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Detecting diagnostic features in MS/MS
spectra of post-translationally modified
peptides

Daniel J. Geiszler 1, Daniel A. Polasky 2, Fengchao Yu 2 &
Alexey I. Nesvizhskii 1,2

Post-translational modifications are an area of great interest in mass
spectrometry-based proteomics, with a surge in methods to detect them in
recent years. However, post-translational modifications can introduce com-
plexity into proteomics searches by fragmenting in unexpected ways, ulti-
mately hindering the detection of modified peptides. To address these
deficiencies, we present a fully automated method to find diagnostic spectral
features for any modification. The features can be incorporated into pro-
teomics search engines to improve modified peptide recovery and localiza-
tion. We show the utility of this approach by interrogating fragmentation
patterns for a cysteine-reactive chemoproteomic probe, RNA-crosslinked
peptides, sialic acid-containing glycopeptides, and ADP-ribosylated peptides.
We also analyze the interactions between a diagnostic ion’s intensity and its
statistical properties. Thismethodhas been incorporated into the open-search
annotation tool PTM-Shepherd and the FragPipe computational platform.

Post-translational modifications (PTMs) have long been of interest
to proteomics researchers because of their central role in regulating
cellular functions. Processes to maximize their recovery run the
gamut of proteomics techniques, from sample preparation1 to
instrumental acquisition2 and computational analysis3–5. At the
computational level, proteomics search engines have grown in their
capacity to identify PTMs. For PTMs with complex fragmentation
patterns like glycosylation that exhibit multiple modes of fragmen-
tation, entire search engines specific to the modification class have
been developed4,6,7. Despite this work, many modifications continue
to suffer from low recall in standard high-throughput workflows due
to their behavior during tandem mass spectrometry (MS) analysis,
producing unexpected or difficult fragmentation patterns that
frustrate search engines8. Even small changes to workflows—such as
the addition of isobaric labels—can alter fragmentation patterns and
reduce or preclude identification of even the best-studied PTMs9.
Recent work with synthetic peptides carrying less well-studied PTMs
demonstrated that many diagnostic ions and neutral losses have yet
to be identified10.

With the proliferation of synthetic PTMs11—particularly ones that
alter fragmentation patterns9—and new instrumental methods2,12,
keeping search engines up to date with knowledge of how an analyte
will fragment in a particular setting is a large task. To overcome this,
computational tools are being developed to identify modification
fragmentation patterns without prior knowledge. The first such tools
only identified diagnostic ions and were limited in their applications13,
but newer approaches have incorporated additional features. Syn-
thetic peptides bearing modifications are generally seen as gold stan-
dards to study PTM fragmentation patterns and methods have been
developed to extract them from spectra14, but this approach adds
additional benchwork to proteomics experiments. Furthermore,
optimal search parameters are fragmentation-dependent and can
change based on experimental settings, which requires reprocessing
mass spectrometry data and reanalyzing fragmentation patterns for
multiple experiment types. Zolg et al. developed amethod to do this in
a high-throughput manner10, but it requires paired modified-
unmodified peptides and cannot be easily reimplemented by other
research groups. Their approach to identify neutral losses also
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requires both the intact and fragmented peak to be present in the
spectrum at consistent distances, precluding finding complete losses
and many charged losses. Other approaches to score PSMs from
modified peptides are trained for specific PTMs15 or perform model
refinement that focuses on distances between experimental peaks,
discarding information about matched ions from the peptide back-
bone that would dramatically reduce the required training dataset
size16. Chemoproteomics has a particular stake in this effort due to the
diversity of probes employed17–19. However, existing tools for chemo-
proteomics require isotopic labeling signatures to be present at the
MS1 andMS2 levels20. This limits their applications to chemical probes
that are labeled non-isobarically, thus they cannot be used for some
PTM probes21, biological PTMs, or the development of isobaric mass
tags22. In prior work, we have found that understanding PTM frag-
mentation patterns allowed us tomaximizemodified peptide recovery
and localization. Thus, when studying a cysteine chemoproteomic
probe, we developed a method to extract its diagnostic spectral fea-
tures to improve coverage of the ligandable cysteineome19. Our
approach did not require synthesizing standards or isotopically
labeled peptides and facilitated the discovery of partial modification
losses and diagnostic ions, ultimately leading to the identification of
three diagnostic ions and two partial PTM fragmentation events that
escaped manual inspection.

