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The behavioral signature of stepwise
learning strategy in male rats and its neural
correlate in the basal forebrain

Hachi E. Manzur1, Ksenia Vlasov1, You-Jhe Jhong 2, Hung-Yen Chen2 &
Shih-Chieh Lin 1,2,3

Studies of associative learning have commonly focused on how rewarding
outcomes are predictedby either sensory stimuli or animals’ actions.However,
in many learning scenarios, reward delivery requires the occurrence of both
sensory stimuli and animals’ actions in a specific order, in the form of beha-
vioral sequences. How such behavioral sequences are learned is much less
understood. Here we provide behavioral and neurophysiological evidence to
show that behavioral sequences are learned using a stepwise strategy. In male
rats learning a new association, learning started from the behavioral event
closest to the reward and sequentially incorporated earlier events. This led to
the sequential refinement of reward-seeking behaviors, which was character-
ized by the stepwise elimination of ineffective and non-rewarded behavioral
sequences. At the neuronal level, this stepwise learning process was mirrored
by the sequential emergence of basal forebrain neuronal responses toward
each event,whichquantitatively conveyed a rewardprediction error signal and
promoted reward-seeking behaviors. Together, these behavioral and neural
signatures revealed how behavioral sequences were learned in discrete steps
and when each learning step took place.

Associative learning is essential for survival and allows animals and
humans to predict future reward based on environmental stimuli1,2 or
their own actions3–5. Understanding the algorithmic principles of
associative learning has been a central question in psychology and
neuroscience6–13, and has broad implications in machine learning and
artificial intelligence14–16.

While the learning of stimulus-reward and action-reward
associations have been historically studied under the separate
labels of Pavlovian1,2 and instrumental3,4 conditioning, most learn-
ing scenarios require the synergistic contribution from both types
of learning strategies. For example, when a new reward-predicting
stimulus is introduced to the environment, the Pavlovian strategy
might not be sufficient because oftentimes the reward would not
be delivered unless animals take specific actions. In experimental

settings, such actions could be a lever press, or a saccade toward
a target, or multiple licks before the reward is delivered. In
these scenarios, reward is obtained only when sensory stimuli and
animals’ actions occur in a specific order as a behavioral
sequence5,17–19. Compared to the wealth of knowledge about Pav-
lovian and instrumental conditioning, little is understood about
how animals learn behavioral sequences that contain both stimuli
and actions.

Converging views from theoretical studies support the idea that
reward-predicting behavioral sequences can be efficiently learned
using a strategy that we will refer to as stepwise learning: learning
starts from the event closest to the reward, while earlier events are
learned in later steps. This learning strategy was initially proposed by
Skinner5 andmore recently elaborated into formal learningmodels18,19.
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Similar learning dynamics are also predicted by reinforcement
learning algorithms, in which states that are closer to the final reward
are learned first14. The stepwise learning strategy has also been suc-
cessfully used in various animal training scenarios to incrementally
chain single behaviors into long sequences over multiple training
steps20.

The goal of the current study is to test whether animals use the
stepwise learning strategy to learn reward-predicting behavioral
sequences that contain both stimuli and actions. We seek to identify
the behavioral and neural signatures of this learning process that
can delineate the discrete steps of learning. A major challenge in
understanding this type of learning is that behavioral sequences are
controlled not only by the experimenter but also by the animal,
which is free to take various actions. We reason that, at the begin-
ning of learning, animals’ actions would be less constrained and
therefore would generate a large repertoire of behavioral sequen-
ces that may or may not lead to the rewarding outcome. As the
stepwise learning process unfolds, the repertoire of behavioral
sequences should become increasingly selective as well as more
frequently rewarded. Therefore, the behavioral signature of the
stepwise learning strategymay reside in how the entire repertoire of
behavioral sequences become sequentially refined during the
learning process. In the current study, we identified such a beha-
vioral signature, which corresponded to the discrete steps in the
stepwise learning process.

In order to validate the behavioral signature for the stepwise
learning strategy, we focused on a special subset of noncholinergic
neurons in the basal forebrain (BF), which are referred to as BF
bursting neurons21–26. Previous studies have found that BF bursting
neurons convey a reward-prediction error signal21,22,27,28, and show
highly robust phasic bursting responses to reward-predicting sen-
sory stimuli irrespective of their sensory modalities21–25. Moreover,
such responses only emerge after reward-based associative
learning21, and are tightly coupled with behavioral performance and
promotes faster decision speeds21–23. These observations suggest
that increased BF bursting neuron activities toward a behavioral
event reflects that the event has been learned as a reward predictor.
By observing the temporal evolution of BF bursting neuron activ-
ities throughout the learning process in the current study, we pre-
dict that BF responses should mirror the stepwise learning process:
BF activity should first emerge toward the last behavioral event
closest to the reward, and subsequently develop toward the earlier
behavioral events. Such behavioral and neurophysiological findings
will provide important insights on how behavioral sequences are
learned.

Results
A model for learning behavioral sequences using the stepwise
learning strategy
To gain intuition about the stepwise learning strategy, we first con-
sidered a toy example in which a three-element sequence A-B-C pre-
dicted reward (Fig. 1a). This sequence can be learned using the
stepwise strategy in three discrete steps, starting from the event clo-
sest to the reward and sequentially incorporating earlier events
(Fig. 1b). Asmore behavioral events are learned as rewardpredictors in
each step, only behavioral sequences that contain all the learned
events would predict reward and therefore preferentially executed,
while incompatible sequences that do not contain all the learned
events would not predict reward and therefore be eliminated from the
behavioral repertoire. As a result, the discrete steps of learning would
correspond to the stepwise elimination of non-rewarded behavioral
sequences that share subsets of behavioral elements (Fig. 1b). We
hypothesized that this sequential refinement of reward-seeking beha-
viors might provide a behavioral signature of the stepwise learning
strategy.

Sequential refinement of reward-seeking behaviors during new
learning
To test whether animals indeed use the stepwise strategy to learn
behavioral sequences that contain both sensory stimuli and their own
actions, we trained adult Long-Evans rats in an auditory discrimination
task. Rats entered the fixation port to initiate each trial, where they
encountered three trial types (Sleft; Sright; catch) with equal probabilities
that respectively indicated sucrose water reward in the left or right
port, or no reward in the case of catch trials (no stimulus) (Fig. 2a).
During the initial auditory discrimination phase, Sleft and Sright were two
distinct sound stimuli. After reaching asymptotic performance, rats
entered the new learning phase (first new learning session denoted as
the D0 session), in which the Sright sound stimulus was switched to a
novel light stimulus that minimized sensory generalization from past
experience (Fig. 2b and Table 1). During the new learning phase, rats
maintained stable levels of performance toward the previously learned
Sleft sound stimulus (Fig. 2c) (94.3 ± 4.8% correct, 109 ± 20 trials per
session, mean± std).Within the first three sessions of the new learning
phase, all rats (N = 7) began responding correctly in the new light trials
(the first such session denoted as theD1 session) andmaintained stable
levels of >90% correct response rates afterwards (Fig. 2c and Table 2).

