(>0).Clearly, other formsof
corrections might exist and higher-order terms could well obscure the
assumed behavior deep into the large-N regime. Yet, self-consistency
with the form in Eq. (1) of the actual data for small N, where reliable (or
exact) results can be ascertained, often provides a powerful baseline to
assess the scalability of a heuristic12,13. This is certainly the case here, and
it provides a larger picture of the results in ref. 1.
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Longbefore the PT results3 that the authors reference in their study
of EA in d = 3, virtually identical results have been found by Pal5 using a
genetic algorithm (GA). Despite the doubts the authors raise (in the
caption (Note that several references in ref. 1 are incorrect, e.g., in the
caption to Fig. 5 “ref. 51” should be to ref. 50 and the label “f” should be
“d” for the 3d-EA at L= 10.) of their Fig. 5), both the PT and the GA data
exhibit a consistent scaling picture, shown here in Fig. 1. While the
authors do not provide any tabulated data for their corresponding
results, at least for the larger samples we can extract estimated values
for their best results (for DIRAC-SA, shown as red circles in Fig. 1) from
the plots provided in their Fig. S5d–f. There, the fact that the DIRAC-SA
data is better than either PTor SA is taken as evidence of the superiority
of their method by the authors. However, considering how far sepa-
rated fromany actual ground states every one of the datasets employed
in this comparison really is, this advantage, whether in speed or in
accuracy, is rather inconsequential in the larger picture of Fig. 1.

Similarly, the results the authors provide for SK prove incon-
clusive in the larger picture of long-established results for this
case6,13,14. Here, ref. 1 merely provides results of their method for quite
small instances, where GUROBI allows to obtain exact ground states
for comparison. While these results are indeed consistent with the
predicted scaling, as shown in Fig. 2, the sizes bounded by N ≤ 216
considered in their study have very limited predictive power about the
scalability of their method for any size that would make their method
competitive, either in speed or in accuracy, with state-of-the-art
heuristics at larger N. After all, with an ensemble approach, it is not
necessary to rely on exactly solved instances to make impactful com-
parisons, as our discussion of EA demonstrates.

In conclusion, a comparison with existing data shows little evi-
dence for the claimed superiority of the deep reinforcement learning
strategy to enhance optimization heuristics proposed in ref. 1. The
comparison provided here for both, a sparse short-range and a dense
infinite-range spin glass model, is quite exemplary for all the ensem-
bles the authors discuss so that this conclusion is likely not particular
to these two cases. The authors should be lauded for having demon-
strated some gains relative to simple greedy algorithms for EA15, but
their results remain too far fromoptimality, even if under the < 1% level
we found in Fig. 1, to be of any use in applications to the physics
of spin glasses the authors imply. For example, in the stiffness
problem, one determines the ground state of an instance in EA and
again for reversed boundary conditions, which inserts a relative
domain wall between the ground states with separate energies
e1,20 ðLÞ∼ e0

� �
L=1 +A1,2=L

dω + . . .. That domain wall has a much smaller

energy, Δe= e1 � e2
�� ��∼ΔA=Ldω ! 0, which relates FSC to the stiffness

exponent via dω = d − θ12, as used in Fig. 1. These exponents were
determined for EA in dimensions d = 3,…, 7 by finding ground states
for millions of dilute lattices with up to N = 107 using a hybrid EO
algorithm4,16. Hence, the heuristics chosen as a base for their com-
parison are surprisingly narrow, considering that the authors refer to
ref. 2 for the use of heuristics for spin glasses, which also discusses
GA and EO.

Data availability
Most data discussed in this comment is already available directly from
the respective references cited. Beyond that, any data presented or
discussed in this comment is also available on request from the author
via email.
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Fig. 1 | Extrapolation plot according to the finite-size corrections form in Eq. (1)
for the ensemble-averaged ground state energy densities obtained with var-
ious heuristics for EA ind = 3.Previous data obtainedwithGA5 or PT3 for a rangeof
system sizes N = Ld up to L = 14 exhibits a consistent asymptotic scaling with cor-
rections ~ 1/Nω and ω = 1 −θ/d ≈0.92, as discussed in ref. 12. The linear fit (dashed
line) with x = 1/L2.76 has the form e0
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N =1≈� 1:701 and A ≈ 1.641.

The corresponding data for L = 10, 15, 20 from ref. 1 (red circles) diverge increas-
ingly from the expected values for typical ground states.
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Fig. 2 | Extrapolation plot of ensemble-averaged ground state energy densities
for SK according to Eq. (1) with ω = 2/3. For SK, theory (RSB11) predicts an exact
result for the limit N→∞, e0

� �
N =1 = � 0:7632 . . ., marked by ×. The reference data

(open circles) for up to N = 1023, averaged over at least 105 instances each, was
obtained with the extremal optimization heuristic (EO)6. That the asymptotic fit
(line) of this data predicts e0

� �
N =1 with high accuracy adds confidence in the

scaling. The data for 50 instances each at N = 64, 125, and 216 from ref. 1 (red
squares) matches within errors to a similar random sample of 50 instances each
optimized with EO (filled circles). Note that the ground-state energy variances for
SK are typically broader than standard deviations6. The DIRAC50 data here was
obtained fromFig. S15d–f in ref. 1, which required the additiondivisionby

ffiffiffiffi
N

p
in the

ground state energydensitieswhen a univariate ( J2
D E

= 1) bonddistribution is used,
i.e., e0

� �
N =64 = � 5:6856=

ffiffiffiffiffiffi
64

p
= � 0:7107, e0

� �
N = 125 = � 8:2141=

ffiffiffiffiffiffiffi
125

p
= � 0:7347,

and e0
� �

N =216 = � 10:8895=
ffiffiffiffiffiffiffiffi
216

p
= � 0:7409.
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