Here, we present an improved, fully automated, and empirically
tuned implementation of our diagnostic feature extraction algorithm
to study and score the fragmentation patterns of modifications. Our
approach detects three separate types of diagnostic features—diag-
nostic ions, peptide remainder masses, and fragment remainder
masses—and can be used in any experimental setting, including for the
simultaneous characterization of multiple modifications and when
only a handful of PSMs arepresent for amodification.We demonstrate
the robustness of our technique by applying it at both massive and
small scale, and across synthetic and biological PTMs. Finally, we

perform a meta-analysis of diagnostic features and discuss how these
can be used to further PTM discovery in diverse settings. Our method
has been implementedwithin PTM-Shepherd23 and is freely available as
part of the FragPipe suite of tools (https://fragpipe.nesvilab.org/).

Results
Algorithm overview
The PTM-Shepherddiagnostic featureminingmodule aims to perform
high throughput identification of spectral features that can be used to
identify post-translational modifications (PTMs), facilitating the vali-
dation or discovery of PTM-specific signals. Probable modifications
from an experiment are identified by passing the results of open or
mass offset search to PTM-Shepherd. For each MS1 mass shift, PTM-
Shepherd identifies enriched diagnostic features across three cate-
gories: diagnostic ions; mass shifts from the unmodified, intact pep-
tide ions (peptide remainder masses); and mass shifts from
unmodified fragment ions (fragment remainder masses). This module
operates in three steps: calculating all possible spectral features for
every peptide-spectrum match (PSM) with a particular mass shift,
identifying the most abundant spectral features for every identified
mass shift within each category, thenfinally performing statistical tests
and filtering to see whether those features can be used to infer the
presence of the modification via comparison to unmodified peptides.
This module uses as input decharged and deisotoped MGF spectra
produced by MSFragger24, so the maximum charge state for all ions in
MS/MS spectra is assumed to be one. Spectral ions are normalized to
the base peak and only the top 150 peaks are considered (by default).

We illustrate our technique using a cysteine-specific chemical
probe19 that we previously analyzed with an early version of the algo-
rithm, identifying all three ion types (Fig. 1a). The first step in our
strategy is to calculate all possible diagnostic spectral features for each
PSM within a mass shift identified by PTM-Shepherd. Any ions from
experimental spectra that do not belong to the peptide are considered
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Fig. 1 | Implementation of the diagnostic feature mining algorithm.
a Calculation of all possible diagnostic ions, peptide remainders, and fragment
remainders, with the latter two calculated with respect to theoretical unmodified

ions, for a synthetic Cys probe of mass 463Da. Calculated features across spectra
are subsequently pooled to find recurring features. Source data are provided as a
Source Data file. b Workflow for diagnostic feature selection.
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potential diagnostic features for the mass shift. To identify recurring
features for themass shift, calculated features for every spectrum from
the mass shift are sent to a common histogram. Peaks are identified
from here and shuttled to downstream analysis. For diagnostic ions,
the unannotated ions from the experimental spectrumare sent to their
histogram as they are (Fig. 1a, green). Peptide remainder masses are
calculated by computing mass differences between the theoretical,
unshifted peptide ion (purple) and all ions in the spectrum (blue).
Fragment remainder masses are calculated by iteratively computing
mass differences between every theoretical ion from the peptide
backbone (purple) and all ions in the spectrum.

Finding recurring ions does not mean that they are useful for
identifying a mass shift. Our ion set contains features that might be
abundant across the entire dataset, so it is necessary to remove
baseline noise. We do this by comparing the recovered features from
all spectra bearing the mass shift to those of unmodified peptides in
bulk as a proxy for dataset background (Fig. 1b). For every feature
detected in the prior step, it is quantified across modified and unmo-
dified PSMs, withmissing ions or offsets encoded as zeroes. The result
is two lists of intensities, from which we can perform statistical tests.
Encoding missing ions as zeroes is necessary for this step, but it can
also produce a range of non-normal distributions, calling for the non-
parametric Mann-Whitney-U test. Features that are significantly dif-
ferent between the modified and unmodified lists are then filtered for
sensitivity criteria (minimumprevalence in themodifiedbin) andmean
intensity fold-change between the two bins. Fragment remainder ions
undergo an additional layer of filtering for ion formation propensity,
where they are required to represent a minimum percentage of the
number of ions in their series. True fragment remainder ions can also
create “echoes” of their masses that are combinations of the original
mass and adjacent amino acids,multiple of which can pass filtering for
a mass shift. We correct these by checking for enrichment of adjacent
amino acids from the residues the remaindermass is derived from and
adjusting the mass accordingly. Because the adjacent residues are
pseudo-random in most cases, we also reasoned that any fragment
remaindermass less intense than the first correctedmass is likely to be
noise. These are also filtered from the result. Additional details about
this process can be found in the Methods section.