To understand how the repertoire of behavioral sequences
evolved during learning, we examined all possible behavioral
sequences that the animal might experience (Fig. 2d). This approach
allowed us to identify non-rewarded behavioral sequences that were
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Fig. 1 | A model for the stepwise learning of behavioral sequences. a Schematic
of an example scenario where the reward is predicted by a simple sequence con-
sisting of three behavioral events A-B-C. For example, A could be a light stimulus, B
the rightward choice, and C the approach behavior to obtain reward. A1/A2/B1/B2
indicate alternative behavioral elements for A/B that could be combined to gen-
erate other behavioral sequences. Among all possible sequences, only the A-B-C
sequence is rewarded. b The three distinct steps when learning the A-B-C sequence
using the stepwise strategy illustrate how reward-seeking behaviors are sequen-
tially refined. For simplicity, alternative behavioral events are denoted as non-A and
non-B. Three possible behavioral sequences are listed. Behavioral events that have

been learned as reward-predictors are colored in red, while the rewarded sequence
(A-B-C) is underlined in red. b1 The first step of learning involves the event closest
to the reward, C. Animals would engage in all three behavioral sequences because
they all contain this reward-predicting event. b2 The second step of learning
involves the next-to-last event, B. Behavioral sequences that contain the reward-
predicting events B-C are preserved, while the incompatible sequence is eliminated
from the behavioral repertoire (gray). b3 The third step of learning involves the
earliest event, A. Only the A-B-C sequence contains all the reward-predicting events
A-B-C and therefore preserved, while another incompatible sequence is eliminated
from the behavioral repertoire.
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not associated with specific trial types but were, nonetheless, highly
relevant for the learning process. We identified three types of beha-
vioral sequences whose frequencies consistently increased during the
new learning phase. These three types of behavioral sequences inclu-
ded the rewarded licking behavior in the new light trials (light licks), as
well as two types of non-rewarded behavioral sequences: catch licks

and no-fixation licks (Fig. 2c). Catch licks refers to licking responses
toward the right reward port in catch trials when no sensory stimulus
was presented. No-fixation licks refers to the situation in which rats
directly licked at the right reward portwithout first entering the center
fixation port. All three behavioral sequences shared the common fea-
ture of licking the right reward port (lick-right).

Both no-fixation licks and catch licks were largely absent before
the new learning phase, and emerged andpeakedduring early sessions
of new learning, before subsequently diminished in later sessions
(Fig. 2c). No-fixation licks occurred most frequently at the D1 session,
while catch licks peaked in the same session (N = 1/7) or later in most
animals (N = 6/7). We will denote the peak of catch licks as the D2

session in each animal. The consistent temporal order of the D1 and D2

sessions within each animal allowed us to identify similar learning
stages across animals despite their individual differences in learning
dynamics.

The temporal dynamics of the three types of rightward licks
during new learning (Fig. 2c) showed that non-rewarded behaviors
were sequentially eliminated while rewarded behaviors were pre-
served. This temporal dynamics resembled the pattern of sequen-
tial refinement of behavioral sequences predicted by the stepwise
learning strategy (Fig. 2e), and likely corresponded to the discrete
steps in the underlying learning process. To further test whether
such patterns of sequential refinements represent a general feature
of behavioral sequence learning, we trained a separate cohort of
animals and observed similar behavioral signatures regardless of
the sensory modality of the stimulus or the laterality of the new
learning side (Fig. S1). These observations support the idea that
animals do use the stepwise strategy to learn behavioral sequences.
In the following analyses, we tested additional predictions of the
stepwise learning strategy at both behavioral and neurophysiolo-
gical levels.

Fig. 2 | New associative learning led to sequential refinements of reward-
seeking behaviors. a Behavioral task. Rats entered the fixation port to initiate each
trial, where they encountered three trial types (Sleft; Sright; catch) with equal prob-
abilities that respectively indicated water reward in the left or right port, or no
reward in the case of catch trials (no stimulus). Task symbols were adapted from
Avila and Lin22. b Rats initially learned an auditory discrimination task (old asso-
ciation phase). At the new learning phase, Sright was switched from the sound to a
newhouse light, while other elements of the task remained the same. Symbolswere
adapted from Avila and Lin22. c The proportion of three types of reward-seeking
behaviors toward the right reward port (light licks, catch licks, no-fixation licks)
across sessions during new learning in individual animals (N = 7 rats), and their
mean (±s.e.m.). No-fixation licks (cyan) refers to trials in which rats failed to first
enter the fixation port before licking in the right reward port. Sessions were
respectively aligned, in each column, at the D0, D1 or D2 session of each animal. D0

refers to the first new learning session with the new light stimulus; D1 refers to the
session when animals began to respond correctly in the new light trial; D2 refers to
the sessionwhen catch licks peaked. TheD0, D1 andD2 sessions in each animalwere
indicated by red, cyan, and black circles, respectively. Each row in top panels
depicts behavior performance in one animal (#1–7). In themiddle and right panels,
only sessions in the new learning phase (starting from the D0 session) were plotted.
The emergence, as well as the following sequential elimination, of no-fixation licks
and catch licks resembled the sequential refinement of reward-seeking behaviors
under the stepwise learning strategy. Sourcedata for this and all subsequentfigures
are provided as a Source Data file. d Behavioral sequences that animals might
experience. Out of all possible sequences, only three types of rightward licking
behaviors were consistently observed during new learning. Symbols were adapted
from Avila and Lin22. e A stepwise learning model that accounts for the sequential
refinement of the three types of rightward licking behaviors. e1 The behavioral
events in the model arranged in the format as in Fig. 1b. e2 Behavioral sequences
learned as reward predictors at the three discrete steps of learning, along with the
compatible and incompatible behavioral sequences at each step. e3 Sequential
refinement of the three types of rightward licking behaviors arranged in the format
as in Fig. 1b.
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Initial learning was characterized by the rapid emergence of
reward-seeking behaviors and corresponding increases in BF
activities
To validate the behavioral observations and understand the under-
lying neural dynamics, we recorded BF neuronal activity throughout
the learning process (Fig. 3a) and used the consistent Sleft sound as the
control stimulus to identify stable populations of BF bursting neurons
(Figs. 3b and S2). A total of 1453 BF single units were recorded over 45
sessions (N = 7 rats), of which 70% (1013/1453) were classified as BF
bursting neurons based on their stereotypical phasic response to the
Sleft sound (22.5 ± 7.3 neurons per session, mean± std) (Fig. 3b). The
population response of BF bursting neurons were highly consistent
across animals (Fig. 3c), and remained remarkably stable in Sleft trials
throughout the learning process (Fig. 3d). The inclusion of Sleft trials
therefore allowed us to record from stable and representative popu-
lations of BF bursting neurons throughout the learning process, and to
investigate how their activities dynamically evolved in other trial types
during learning at single trial resolution (Fig. 3e).

We first applied this approach to understand the behavioral
and neural dynamics in the D1 session because all three types of
rightward licks emerged in this session (Fig. 2c, middle panel).
Detailed analysis of behavioral responses from a representative
session (Fig. 3e) revealed that the three types of rightward licking
behaviors emerged abruptly after a transition point (see Methods
for definition). Rightward licking behaviors were mostly absent
before the transition point, and rapidly switched to almost 100%
licking after the transition point. This pattern of abrupt transition

was consistently observed across all animals (Fig. 4a1), while the
behavioral performance and BF activities in Sleft sound trials
remained relatively stable (Fig. S3).

At the neuronal level, there was a corresponding increase in the
activity of BF bursting neurons that rapidly emerged after the transi-
tion in rightward reward-seeking behaviors (Figs. 3e and 4b1). This
increase inBF activitywasmost prominent in the epochbefore the trial
outcome as animals approached the reward port (Fig. 3e2), but this
activity was not consistently aligned with intervening behavioral
events (Fig. S4). In contrast, in trials before the transition point, BF
bursting neurons did not show similar activity increases in the corre-
sponding timewindowafter exiting the fixation port (Figs. 3e and 4b1).
We will refer to the maximum BF activity in this window as the BF
evaluation response (see Methods for definition) because it reflected
animals’ internal evaluation when no sensory stimuli were presented
during this epoch and because it was not consistently associated with
intervening behavioral events.