Re-analyzing the cysteine probe data used for illustration above,
we identified all eight diagnostic features—five diagnostic ions (Fig. 1a,
green), twopeptide remaindermasses (Fig. 1a, blue), andone fragment
remainder mass (Fig. 1a, red)—that were annotated in the prior study
and are high confidence identifications. Furthermore, we also identi-
fied twoadditional diagnostic ions, suggesting improved sensitivity for
the empirically tuned and automated algorithm (the full attribute list
can be found at Supplementary Table 1).

As has been acknowledged elsewhere20, thorough statistical eva-
luations of fragmentation pattern detection algorithms are difficult to
compute as there are no extant datasets conducive to this analysis. As
such, we attempted to evaluate the specificity of the method using a
method familiar to proteomics: decoys. We reasoned that datasets

with more unique PTMs with uncorrelated diagnostic ions would
produce a set of decoy fragmentation patterns that best approximates
the feature null distributions. We used a subset of the human pro-
teome published by Wang et al. 25, constructing a shuffled decoy
dataset by randomizing the mass shifts of individual PSMs (unshuffled
PSM list at Supplementary Data 1a, shuffled PSM list at Supplementary
Data 1b). The original and shuffled PSM lists were then searched in
parallel. PTM-Shepherd identified 341 diagnostic features from the
standard dataset (Supplementary Data 1c), but no features from the
shuffled dataset (Supplementary Data 1d), for an dFDP of 0. Thus, we
demonstrate that our method is robust as well as sensitive.

New protocol characterization
RNA-crosslinking studies also feature labile modifications. Repeating
sugar molecules can fragment in myriad ways, frustrating attempts to
localize or even identify RNA moieties. Bae et al. recently developed
pRBS-ID, an RNA crosslinking workflow utilizing photoactivatable
nucleotides and chemical RNA cleavage to overcome these
challenges26. Alongside the development of their bench technique,
they needed to develop a bespoke computational workflow to identify
RNA fragment remainder masses and identify and quantify their host
peptides.Webelieved that this process couldbe recapitulated by PTM-
Shepherd without the need for time-intensive custom workflows, and
as such we struck a course to replicate their results for the commonly
used 4-thiouridine (4SU) nucleotide analog27.

First, we performed an open search using the default diagnostic
ion mining setting available in FragPipe. As expected in any open
search, PTM-Shepherd identified many mass shifts for biological and
chemical PTMs, but also two unannotated mass shifts of 226Da and
94Da at high amounts likely corresponding to the modification of
interest (Table 1, full mass shift profile can be found at Supplementary
Data 2a). These mass shifts matched those identified by Bae et al.
Notably, the fragment remainder masses PTM-Shepherd identified for
both mass shifts were nearly identical (Table 2), indicating with a high
degree of likelihood that they had the same source. In this case, frag-
ment remaindermasses of 94Dawere identified frombothmass shifts’
b- and y-ion series, and an additional fragment remainder mass of
77Da (the prior remainder with a loss of ammonia) was identified from
bothmass shifts’b-ions (SupplementaryData 2b). This remaindermass
appeared to be diagnostic for RNA-crosslinked peptides, which we
further confirmed by performing an additional search incorporating
this new fragment remainder mass alongside the 94Da mass into a
labilemode search. Including this feature resulted in an additional 3.8%
RNA-crosslinked PSMs over the 94Da mass alone (Supplemen-
tary Fig. 1).

After a more targeted search using these fragment remainder
masses, we also wondered whether any additional diagnostic features
might appear for the RNA-crosslinked peptides and performed a sec-
ond pass at diagnostic feature mining (Supplementary Table 2). For
fragment remainder masses, we recovered the two masses described
above from both b- and y-ions from the intact 226Da mass shift

Table 1 | Most prevalent mass shifts and their characteristics from an open search of a pRBS-ID experiment

peak apex PSMs % also in
unmodified

mass annotation ret.
time shift

localized
PSMs

n-term. localiza-
tion rate

AA1 AA1 enrich-
ment score

AA1
PSM count

0.0002 7751 100 −0.6 291

226.0594 4241 34.81 226.0594 mass-shift −449.3 1343 R 2.0 160

1.0032 2378 88.62 +1 isotopic peak 25.6 658 F 1.6 65

57.0216 945 80 Iodoacetamide
derivative

−63.8 806 38.94 H 11.9 184

94.0168 830 50.81 94.0168 mass-shift −477.6 799 7.47 H 9.2 140

−48.0032 568 35.35 Homoserine lactone −1238.7 559 26.23 M 53.0 373

Two unannotated mass shifts were determined to be the most likely candidates for RNA moieties. This was confirmed by their similar effects on retention time.
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corresponding to the loss of five-member sugar ring (Fig. 2a) as well as
an a-ion associated mass shift at 66Da (94Da minus 28Da) from
b-ions. Diagnostic ions can be of particular interest for future analyses,
such as in ion-triggered instrument routines, even if they are left
unused at the present. We found two easily explicable diagnostic ions

for the intact nucleoside (Fig. 2b): an ion at 133m/z corresponding to a
dissociated ribose, the other half of the 94Da fragment remainder
mass, and an associated neutral loss of water. The partial modification
loss on fragment ions was also observed from the 94Da mass shift
(Fig. 2c). However, the diagnostic ions were not diagnostic for theMS1
mass shift corresponding the nucleoside without the ribose (Fig. 2d),
as with the ribose already dissociated there is nothing left to form the
diagnostic ion.

Data-driven discovery of diagnostic features
Glycopeptides contain labile modifications that produce rich sequen-
ces of diagnostic ions and peptide and fragment remainder masses28.
We reasoned that detecting known glycopeptide fragmentation pat-
terns would be a good way to validate our algorithm’s performance
given the extensive literature characterizing glycopeptide fragmenta-
tion. To this end, we searched for glycopeptides in a large IMAC-
enriched, TMT-labeled clear cell Renal Cell Carcinoma (CCRCC)
dataset29. Phosphorylation enrichment by IMAC, the method
employed in thispublication, hasbeen shown to simultaneously enrich
glycopeptides, particularly those bearing sialic acids30,31, so the data
should be rich in glycan signals. This dataset also presents two chal-
lenges: TMT-labeling is known to affect PTM fragmentation patterns
due to reduced proton mobility9 and the relatively high collision
energies used in this experiment cause extensive fragmentation of
glycans, reducing the signal strength of typical glycan fragment ions.
Because TMT is searched asfixed or variablemodifications (i.e., it does
not produce an open search-derived mass shift), peptides containing
only TMT and no other mass shift are considered “unmodified”.
Effectively, this controls for TMT-related fragmentation when deter-
mining glycopeptide fragmentation patterns, as TMT-related frag-
mentation patterns are present in both the glycopeptide spectra and
the unmodified spectra.

We first wanted to verify that we could detect the commonly used
glycopeptide-associated diagnostic ions from the MSFragger-Glyco7

search and annotation that are most likely to be present32. After dis-
carding any mass shifts less than 50Da we were left with 493 likely
glycan mass shifts from 967,264 glyco PSMs of 9623 unique glyco
peptides, each of which should be enriched for diagnostic ions
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Fig. 2 | Characterization of 4SU fragmentation from a pRBS-ID experiment.
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94Da fragment on the peptide. b Diagnostic ions derived from the fragmentation
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Table 2 | Diagnostic features for the most abundant mass shifts detected in an open search of a pRBS-ID experiment

peak apex ion type mass remainder
propensity

delta
mod. mass

percent
PSMs (mod)

percent
PSMs (unmod)

avg. inten-
sity (mod)

avg. inten-
sity (unmod)