The emergence and subsequent elimination of non-rewarded
behaviors were mirrored by changes in BF activity
The stepwise learning model predicted that, as animals learned about
the lick-right action as the first reward predictor, animals would initi-
ally engage in all three types of rightward licking behaviors because
they all contained this reward predictor (Fig. 2e). We therefore
examined the respective prevalence of the three types of rightward
licking behaviors after the transition point in theD1 session (Fig. 4a). All
three types of rightward licking behaviors emerged immediately after

Table 1 | Stimulus parameters of the Sleft and Sright stimuli for each animal

Animal ID Sleft sound Sright sound
(auditory discrimination)

Sright light
(new learning)

#1 12 kHz 80dB 2 s 6 kHz 80dB 2 s Center Light 0.5 s

#2 100Hz clicker 75 dB 1 s white noise 75 dB 1 s Center Light 1 s

#3 100Hz clicker 75 dB 1 s white noise 75 dB 1 s Center Light 1 s

#4 100Hz clicker 75 dB 1 s white noise 75 dB 1 s Center Light 1 s

#5 100Hz clicker 75 dB 1 s white noise 75 dB 1 s Center Light 1 s

#6 100Hz clicker 75 dB 1 s white noise 75 dB 1 s Center Light 1 s

#7 100Hz clicker 75 dB 1 s white noise 75 dB 1 s Center Light 1 s

Table 2 | Timing of the three landmark sessions in each animal and the number of recorded BF neurons in each session

Sessions 2 session)
Animal ID D2-3 D2-2 D2-1 D2 D2+1 D2+2 D2+3 D2+4

#1

#B
u

rs
ti

n
g

 n
eu

ro
n

s 
/ 

#B
F

 n
eu

ro
n

s

4/13 1/4 23/32 25/33 34/49 28/41 31/46 29/42

#2 26/43 29/46 26/38 25/40 25/42 13/28 15/31 18/36

#3 33/39 20/29 29/38 26/36 21/33 26/34 30/40

#4 17/27 15/21 17/23 21/30 21/25 24/26

#5 29/35 32/39 30/38 30/39 29/36 31/35

#6 17/30 16/29 20/37 16/28 18/29 20/27

#7 23/28 20/22 11/13 19/23

D0 D1 session symbols
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the transition point. Moreover, after about 60 trials, no-fixation licks
began todecline andoccurred less frequently than light licks and catch
licks (Fig. 4a2–3).

At the neuronal level, the corresponding prediction was that the
lick-right action would be associated with increases in BF activities

during the first learning step, which should be similarly present in all
three types of rightward licking behaviors. Indeed, BF evaluation
responses quickly increased after the transition point in all three types
of rightward licking behaviors (Fig. 4b). The amplitudes of BF evalua-
tion responses were similar between the three types of rightward
licking behaviors within the first 60 trials after the transition. Subse-
quently, the BF evaluation response in no-fixation licks declined in the
next 60 trials, relative to the other two types of rightward licking
behaviors (Fig. 4b2–3).

These results support that the first step of the stepwise learning
process corresponded to the first 60 trials after the transition point in
the D1 session. All three types of rightward licking behaviors were
present during this stepof learning. BF activity also increased to similar
levels in all three types of behavioral sequences whenever animals
approached and licked the right reward port, regardless of whether
they had exited from the center fixation port.

These results further suggest that the second step of learning
started at roughly 60 trials after the transition, at which point animals
learned about the second reward predictor: exiting the fixation port
(Fig. 2e). As a result, the no-fixation lick sequence was no longer
compatible with the learned reward predictors, which resulted in
diminished BF evaluation responses and the elimination of this beha-
vior from the behavioral repertoire. The other two types of rightward
licks, light licks and catch licks, remained compatible and maintained
high levels of BF evaluation responses.

Fig. 3 | Abrupt transition in reward-seeking behaviors corresponded to
increased neuronal activity in the BF during initial learning. a, Locations of
electrode bundles targeting bilateral BF (N = 7) in coronal sections of the rat brain
(coordinates relative to Bregma). Different colors correspond to different animals.
Used with permission of Elsevier, from The rat brain in stereotaxic coordinates,
Paxinos and Watson34; permission conveyed through Copyright Clearance Center,
Inc. b, Response of individual BF bursting neurons (n = 1013) to the Sleft sound
during new learning sessions (N = 45 sessions; separated by thin red lines) in each
animal (N = 7 rats; separated by cyan dotted lines). BF bursting neurons showed
robust and consistent phasic responses to the Sleft sound throughout the learning
process. c, Average BF bursting neuron responses to Sleft sound onset and the
associated rewarddelivery. BF activities in catch trialswereplotted for comparison.
Responses from individual animals (thin lines) were similar (N = 7). Symbols were
adapted fromAvila and Lin22.d The activity of BF bursting neurons remained stable
between the first (D0) and last (Dlast) recording session. Average activities in the
yellow shaded intervals were similar between these two sessions (inset) (two-sided
paired t-test, N = 7). Thin lines indicate BF activity in individual animals. Symbols
were adapted fromAvila and Lin22. e Behavioral and BF neuronal dynamics in the D1

session from a representative animal (rat #4). e1 The emergence of three types of
rightward licks after the transition point (top), and their combined rightward
licking probability across trial types (bottom). The transition point (T) marked an
abrupt transition in the pattern of reward-seeking behavior that went from no
licking to 100% licking. e2 Top, population activities of BF bursting neurons (color-
coded) in the same trials (X-axis) as shown in e1. Y-axis indicates time in each trial,
with time zero aligned at the trial outcome. No lick trials before the transition were
aligned instead at the time of fixation port exit (fix-out, white circle) such that the
median timing of fix-outs in lick and no lick trials were equivalent. The blue and red
lines to the right of the panel indicate the time windows for calculating evaluation
and outcome responses, respectively. Bottom, BF evaluation responses (blue) and
outcome (red) responses across trials. Outcome responses were plotted separately
for rewarded (solid red) and non-rewarded (dashed red) licks. Circles indicate BF
activities in single trials and lines indicate their respective trends (movingmedians).
e3 Examplesof single trial BF activities from the three types of rightward licks taken
around the transition point. Each panel showed the spike rasters of BF bursting
neurons in this session (n = 15) (top), along with the population activity trace and
relevant behavioral events (bottom). Shaded intervals indicate the time windows
corresponding to evaluation responses (blue) and outcome responses (red) shown
in e2. Notice that BF bursting neurons in the same session showed highly similar
activity patterns, and that the BF evaluation response rapidly emerged in all three
types of rightward licks after the transition point.

c

d

a
N=7

D0
Dlast

s5.05.0- 0s5.05.0- 0

s5.05.0- 0s5.05.0- 0

BF
 a

ct
ivi

ty
 (s

pk
/s

)

0

10

20

BF
 a

ct
ivi

ty
 (s

pk
/s

)

0

10

20

sound

catch

-0.36 mm
AP

-0.72 mm

-1.08 mm

e1

e3

e2

-0.5

-1.0

-1.5

0.5 0

15

 s
pk

/s

0

1

p(
lic

k 
rig

ht
)

0

20

10

BF
 a

ct
ivi

ty
 (s

pk
/s

)
BF

 b
ur

sti
ng

 
ne

ur
on

s 
(n

=1
5)

light

0

no-fix lick
catch 

evaluation
outcome (reward)
outcome (no reward)

evaluation
reward
no reward

trials500 100 150 200 250

trials500 100 150 200 250

tim
e 

fro
m

 
ou

tc
om

e 
(s

se
)

transition (T) 

T-4th trial T+9th trial T+25th trial 

T+6th trial T+34th trial 

T-2nd trial T+22nd trial T+33rd trial 

lightfix-in fix-out lick reward

po
pu

lat
ion

ac
tiv

ity
 

1 sec

10
 s

pk
/s

lig
ht

 
ca

tc
h

no
-fi

x 
lic

k

lick
no lick
lick
no lick
lick

b

BF
 b

ur
st

in
g 

 n
eu

ro
ns

 
D 0

 ~
 D

las
t s

es
sio

ns

0

20
 s

pk
/s

s5.05.0- 0

p=0.41 p=0.95
#1
#2
#3
#4
#5
#6
#7

rat ID

fix-out

outcome

D1, rat #4

Article https://doi.org/10.1038/s41467-023-40145-9

Nature Communications |         (2023) 14:4415 5



BF neurons did not respond to the new light stimulus during
initial learning
A further prediction of the stepwise learning model was that, at both
the first and the second steps of learning, animals had not learned to
use the new light stimulus as a reward predictor, and therefore the new
light stimuluswould not elicit responses in BF bursting neurons during
these steps (Fig. 2e).

We tested thispredictionby comparingBF activities between light
and catch trials in the D1 session (Fig. 5). Indeed, BF activities in light
trials were highly similar to those in catch trials (in the absence of the
light stimulus) in the epochs before exiting the fixation port. This was
true regardless of whether animals subsequently licked at the right
reward port. This observation confirmed the prediction that the new
light stimulus did not activate BF bursting neurons in the D1 session,
despite the near-perfect behavioral performance in light trials after the
behavior transition point.