intensity fold
change

226.0594 diagnostic 241.0626 37.76 26.3 17.55 8.35 3.02

226.0594 diagnostic 133.0500 27.28 15.1 7.89 4.44 3.21

226.0594 b 94.0344 26.86 −132.025 29.96 0.8 46.16 36.40 47.49

226.0594 b 77.0092 15.15 −149.050 15.96 1.4 24.54 17.53 15.96

226.0594 y 94.0362 14.48 −132.023 27.53 0.9 43.49 32.78 40.58

57.0216 b 57.0216 46.25 0 22.07 1.7 52.66 12.89 53.05

57.0216 y 57.0216 23.03 0 20.16 1.6 53.24 13.47 49.82

94.0168 diagnostic 164.0832 25.70 10.0 10.86 5.20 5.37

94.0168 diagnostic 215.0582 32.53 15.3 12.71 6.64 4.07

94.0168 diagnostic 241.0626 44.98 26.3 15.37 8.35 3.15

94.0168 b 94.0168 32.01 0 37.35 0.9 46.32 42.79 44.93

94.0168 b −19.0638 19.08 −113.081 16.47 0.4 36.95 18.82 80.82

94.0168 b 77.0042 18.13 −17.0126 18.07 1.7 37.81 13.33 30.15

94.0168 y 94.0168 26.76 0 34.54 0.9 44.15 42.79 39.60

−48.0032 diagnostic 181.0986 27.63 16.3 9.95 4.63 3.64

−48.0032 b −48.0032 41.80 0 42.8 1.3 77.96 15.23 100.00

−48.0032 y −48.0032 24.37 0 41.25 1.3 64.48 20.08 100.00

Remainder propensity scores are present only for b- and y- remainder masses. Features corresponding to the set of modified or unmodified PSMs used in comparisons are labeled as (mod) and
(unmod), respectively. The difference between the MS1 mass shift and the observed fragment remainder masses (i.e., the lost mass) is enumerated in the “delta mod mass” column.
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associated with the N-glycan core structure12 and other mono-
saccharide(s) present, including sialic acid. Indeed, PTM-Shepherd
successfully identifies many of the expected diagnostic ions used in
glycopeptide searches and glycan identification7,32, including three
known sialic-acid related oxonium ions at 274, 292, and 657m/z
(Fig. 3a, Supplementary Data 3). In addition to these, we found 12
additional ions that were diagnostic for more than 50% of glycanmass
shifts. We hypothesized that thesemight be diagnostic ions specific to
a high-collision energy environment and attempted to identify them in
a data-driven manner. We used PTM-Shepherd’s diagnostic feature
extractionmodule, which extracts intensities for user-specified ions of
interest, to quantify these alongside the set of commondiagnostic ions
used in the MSFragger-Glyco, identifying clusters of highly correlated
ions (Fig. 3b, see Methods). Known ions clustered together mean-
ingfully, with annotated GalNAc, Hexose, HexNAc, and Phospho-
Hexose ions being highly correlated with others from the same resi-
due, lending credence to this approach’s validity. Perhaps unsurpris-
ingly given the nature of the enrichment method, most unannotated
diagnostic ions formed a large cluster with the two monomeric sialic
acid oxonium ions found at 274 and 292m/z. We selected the diag-
nostic ions from a subcluster (Fig. 3b, cluster 5) that was highly cor-
related with both oxonium ions (Supplementary Data 4) to validate
individually. These ions formed a potential neutral loss series from the
annotated 292 and 274m/z oxonium ions, with successive losses of 42,
17, 18, and 30Da. To our knowledge, manuscripts covering sialic acid

fragmentation make no mention of these as diagnostic ions12,33,34, so
their presence in spectra acquired at high collision energies may be of
interest to other researchers when assigning sialic acids to glycan
composition.

Aside fromdiagnostic ions, glycopeptides alsoproducean intense
series of peptide remainder ions, called Y-ions in glycopeptide frag-
mentation nomenclature, where the peptide is intact while the mod-
ification has fragmented12. Mammalian N-glycans have a common core
structure. When the core structure fragments, it produces a pattern of
Y-ions with peptide remaindermasses that are identical irrespective of
the peptide’s or glycan’s mass and can even be used to diagnose the
presence of glycopeptides6. Like the diagnostic ions discussed above,
we find an expected pattern of peptide reminder masses corre-
sponding to the N-glycan’s core’s Y-ion series (Fig. 3c). Aside from
these, two peptide remainder masses that are not considered in the
MSFragger-Glyco search recurred across mass shifts: +83Da and −17
Da. The smallest glycanmass from theN-glycancore, corresponding to
a single GlcNAc retained on the peptide, is 203Da, so seeing masses
smaller than that being as diagnostic for glycopeptides as the com-
plete loss of glycan ( + 0Da) or a single GlcNAc ( + 203Da) was unex-
pected. This pattern—consisting of a cross-ring fragmentation event at
the core GlcNAc and a loss of ammonia, respectively—has previously
been identified as a conserved fragmentation pattern for
glycopeptides35, but appears not to be used in current state-of-the-art
tools6,7,36. This indicates that even for very well characterized
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modifications, gaps can exist between knowledge of fragmentation
patterns and their use in computational tools, a disconnect that PTM-
Shepherd’s automated fragmentation analysis can correct.