On the other hand, in the epoch after exiting the fixation port,
there were similar increases in BF activity when animals licked at the
right reward port in both light and catch trials (Fig. 5). This increase in
BF activity corresponded to the BF evaluation response described
earlier (Fig. 4b), which reliably distinguished between lick and no lick
trials, but not between light and catch trials (Fig. 5c). These observa-
tions support the idea that light and catch trials were treated as the
same in theD1 session, and that the light stimulus has not been learned
as a reward predictor at this stage of learning.

BF responses to light onset emerged later when the light sti-
mulus was used to guide reward-seeking behavior
When did the third step of the stepwise learning process take place?
Since the third step was when animals learned to use the light stimulus
as a reward predictor to guide reward-seeking behaviors, it should
correspond to the timepointwhen the behavioral performance in light
and catch trials began to diverge.We noted that the behavioral pattern
in light and catch trials were highly similar prior to the D2 session
(Fig. 2c), and the similarity was best illustrated in the fine behavioral
and neuronal dynamics within the D1 session (Fig. 4). In contrast,
during the D2 session, the behavioral pattern in light and catch trials
began to show a small but significant difference (Fig. 6a). This pattern
suggests that the D2 session might be when the third step of learning
took place.

The corresponding prediction at the neuronal level was that BF
bursting neurons should begin to respond to the light stimulus in the
D2 session. We tested this prediction by comparing BF activities
between light and catch lick trials in the D2 session, and found sig-
nificant differences in all epochs, including the presence of a phasic
response to the light onset (Fig. 6b). This observation supports the
idea that BF responses to the new light emerged in the D2 session.

To better understand how BF responses to the new light emerged
in the D2 session, we further compared BF responses in light lick and
catch lick trials between (1) late trials in the D2−1 session; (2) early trials
in the D2 session; (3) late trials in the D2 session (Fig. 6c). At the end of
the D2−1 session, BF neurons did not show response to the new light

Fig. 4 | Rapid emergence and subsequent refinement of reward-seeking beha-
viors and BF activity. a The pattern of rightward licking behaviors aligned at the
transition point in the D1 session of each animal (N = 6). One animal (#7) with
accelerated learning dynamics, in which its D1 and D2 occurred in the same session,
was excluded from this analysis. The behavioral response patterns in three trial
types (light trials, catch trials and no-fixation licks) were either pooled together
within each animal (a1), or plotted separately (mean ± s.e.m.) (a2). While all three
types of rightward licking emerged immediately after the transition, no-fixation
licks subsequently decreased after 60 trials (a3) (Repeated measures ANOVA for
group comparisons and post-hoc two-sided paired t-test between two trial types,
N = 6). b Corresponding changes in BF activity aligned at the transition point in the
D1 session of each animal (N = 6). BF evaluation responses and outcome responses
in the three trial types were pooled within each animal (b1), as in the example in
Fig. 3e2. BF evaluation responses were further plotted separately for each trial type,
relative to their respective baseline firing rates (mean ± s.e.m.) (b2). BF evaluation
responses increased similarly in the three types of rightward licking immediately
after the transition, and subsequently decreased in no-fixation licks after 60 trials
(b3) (Repeated measures ANOVA for group comparisons and post-hoc two-sided
paired t-test between two trial types, N = 6). Thin lines in b1 indicate the trend (10-
trial moving median) of BF activities from individual animals.
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(paired t-test between light lick and catch lick trials, p = 0.51, N = 6). In
early D2 trials, BF phasic responses to the new light were clearly visible
in 4 animals. Comparisonbetween late trials in theD2−1 session and the
early D2 trials showed a trend toward increasing BF responses (Fig. 6c1,
significant at p <0.05 level; Fig. 6c2, paired t-test, p =0.065, N = 6).
Moreover, during the D2 session, BF responses to the new light
increased in all animals between early and late trials (Fig. 6c2, paired t-
test, p =0.003, N = 7). This increase took place mostly during the
sustained phase of the BF response that was better aligned with fixa-
tion port exit than with stimulus onset (Fig. 6d). Together, these
observations suggest that BF responses to the new light developed
partly offline between the D2−1 and D2 session, and partly strength-
ened during the D2 session. Comparing the temporal dynamics of
behavioral andBF responses further suggests that the emergenceof BF

responses to the new light preceded the elimination of catch licks
during the third step of learning (Fig. S5).

Stronger BF responses to the new light reflected better learning
and faster decisions
After the third step of learning took place in the D2 session, did the
learning about the new light plateau or did the learning continue to
progress? At the neuronal level, BF phasic responses to the new light
continued to grow stronger after the D2 session (Fig. 7a). At first
glance, the continual increases in BF responses to the new light sti-
mulus did notmatchwith the hit rates in light trials, which had already
plateaued in theD2 session (Fig. 2c). However, aswehave shownearlier
(Figs. 4 and 5), hit rates in light trials could be a poor index of learning
about the new light stimulus because light licks in the early learning
sessions were not driven by the light stimulus but by later events in the
behavioral sequence (exiting fixation and lick-right) as reward pre-
dictors. Those behavioral events enabled rightward licking responses
in the absence of the light stimulus (catch licks and no-fixation licks).

Instead of the hit rate in light trials, a better behavioral index for
the learning about the light stimulus would be the difference in the
levels of behavioral performance between light and catch trials. This
behavioral index accounted for the contributions from the later events
in the behavioral sequence that were shared between light and catch
licks, and isolated the contribution of the light stimulus to the right-
ward licking behavior. We found that this index of light learning was
strongly correlated with the amplitude of BF phasic responses to the
light stimulus in individual sessions (Fig. 7b). This observation there-
fore supports the idea that the learning about the light stimulus con-
tinued to grow stronger after the D2 session.

Another dimension of the learning about the light stimulus was
the change in animals’ decision speeds, measured by reaction times
(RTs). Previous studies have shown that stronger BF bursting respon-
ses are quantitatively coupled with, and causally lead to, faster RTs21,22.
Such observations predicted that there would be corresponding
decreases in RTs toward the light stimulus after the D2 session. In
support of this prediction, we found that stronger phasic bursting
responses to light onset were coupled with faster RTs in individual
sessions (Fig. 7c). Together, these observations support the idea that
the learning about the new light was reflected by the amplitude of BF
phasic response to the light stimulus.
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In addition, BF activities not only reflected the learning about the
light stimulus, but also predicted reward-seeking behaviors in the
absence of the light stimulus. For example, in catch trials, stronger BF
activities after exiting the fixation port predicted rightward licking
behavior and discriminated lick trials from no lick trials (Fig. S6a).
Moreover, increased BF activities before the start of licking predicted
longer durations of licking in catch lick trials when no reward was
delivered (Fig. S6b). These observations provided additional support
for the idea that the activity of BF bursting neurons promoted reward-
seeking behaviors.

Reward expectationsnegativelymodulatedBF responses to trial
outcomes
A final validation of the learning dynamics came from how BF
responses to the trial outcome were modulated by reward expecta-
tions and BF activities in earlier epochs. Previous studies have found
that the response of BF bursting neurons to the reward was negatively
modulated by reward expectation21,22,27,28. Such properties would pre-
dict that, in the current experiment, BF responses to the reward should
decrease throughout the stepwise learning process. Indeed, BF
responses to the right reward decreased over trials in the D1 session
(Figs. 3e2 and 4b1), and continued to decrease over subsequent ses-
sions (Fig. 7a). These results support that animals learned to better
predict the rewarding outcome across different steps of the learning
process.

We further investigated whether the response of BF bursting
neurons to trial outcomes were negatively correlated with BF
responses in earlier epochs. Such a negative correlation is a hallmark
feature of reward prediction error encoding29 and has been previously
reported in BF bursting neurons21,22. Indeed, at the per session level, we
found that the amplitude of BF responses to the reward in light trials
was strongly and negatively correlatedwith the amplitude of BF phasic
bursting response to the light onset (Fig. 8a). Moreover, in pre-D2

sessions where BF responses to the new light stimulus had yet to
develop, we found that BF responses to the trial outcome were nega-
tively correlated with BF evaluation responses in the same trial
(Fig. 8b). This negative correlation at the single trial level was observed
not only when the reward was delivered (light licks) but also when the
reward was absent (no-fixation licks and catch licks) (Fig. 8b, c). The
fact that these patterns were observed in catch licks and non-fixation
licks supports that animals were expecting to receive reward in those
trials, and the extent of reward expectation was similarly reflected in
BF evaluation responses andnegativelymodulatedBF responses to the
trial outcome. Together, these observations support that BF bursting
neurons encoded reward prediction error, and that BF activities in
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(top) (N = 7) and their group average (mean ± s.e.m.) (bottom). BF activities in light
lick trials were significantly higher in epochs before exiting the fixation port. Sig-
nificant differences in BF activities (two-sided paired t-test, p <0.01, 3 consecutive
bins) were indicated by horizontal red lines. BF activities were truncated at the
median RT of the respective sessions (see Methods for details). Symbols were
adapted from Avila and Lin22 . c The emergence of BF responses to the new light in
the D2 session. c1 BF activities in light lick and catch lick trials at three points of the
learning process: the last 20 trials (late) in the D2−1 session (N = 6); first 20 trials
(early) in the D2 session (N = 7); late trials in the D2 session (N = 7). Top row depicts
BF activities in light lick trials from individual animals, while the bottom rowdepicts
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consecutive bins). Yellow shaded intervals indicate the time windows for calculat-
ing BF responses to the new light in c2. c2 Average BF responses to the new light,
defined as the difference between the two trial types, at the three points of the
learning process (two-sided paired t-test, N indicated in the figure). d Comparison
of BF activities between early and late light lick trials in the D2 session, aligned at
stimulus onset and fixation port exit. Top row shows the activity difference in
individual animals, and the bottom row shows population BF activities in the two
trial types (mean ± s.e.m.) (N = 7). Significant differences in BF activities (two-sided
paired t-test, p <0.01, 3 consecutive bins) were indicated by horizontal lines. The
activity difference was stronger and better aligned at fixation port exit. Symbols
were adapted from Avila and Lin22.
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earlier epochs (stimulus onset or evaluation window) reflected ani-
mals’ reward expectations.

Discussion
Results from the current study support that animals used a stepwise
strategy to learn behavioral sequences that contain both sensory sti-
muli and their own actions. Behavioral events were learned sequen-
tially, starting from the event closest to the reward and sequentially
expanded to earlier events (Fig. 1). The behavioral signature of this
stepwise learning process was the sequential refinement of rightward
lickingbehaviors, inwhichnon-rewarded lickingbehaviors (no-fixation
licks and catch licks) were sequentially eliminated while the rewarded
behavior (light licks) was preserved (Fig. 2). Learning about each
behavioral event as a new reward predictor was accompanied by the
emergence of BF responses toward that event, which conveyed ani-
mals’ reward prediction toward that event. Increased BF activities first
emerged in the epoch before animals entered the reward port (Figs. 3e
and4b),while responses to the earlier event (light stimulus) developed
later (Figs. 5 and 6). The evolution of BF activities mirrored the beha-
vioral response patterns, whichwas initially increased in all three types
of rightward licks (Figs. 3e and 4b) and subsequently decreased in non-
rewarded licks as those behaviors were eliminated (Figs. 4b and 7a).
Throughout the learning process, the activity of BF bursting neurons
encoded reward prediction error signals (Fig. 8) and their increased
activities consistently predicted reward-seeking behaviors and faster
reaction times (Fig. 7). These results therefore identified the behavioral
and neurophysiological signatures of the stepwise learning strategy
when animals learned behavioral sequences.

The current study focused on the learning of behavioral sequen-
ces that contain both sensory stimuli and actions, which reflect beha-
vioral contexts that are commonly encountered both in experimental
and natural settings. The learning dynamics that we described in this
study cannot be easily accounted for using either Pavlovian1,2 or
instrumental3,4 conditioning alone. In this regard, stepwise learning
provides a new framework to understand the learning of behavioral
sequences.

Theoretically, long behavioral sequences are difficult to learn
because the number of sequence permutations grows exponentially as
a function of the sequence length. However, modeling studies have
suggested that such learning can be greatly accelerated using the
stepwise strategy, which reduces the number of sequence permuta-
tions to a linear function of the sequence length18. The current study
provides behavioral and neurophysiological evidence to support that
animals indeed adopt the stepwise learning strategy to learn beha-
vioral sequences. At each step of learning, animals explored the subset
of behavioral sequences that shared common sequence elements
learned in previous steps (Figs. 1 and 2). Such explorations allowed
animals to distinguish those sequences, which were initially indis-
tinguishable at the beginning of that learning step, and selectively
eliminate subsets of non-rewarded sequences. From this perspective,
the stepwise learning strategy offers an intuitive explanation of why
animals committed certain types of ‘errors’ (non-rewarded licks), and
suggests that those behaviors in fact represented genuine reward-
seeking efforts at earlier stages of learning. By learning the associative
relationship one step at a time, the stepwise learning strategy likely
minimized the cognitive burden of the animal during the learning
process and enabled the efficient learning of complex sequences.

Our results suggest that stepwise learning is likely a general
strategy for learning behavioral sequences because its behavioral and
neural signatures were also observed in other learning settings. In a
separate cohort of animals, we showed that the behavioral signatures
of sequential refinements were similarly observed when the sensory
modalities of the stimulus were reversed, and regardless of the later-
ality of the new learning side (Fig. S1). Moreover, even during the
learning of the most simple behavioral sequence containing only two
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same as in b.
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elements (stimulus-action), similar behavioral and neural signatures
were also observed (Fig. S7).

It is important to note that, while these results support that
stepwise learning is a widely-used strategy for learning behavioral
sequences, they do not preclude other possible learning strategies. In
particular, if animals had previously encountered similar behavioral
events, such experiences could be generalized to the new learning
context, and allow animals to use a forward chaining strategy to learn
behavioral sequences, instead of the backward chaining order in the
stepwise learning strategy18. For example, if animals had previously
learned that light stimuli could predict reward, they could generalize
that experience to the current learning task and view the new light
stimulus as a potential reward predictor. Such generalizations would
lead animals to engage in reward-seeking behaviors in light trials and
quickly discover the light-rewardassociation, bypassing the learningof
behavioral events later in the sequence. Such strategies perhaps
underlie the accelerated learning dynamics that we observed in one
animal (animal #7, Fig. 2c), which also featured the strongest BF
responses to the light stimulus during the initial encounter of the new
light (Fig. 6b).

Our results revealed that the true temporal dynamics about the
learning of the new stimulus can be very different from the dynamics
of behavioral performance levels in the new stimulus trial. We found
that, despite the near-perfect behavioral performance in light trials
that beganafter the transitionpoint in theD1 session (Figs. 2 and4), the
learning of the new light stimulus did not begin until the D2 session
(Figs. 5 and 6). Moreover, the learning of the new light stimulus con-
tinued to grow after the D2 session despite the plateaued behavioral
performance in light trials (Figs. 6 and 7). During early stages of
learning, while the light stimulus was clearly perceptible and had been
consistently paired with reward over many trials, the reward-seeking
behavior in light trials was not driven by the light stimulus but by later
behavioral events in the sequence (fixation port exit and lick-right).
The critical factors that allowed us to reach this conclusion were the
analysis of non-rewarded licking responses and the inclusion of catch
trials in our task design. If not for these factors, we would incorrectly
conclude that the learning about the new light stimulus occurred
much earlier.

The discrepancy between behavioral performance in light trials
and the learning about the light stimulus highlights the potential
mismatch in which salient physical events (such as the light stimulus)
are not always automatically used by animals to predict reward,
especially during the early stages of learning. The light stimulus was
only incorporated as a reward predictor in later stages of the learning
process, despite its continued presence from the beginning of the new
learning. This observation indicates that, even in the absence of
changes in reward contingencies in the environment, the learning
process can lead to the addition of new reward predictors. Such
structural revisions of the internal reward prediction model pose a
fundamental challenge to theories andmodels of learning that assume
a static set of reward predictors. Using models with incorrect reward
predictors will lead to incorrect interpretations, regardless of howwell
the model fits the behavioral performance.