The final diagnostic feature we assessed for this glycan dataset is
shifted fragment ion series. When the peptide and glycan have both
fragmented, the glycan can leave a signature+203 fragment remainder
mass on the peptide ion series12. PTM-Shepherd recovered this frag-
ment remainder mass exactly (Supplementary Fig. 2) and with little
interference from artefactual mass shifts despite the noisy nature of
pairwise ion differences.

Someof the identified ions, particularly the Y-ion series of peptide
remaindermasses, appeared to taper off very quickly at larger masses,
which is a known issue when identifying labile modifications at rela-
tively high collision energies. We reasoned that using these extra ions
in our search when they can be low-abundance or absent injects
additional noise into the search results and suppresses real glyco-
peptide identifications. To test this, we used the fragmentation infor-
mation provided by PTM-Shepherd and reduced our fragment and
peptide remaindermasses to only the four Y-ions appearing in >50%of
glycan mass shifts. Though more careful analysis would surely yield
better results, even the incorporationof a crude cutoff froma subset of
the data resulted in a 4.5% increase in glyco-PSMs, proving that the
fragmentation information provided by PTM-Shepherd enables
researchers to tune search parameters to best suit their individual
experiments.

We showed that PTM-Shepherdwas sensitive to knowndiagnostic
features for glycopeptides. New features detected by PTM-Shepherd
also had chemical meaning relevant to the experimental setting, and
PTM-Shepherd was able to identify unannotated sialic acid diagnostic
ions for high-energy TMT experiments in a data-driven manner.
Additionally, we proved that the information provided by PTM-
Shepherd can be incorporated into subsequent searches to fine-tune
parameters for different experimental settings.

Automated fragmentation analysis
ADP-ribosylation (ADPR) has seen a surge of interest in recent years,
with many enrichment methods37,38 and instrumental techniques39

developed over the last decade to aid in its study. Despite this, spe-
cialized computation techniques have lagged behind. Fragmentation

studies—necessary to design tools or workflows for the analysis of
PTMs—require careful analysis and examination of individual spectra40.
We believed that PTM-Shepherd’s diagnostic feature mining module
could expedite fragmentation studies and reveal useful insights to
their behavior. To demonstrate this, we reanalyzed ADPR-enriched
data from Martello et al. 39. from peroxide-treated HeLa cells, rich in
Ser-directed ADPR, and mouse liver, rich in Arg-directed ADPR.

To validate the fragmentationpatternswedetected,wefirst cross-
checked them against published ones40. As expected, we found pre-
viously annotated diagnostic ions (Fig. 4a, Supplementary Data 5a,b)
corresponding to almost every expected breakpoint on the ADPR side
chain (Fig. 4b). These were all found at relatively high levels among
ADPRylated spectra (78–100%). Interestingly, themost intenseof these
ions—e.g., the adenine-derived ion at 136—was also abundant in
unmodified spectra (73%) as a result of co-fragmentation of ADPR-
containing peptides (Supplementary Note 1). This speaks to the
robustness of PTM-Shepherd’s algorithm; even features whose pre-
sence alone is not specific to a particular mass shift can be recovered
becauseour scoring andfilteringutilizes intensity information.Wealso
recovered additional ions that correspond to derivatives of annotated
ions: an oxidized 428m/z ion ( + 16Da), a 348m/z ion that has
undergone a loss of water (−18 Da), and a 250m/z ion that has
undergone a loss of water (−18 Da). These ions were all far more spe-
cific to the ADPR PTM than their annotated counterparts and thusmay
beof interest to others studyingADPR. A final diagnostic ion of interest
did not correspond to a common mass offset from an annotated ion.
At 137.0458m/z, we could not identify this ion as being a secondary
product of any annotated ions. Its exact mass is strongly suggestive of
a deamidation event occurring on the adenine ion at 136.0618m/z
(+0.9840Da).