The current study extends our understanding about the roles of
BF bursting neurons in the encoding of reward prediction error. Pre-
vious studies have demonstrated that BF responses to rewards are
negativelymodulatedby rewardexpectation21,22,27 and support the idea
that BF neurons encode a reward prediction error signal27,28. The cur-
rent study further extends this idea and shows that BF bursting neu-
rons similarly encode reward prediction error in the context of new
learning, and such encoding is robust even at the single trial level
(Fig. 8). This robust encodingof rewardprediction error byBFbursting
neurons quantitatively conveys the amount of reward prediction
associatedwith eachbehavioral event at each learning step. As a result,
the stepwise learning process was mirrored by the activity of BF

D2+1
D2+2
D2+3

D2-1

D2

a Light lick trials

10

0

20

Δ
BF

ac
tiv

ity
 (s

pk
s/

s)

s6.02.0- 0
time from reward ΔBF activity (spks/s)

0 01-5

4

0

8

c

b1

b2

tri
al

s 
 (s

or
te

d)

Light licks Catch licks & no-fix licks

time from outcome (reward)
1- s10

time from outcome (no reward)
1- s10

BF
ac

tiv
ity

(s
pk

s/
s)

0

30

20

10

0

30

20

10

0

20

ou
tc

om
e 

ac
tiv

ity
 (s

pk
s/

s)

evaluation activity (spks/s)

single trial correlation

10

0

20

 s
pk

/s

p = 4 x 10-9
r = -0.78

p = 2 x 10-4
r = -0.38

0 81216

Δ
BF

ac
tiv

ity
 (s

pk
s/

s)

light onset

re
w

ar
d

D1 rat #4

ev
al

ua
tio

n

ou
tc

om
e

light lick
cacc tch lick
no-fiff x lix ck

p = 6x10-5
r = -0.59

0

9

nu
m

be
ro

f s
es

sio
ns

-1 10

reward : p>0.01
no rew : p>0.01

reward : p<0.01
no rew : p<0.01

corr coef (eval,outcome)

Fig. 8 | BF responses to trial outcome were negatively correlated with BF
activities in earlier epochs. a Average responses of BF bursting neurons (mean ±
s.e.m.) to the reward in light lick trials, relative to their respective baseline firing
rates, plotted separately for the five sessions relative to the D2 session (left). BF
responses to the reward (yellow shaded interval, left panel) were negatively cor-
related (Pearson correlation) with BF responses to light onset (Fig. 7c) in individual
sessions (right). Each circle indicates one session and different colors correspond
to different animals.b, Negative correlation of BF activities between evaluation and
outcome responses in single trials. b1 Single trial BF activities in an example D1

session, aligned at the trial outcome. Single trial BF responses were plotted sepa-
rately for rewarded licks (light licks) and non-rewarded licks (catch licks and no-
fixation licks). Yellow shaded intervals indicate time windows for calculating eva-
luation and outcome responses. Trials were sorted by the amplitude of evaluation
responses (top). Average BF activities from the four quartiles of trials were plotted
separately (bottom). b2 Negative correlation (Pearson correlation) between single
trial BF evaluation responses and outcome responses in this session. Each dot
represents one trial. Catch licks and no-fixation licks were pooled together to cal-
culate the correlation in non-rewarded licks. cHistogramof correlation coefficients
(Pearson correlation) between evaluation and outcome responses from individual
sessions. Results for rewarded lick trials (light licks) were calculated from pre-D2

sessionswhen BF responses to the light stimulus had not developed (N = 7), and for
non-rewarded lick trials from sessions with at least 50 trials of catch and no-fixation
licks combined (N = 25). Most sessions showed significant negative correlations.

Article https://doi.org/10.1038/s41467-023-40145-9

Nature Communications |         (2023) 14:4415 10



bursting neurons, which provides a neural correlate of the stepwise
learning process that we were able to track throughout the learning
process in single trials. Given that reward prediction error information
is also conveyed by other neuromodulatory systems, including mid-
brain dopaminergic neurons12,13,29 and BF cholinergic neurons30–32, BF
bursting neurons are likely part of a broader network with partly cor-
related activities. Whether the other systems also provide similar
neural correlates of stepwise learning remains to be determined.

Previous studies have also established that BF bursting neurons
serve as a bidirectional gain modulation mechanism for reward-
seeking behaviors, where increased BF activities promote faster reac-
tion times21,22 while the inhibition of BF activities leads to rapid beha-
vioral stopping23. Manipulations of BF activities using electrical
stimulation further suggest that BF bursting neurons likely play a
causal role that can modulate decision speed when their activities are
increased22 or inhibited23. The current study extends this idea to the
context of new learning, by showing that increased BF activities were
tightly coupled with reward-seeking behaviors at multiple levels
throughout the learning process (Figs. 3–7), and quantitatively pre-
dicted faster reaction times (Fig. 7) and longer licking durations
(Fig. S6). The engagement in reward-seeking behaviors was particu-
larly important in the context of learning behavioral sequences,
because such explorations were essential for discovering the rela-
tionship between earlier events in the behavioral sequence and the
rewarding outcome. Taken together, BF bursting neurons may serve
the role of transforming the encoding of reward-prediction error into
promoting reward-seeking behaviors during the new learning process.

Finally, several studies have suggested that BF bursting neurons
are likely a subset ofGABAergic neurons21,24,33, but their specific cellular
marker(s) remains to be determined. Such marker information will be
needed to conduct selective manipulation experiments that specifi-
cally target BF bursting neurons to directly test their causal role in the
learning process.

Methods
Ethics statement
All experimental procedures were conducted in accordance with the
National Institutes of Health (NIH) Guide for Care and Use of Labora-
tory Animals and approved by the National Institute on Aging (NIA)
Animal Care and Use Committee and by the Institutional Animal Care
and Use Committee at the National Yang Ming Chiao Tung University,
Taiwan (NYCU).

Subjects
Seven male Long-Evans rats (Charles River, NC), aged 3–6 months and
weighing 300–400 g were used for the recording experiment. Rats
were housed in a 12/12 day/night cycle and were provided with 10–12
dry pellets per day and unrestricted access to water. Rats were trained
in daily sessions lasting 60–90min. A separate cohort of eight male
Long Evans rats (National Laboratory Animal Center, Taiwan) were
used for behavioral testing (Fig. S1) and an additional recording
experiment (Fig. S7). During training and recording procedures, these
rats werewater restricted to their 85–90%weight andwere trained in a
daily 60-min session. Water-restricted rats received 15min water
access at the end of each training day with free access on weekends.

Apparatus
Plexiglass operant chambers (11″ L × 8 ¼″ W× 13″ H), custom-built by
Med Associates Inc. (St. Albans, VT), were contained in sound-
attenuating cubicles (ENV-018MD) each with an exhaust fan that
helpedmask external noise. Each chamber’s front panel was equipped
with an illuminated nose-poke port (ENV-114M) located in the center
(horizontal axis) as the fixation port, which was equipped with an
infrared (IR) sensor to detect the entry of the animals’ snout into the
port. On each side of the center nose-poke port therewere two reward

ports (CT-ENV-251L-P). Two IR sensors were positioned to detect
reward-port entry and sipper-tube licking, respectively.

Sucrose solution (13.3%) was used as reward and delivered
through the sipper tubes located in the reward ports. Reward delivery
was controlled by solenoid valves (Parker Hannifin Corp #003-0111-
900, Hollis, NH) and calibrated to provide 10 µl of solution per drop.
Each chamber was equipped with a ceiling-mounted speaker (ENV-
224BM) to deliver auditory stimuli, and a stimulus light (ENV-221)
positioned above the center fixation port to serve as the new light
stimulus. For the additional behavioral testing (Fig. S1), one stimulus
light eachwas added above the left and the right reward ports to serve
as the sensory cue in the visual discrimination experiment, and water
was used as the reward. Behavioral training protocols were controlled
by Med-PC software (Versions IV & V, Med Associates Inc.), which
stored all event timestamps at 1 or 2ms resolution and also sent out
TTL signals to the neurophysiology recording systems.