We also observed a strikingly strong relationship between an ion’s
average intensity and its presence in unmodified spectra across both
ADPRdatasets analyzed (Fig. 4d, Spearman’sR:2 mouse =0.857; HeLa =
0.884). We have previously commented on this phenomenon when
looking at biotin-derived Cysteine probes19. In that case, reducing the
isolation window and employing ion mobility gave a modest boost to
diagnostic ion specificity, an effect that was presumed to be caused by
reduced co-fragmentation of peptides. Additionally, we see a strong
relationship between the purity of a given unmodified spectrum and
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the intensity of PTM-specific diagnostic ions in this dataset (Supple-
mentary Fig. 3), lending further credence to the co-fragmentation
hypothesis. It is worth noting that the issue of co-fragmented ions has
beenwell-studied in the context of isobaric tandemmass tags41. But, to
our knowledge, this is an understudied issue for biological PTMs.

PTM-Shepherd also identified both types of remainder ions in this
dataset, peptide (Fig. 4c) and fragment. Of note was PTM-Shepherd’s
recovery of a −42 Da peptide remainder mass from the Arg-directed
ADPR dataset (Supplementary Data 5b). When Arg-linked ADPR dis-
sociates from thepeptide, it appears to frequently take a portionof the
Arg side chain with it. The result is a negative peptide remainder mass
corresponding to the loss of the Arg reactive group that is both pre-
valent (66% of PSMs) and distinguishes ADPR on Arg from other resi-
dues. This is also reflected in the fragment remainder masses. The b-
and y-ion series were found to consist of 40 and 26% ions shifted by
−42, respectively (Supplementary Data 5b). Since only ions down-
stream of the modification site are expected to be shifted, we only
expect to find half of all ions containing PTM-related mass shifts. The
abundance of the Arg-specific fragment ions indicates that the mod-
ification itself should be easily localizable. We also found a noteworthy
number ofneutral loss-associatedpeptide remainder ions.WhenADPR
fragments after the primary ribose (Fig. 4b, green), we would expect a
peptide remaindermass of 114Da if it were to remain intact. We do not
find that mass, but instead find four sequential neutral losses of water
from that mass. Equally of interest is that the neutral loss peaks—
despite neutral losses not being unique to ADPRylated peptides—are
not found in unmodified spectra. Though counterintuitive, even
common losses can produce PTM-specific peaks. By thinking of them
as losses of almost the entire modification and a common neutral loss,
it is easier to reconcile their uniqueness to specific modifications. In
other words, a −17 peptide remainder mass (Fig. 4c, red) will appear at
the precursorm/z− 17 for unmodified peptides, but at precursorm/z–
558 for modified peptides.

Use cases and applicability of diagnostic features
To investigate the extent to which co-fragmentation affects diagnostic
feature characteristics, we leveraged our ability to identify large
numbers of glycan diagnostic ions from the CPTAC IMAC-enriched
dataset. This dataset represents 117 unique diagnostic ions, each found
to be diagnostic for between 1 and 493mass shifts, for a total of 13707
data points (Supplementary Data 1). Every diagnostic ion was eval-
uated individually for its ability to separate glyco and unmodified
spectra based on its precision and AUC (Supplementary Note 2). This

was repeated for the 64 unique peptide remainder masses observed
between 1 and 344 times, totaling 2261 data points.

Here, precision can be interpreted as the probability y that a
spectrum is a glyco spectrumgiven that the diagnostic ion is present in
the spectrum at intensity x (Fig. 5a). Diagnostic ion precision attenu-
ates rapidly as the intensity increases, losing more than a third of its
usefulness when it becomes the spectral base peak (average intensity
100.0). In enriched datasets such as this, that can be explained by co-
fragmentation. As mentioned above, for co-fragmented spectra the
probability of seeing ions from the minor product is inversely pro-
portional to the spectral purity. For all ions in the spectrum, their
probability of passing the limit of detection is proportional to their
intensity. Thus, if you have a very intense ion, it can appear in a
spectrum even if is coming from a minor product in a relatively high
purity spectrum. In enriched datasets such as this, co-fragmented
minor peptides are disproportionately likely to be PTM-bearing and
produce diagnostic ions. If those ions are also very intense by nature,
they will be present in many unmodified spectra. This is a trend that
can be reversed by taking intensity information into account rather
than only checking for the presenceor absenceof the ion (Fig. 5b). The
AUC statistic here can be directly interpreted as the probability y that a
diagnostic ion of intensity x drawn from a random modified PSM will
be greater than the intensity of the same diagnostic ion drawn from a
random unmodified PSM. After including intensity information, an
ion’s ability to separate glyco and non-glyco spectra increases with
intensity. Incorporating this feature into PTM-Shepherd allows us to
detect diagnostic ions that are as ubiquitous as ADPR’s adenine ion, in
92.9% of off-target spectra in the HeLa dataset (Supplementary
Data 5a). It also shows that researchers can effectively use intense
diagnostic ions for scoring PTMs, but only if they empirically learn the
distribution of intensities among unmodified PSMs beforehand.