Behavioral training procedures
Rats were trained in operant chambers that were dimly lit. Rats were
first trained in an auditory or visual discrimination task. See Table 1 and
Fig. S1 for details of the stimuli used for each animal. Trials were
separated by an unsignaled inter-trial interval (ITI) lasting 4–6 s. Fixa-
tion or licks during the ITI reset the ITI timer. After the ITI, the center
fixation port was illuminated, which was turned off only when rats
poked the fixation port. Rats were required to maintain fixation in the
center nose-poke port for a variable amount of foreperiod. Four dif-
ferent foreperiods (0.35, 0.5, 0.65, and 0.8 s) were used, pseudor-
andomly across trials. After the foreperiod, one of three conditions
was randomly presented with equal probabilities: a Sright stimulus
indicated reward on the right port; a different Sleft stimulus indicated
reward on the left port; or the absence of stimulus (catch trial) indi-
cated no reward. An internal timestampwas recorded in catch trials to
mark the onset of thewould-be stimulus. Early fixation port exit before
the end of the foreperiod led to the re-illumination of the center
fixation port. Licking in the correct port within a 3 s window after
stimulus onset led to three drops of reward, delivered starting at the
3rd lick. The delivery of reward at the 3rd lick created an expectation
for trial outcome at this time point, whichwas dissociated in time from
the initiation of licking (1st lick). We will therefore refer to the time
point of the 3rd lick also as the trial outcome event. Trials with licking
responses ended after 1 s following the last lick, while trials without
licking responses ended after the 3 s response window. The ending of
each trial started the ITI timer.

After reaching asymptotic behavioral performance in the auditory
or the visual discrimination task, a new learning phase was introduced
by replacing either the Sright or Sleft stimuli by a novel sensory stimulus in
a different sensory modality, while all other aspects of the task
remained the same. In the group that were initially trained with audi-
tory discrimination, the Sright sound stimulus was replaced by the
central light above the fixation port to indicate reward on the right
port (Table 1). In the group there were initially trained with visual
discrimination, either the Sright or Sleft light stimuli was replaced by a
6 kHz sound (70 dB) played from a speaker above the center fixation
port (Fig. S1).

Stereotaxic surgery and electrode
Surgery was performed under isoflurane anesthesia similar to our
earlier study22. Multiple skull screws were inserted to anchor the
implant, with one screw over the cerebellum serving as the common
electrical reference and a separate screw over the opposite cerebellum
hemisphere serving as the electrical ground. Craniotomies were
opened to target bilateral BF (AP –0.6mm, ML± 2.25mm relative to
Bregma)34. The electrode contained two bundles of 16 polyimide-
insulated tungsten wires (38 µm diameter; California Fine Wire, CA),
each bundle ensheathed in a 28-gauge stainless steel cannula and
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controlled by aprecisionmicrodrive. The impedanceof individual wire
was ~ 0.1 MΩmeasured at 1 kHz (niPOD, NeuroNexusTech, MI or Open
Ephys Acquisition Board). During surgery, the cannulae were lowered
to DV 6.5mm below cortical surface using a micropositioner (Model
2662, David Kopf Instrument or Robot Stereotaxic, Neurostar GmbH)
at a speed of 2–50 µm/s. After reaching target depth, the electrode and
screws were coveredwith dental cement (Hygenic Denture Resin), and
electrodes further advanced to 7.5mmbelow the cortical surface. Rats
received ibuprofen and topical antibiotics after surgery for pain relief
and prevention of infection, and were allowed one week to recover
with ad libitum food and water. Cannulae and electrode tip locations
were verified with cresyl violet staining of histological sections at the
endof the experiment. All electrodeswere foundat expectedpositions
betweenAP [–0.2,–1.2]mm,ML [1.5, 3]mm, relative to Bregma, andDV
[7.5, 8.5] mm relative to cortical surface (Fig. 3a).

Data acquisition and spike sorting
Electrical signalswere referenced to a common skull screwplacedover
the cerebellum. Electrical signals were filtered (0.3 Hz to 7.5 kHz) and
amplified using Cereplex M digital headstages and recorded using a
Neural Signal Processor (Blackrock Microsystems, UT). Single unit
activity was further filtered (250 Hz to 5 kHz) and recorded at 30 kHz.
Spike waveforms were sorted offline to identify single units using the
KlustaKwik sorting algorithm followed by a custom Python GUI (ver-
sion 2.7) for manual curation. Only single units with clear separation
from the noise cluster andwithminimal (<0.1%) spike collisions (spikes
with less than 1.5ms interspike interval) were used for further analyses,
consistentwith previous studies of BF bursting neurons21–26. Additional
cross-correlation analysiswasused to removeduplicate units recorded
simultaneously across multiple electrodes21–26.

Recording during the new learning phase
After surgery, BF neuronal activity was monitored while rats were re-
trained in the auditory discrimination task to asymptotic performance
level. During this re-training phase, BF electrode depths were adjusted
slightly (by advancing electrodes at 125 µm increment) until a stable
population of BF single units can be recorded. At this point, the new
learning phase with the light as the new Sright stimulus was introduced
and rats were trained and recorded daily with BF electrodes remained
at the same depth. This approach allowed us tomonitor the activity of
a large population of BF neurons and follow its temporal evolution
across sessions.

Data analysis
Data were analyzed using custom Matlab (R2018b, MATLAB The
MathWorks Inc., Natick, MA) scripts.

Define different behavioral response types. Licking responses were
defined for stimulus (Sleft and Sright) and catch trials if rats licked at least
three times in the reward port within the 3 s window after stimulus
onset (or the corresponding timestamp for the would-be stimulus in
catch trials). Licking responses to the correct reward port were
rewarded with three drops of water, delivered starting at the 3rd lick
(referred to as trial outcome event). During the new learning phase,
licking responses in the new stimulus and catch trials were pre-
dominantly to the reward port associated with the new stimulus.

No-fixation licks corresponded to licking responses to the reward
port associated with the new stimulus that were not preceded by
poking the center fixation port. Specifically, no-fixation licks were
defined based on three criteria: (1) ratsmade at least three consecutive
licks in the reward port; (2) the interval between the last exit from the
fixation port and the first lick must be greater than 2 s; (3) the interval
between the last exit from the rewardport and the subsequentfirst lick
in the same reward port must be greater than 1 s. These duration
thresholds were determined based on the empirical licking patterns

across animals. In the analyses of learning dynamics in the D1 session
(Figs. 3 and 4), no-fixation licks were treated as rightward licking trials,
even though such behaviorswere self-initiated and not imposed by the
task design.

Reaction time (RT) in light trials in a session (Fig. 7c) was defined
as the median of the interval between the onset of the light stimulus
and the exit from the fixation port in light lick trials. Lick duration in
catch trials in a session (Fig. S6) was defined as the median of the
interval between the first and the last lick in catch lick trials.

Define theD0,D1 andD2 learning landmarks. During the new learning
phase, three sessions (D0, D1, D2) were identified in individual animals
as landmarks that demarcated distinct stages of new learning (Fig. 2c).
The D0 session was defined as the very first session the new light
stimuluswas introduced. TheD1 sessionwas defined as thefirst session
when animals began to respond correctly in the new stimulus trials and
obtained reward in the associated reward port in at least three trials.
TheD2 sessionwas defined as the session in which catch licks occurred
most frequently. The D1 and D2 landmarks allowed us to identify
similar learning stages across animals despite their individual differ-
ences in learning dynamics. The specific timing of the three landmark
sessions in each animal are provided in Table 2 (also see Fig. 2c). One
animal (ID#7) with accelerated learning dynamics, in which D1 and D2

occurred in the same session, was excluded from analyses of D1 neural
dynamics (Figs. 4 and 5) to ensure that neural activities associatedwith
D2 did not confound the neural dynamics in the D1 session. The BF
neuronal activity in this animalwas included in the analysis ofD2 neural
dynamics (Fig. 6) and showed the strongest phasic response to the
light onset among all animals, consistent with its accelerated learning
dynamics.

Identification of the behavioral transition point in the D1 session.
The behavioral transition points in D1 sessions (Figs. 3 and 4) were
identified based on behavioral response patterns in three trial types
combined: light trials, catch trials and no-fixation licks. The behavioral
response pattern in each trial was coded as either 1 or 0 based on
whether animals licked in the right reward port in that trial. The
behavioral transition point was defined as the point with the largest
difference in licking responses between the 20 trials before and the 20
trials after that point. In 5/7 animals, the first trial after the behavioral
transition was a rewarded light lick trial. In the other two animals, the
transition point was adjusted to the closest light lick trial by 2 or 4
trials, respectively.

Identification of BF bursting neurons. BF bursting neurons were
defined as BF single units whose average firing rates during the [0.05,
0.2]s window after stimulus onset increased bymore than 2 spikes/s in
the Sleft sound trials compared to the corresponding window in catch
trials (Fig. S2). This contrast between sound trials and catch trials was
necessary because it removed the nonstationary baseline before sti-
mulus onset and allowed us to ask whether BF neurons truly respon-
ded to the sound stimulus. In addition, BF bursting neurons should
have baseline firing rates (during the [−1, 0]s window relative to the
trial start signal) less than 10 spikes/s.

A total of 1453 BF single units were recorded over 45 sessions
(N = 7 rats), of which 70% (1013/1453) were classified as BF bursting
neurons based on their stereotypical phasic response to the Sleft sound
(22.5 ± 7.3 neurons per session, mean ± std) (Fig. S2 and Table 2). Since
BF electrodes remained at the same depth throughout the recording
sessions, the same BF single units might be recorded in multiple ses-
sions. The large number of BF bursting neurons recorded in each
session allowed us to treat them as a representative sample of all BF
bursting neurons,whose responses to the Sleft soundwere highly stable
throughout the learning process (Fig. 3b-d). This strategy ensured that
we were following functionally the same neuronal ensemble and could
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track how BF bursting neurons acquired responses to the new light
during learning, regardless of whether the identities of these BF neu-
rons were exactly the same in each session. One session with only one
BF bursting neuron was excluded from the analysis of BF population
activities.

PopulationBF responses tobehavioral events. The spike timestamps
of all BF bursting neurons in a single session were pooled together to
approximate the population activity of all BF bursting neurons.
Population peri-stimulus time histograms (PSTHs) were calculated
with 10-ms bins, andnormalizedby the number of BF bursting neurons
in a session.

To properly assesswhether BF bursting neurons responded to the
onset of the new light stimulus (Figs. 5–7), it was important to dis-
ambiguate such stimulus-onset responses from the increased BF
activities after fixation port exit (Fig. 5). To achieve this goal, PSTHs to
the stimulus onset were calculated based only on spikes that occurred
before fixation port exit in individual trials, resulting in different
interval lengths (between stimulus onset to fixation port exit) across
trials. Accordingly, the calculation of themean PSTH across all trials in
a session was adjusted for the different number of trials at different
interval lengths. ThemeanPSTHswere further truncated at themedian
interval length of that session to reduce noisy estimates of PSTHs at
long interval lengths due to lower number of trials. When PSTHs were
averaged across animals, the averaged PSTHs were further truncated
at the mean of median interval latencies across animals. This trunca-
tion procedure resulted in the uneven lengths of PSTHs across indi-
vidual animals (Figs. 5, 6, S4 and S5) and across sessions (Fig. 7). This
procedure was also applied to calculating the BF responses before
fixation port exit to include only spikes that occurred after stimulus
onset (Figs. 5, 6 and S4), and for calculating BF responses during
licking in catch lick trials (Fig. S6).

The timewindows used to quantify average BF activity in different
epochs were indicated in respective figures, and corresponded to the
following: [0.05, 0.2]s after Sleft sound onset; [0.1, 0.3]s after Sright light
stimulus onset; [0.1, 0.3]s after the timestamp for the would-be sti-
mulus in catch trials; [0.05, 0.35]s after the 3rd lick for outcome
responses; [−0.3, 0]s and [0, 0.3]s relative to the fixation port exit. The
epoch for calculating evaluation response is described below.

Evaluation response (Figs. 3e, 4b, 7a and 8b, c) refers to the
increased BF activity after exiting the fixation port and before the trial
outcome (3rd lick). The evaluation response reflected animals’ internal
evaluation because no additional sensory stimuli were presented
during this epoch and this activity was not consistently aligned with
intervening behavioral events (Fig. S4). Specifically, the evaluation
response was calculated in individual trials and defined as the max-
imum firing rate of any 500ms window during the evaluation epoch,
which corresponded to the interval between [fix-out, outcome], with
additional adjustments according to trial types. In light lick and catch
lick trials, the evaluation epoch was defined as [fix-out, outcome] in
each trial. The epoch durations in light lick and catch lick trials within
each session were used as the reference point for other trial types as
described next. In no-fixation licks, in which the fix-out event was
absent, the duration of evaluation epochwas set as the 95th percentile
of the evaluation epoch durations in light lick and catch lick trials, and
the epoch should begin at least 0.5 s before reward port entry. In light
no lick and catch no lick trials, in which the 3rd lick event was absent,
the duration of the evaluation epoch was set as the median of the
evaluation epoch durations in light lick and catch lick trials. These
adjustments in the definition of evaluation epochs, as well as its cal-
culation of maximum firing rate within the epoch, took into con-
sideration the behavioral variability across trial types, learning stages
and individual animals.

To evaluate the dynamic changes of BF activities around the
transition point in the D1 session (Figs. 3e and 4b), single trial

evaluation and outcome responses were smoothed using moving
median over 10 trials. The smoothed trends were aligned at the tran-
sition point and then averaged across all animals. Only trials with
smoothed trend data from at least 4 animals were plotted in the group
average (Fig. 4b).

Statistics. Statistical comparisons were conducted using the Statistics
and Machine Learning Toolbox (version 11.3) in MATLAB (R2018a)
(https://www.mathworks.com/). Two-sided paired t-test (ttest.m) was
used to compare behavioral and neural activity differences between
two groups (Figs. 3d, 6a, 6c2, and 7a). Repeated measures analysis of
variance (ranova.m) was used for comparisons involving more than 2
groups, by specifying the appropriatewithin-subjectmodels (Figs. 4a3,
4b3, and 5b). Comparisons of PSTHs between two groups (Figs. 5a, 6b,
c1, d, and S3c) was conducted for each 100ms sliding window (10ms
step) using two-sided paired t-test. Significance level was set at p < 0.01
for three consecutive bins. Pearson correlation (corrcoef.m) was used
to determine the relationship between neuronal activities and/or
behavior (Figs. 7b, c, 8a, b2, c and S6b).

Receiver operating characteristic (ROC) and area under curve
(AUC) analysis. To determine whether the activity of BF bursting
neurons differentiated between trial types within each D1 session
(Fig. 5c), we compared BF activity for each 100ms sliding window
(10ms step) using the AUC measure of ROC analysis (auc.m by Alois
Schloegl). At each sliding window, BF population activity was calcu-
lated for each light and catch trial, and distributions of BF activities
were compared between light vs catch trials or between lick vs no lick
trials. Significance level was set at p <0.001 using 10,000 trial-shuffled
random permutations (two-sided).

To determine whether BF activity differentiated between lick
and no lick trials within the same trial type (light or catch trials)
(Fig. S6a), we compared BF activity in the [0, 500] ms window after
exiting the fixation port. For each session and each trial type, lick
and no lick trials must each constitute at least 10% of that trial type
to be included in the analysis. Catch trials from all sessions were
included in this analysis. Only light trials before the D2 session (pre-
D2) were included in this analysis because BF responses to the onset
of the light stimulus had not developed in those sessions. Sig-
nificance level was set at p < 0.05 using 1000 trial-shuffled random
permutations (two-sided).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data and statistics used to make each figure are provided with
this paper. The rawdatasets analyzed in the current study are available
upon reasonable request to the authors. Sourcedata are providedwith
this paper.

Code availability
Data analysis was performed by built-in and customMatlab scripts and
are available from the corresponding author upon request.
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