For peptide remainder masses, unlike diagnostic ions, precision
does not attenuate with intensity (Supplementary Fig. 4). As men-
tioned above, peptide remainder masses are mass- (although not
sequence) specific. Co-fragmented peptides can only share peptide
remainder masses if they share a mass that is indistinguishable at MS/
MS mass accuracy, which is not guaranteed even for co-fragmented
peptides with the same charge state. Excluding noise peaks that hap-
pen to fall within the tolerance of a theoretical peptide remainder ion,
there should be few erroneously matched peptide remainder masses.
The result is a very specific feature that does not attenuate as it gets
more intense. Accordingly, peptide remainder ions discovered by
PTM-Shepherd have many applications. Experiments performed with
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data-independent acquisition (DIA) have many co-fragmented pep-
tides by design and present a prime opportunity for their use. Plus,
with the advent of real-time searching, peptide remainder ions can also
be used for instrumental enrichment42.

Discussion
Our analyses show that PTM-Shepherd can be used to reliably identify
diagnostic features for any modification of interest. In high-energy
glycopeptide fragmentation, we showed that diagnostic ions for sialic
acid could be identified without prior knowledge in a data-driven way,
as well as finding two peptide remainder masses that had been
described by experimentalists but neglected by cutting-edge glyco-
peptide search tools. In our discussion of a novel RNA-crosslinking
workflow, we showed that we can easily automate experimental
characterization in the FragPipe/PTM-Shepherd environment. Finally,
our discussion of ADPR fragmentation demonstrated that fragmenta-
tion studies—traditionally done by hand with manual annotation of
spectra or using custom tools10 and synthetic peptides14—could be
automated and democratized to reach a broader audience and study
PTMs without additional benchwork. We even found meaningful
fragmentation patterns that would have been missed by annotation
focused on modification structure alone. Although our analysis
focused on demonstrating PTM-Shepherd’s capabilities, we also used
our ability to generate diagnostic features in large numbers to better
understand their nature.We showed that co-fragmentationof peptides
presents a major issue for the precision of diagnostic ions in PTM
analysis and explored ways to overcome it, as well as interrogating the
utility of peptide and fragment remainder masses.

Automated diagnostic feature detection has wide-ranging appli-
cations across proteomics fields. Chemical probes can be character-
ized instantly, facilitating their development19. It could be
advantageous to use these features to develop custom modification
scores for localization-by-proxy strategies43 or to perform rescoring in
Percolator44. Furthermore, for enriched datasets or DIA-studies, the
remainder masses identified by PTM-Shepherd might be the only
reliable way to definitively identify labile modifications. There are
myriad ways in which understanding modification behavior aids
researchers, and thus we believe that the diagnostic feature detection
enabled by PTM-Shepherd will be an invaluable tool in the analysis of
proteomics data.

Methods
Algorithm overview
Here we provide an overview of the algorithm used for diagnostic
feature detection. Additional details are provided in the sections
below. Thegoal for this algorithm is to identify spectral features for the
PTMs identified in an analysis. We used open (or mass offset) searches
to identify peptides bearing PTMs. PSMs are grouped based on their
mass shift, using PTM-Shepherd’s peakpicking algorithm23, into a
“mass shift bin.” To do this, MS1 mass shifts for the experiment are
allocated into a histogramwith0.0002Dawidth bins. The histogram is
then smoothed by distributing each bin’s mass into itself and the two
adjacent bins on either side using a normal distribution, and peak
apexes are detected by identifying regions of the histogram with a
prominence greater than 0.3 and the 500highest signal-to-noise peaks
(calculated by summing PSM counts within a 0.004Da window of the
apex and subtracting PSM counts for 0.01 Da windows on either side)
are reported. Redundant PSMs are not considered for this analysis,
with the highest E-Value PSM for each peptide ion within a mass shift
bin being retained as a representative PSM. For each representative
PSM within a mass shift bin, we calculate three features: potential
diagnostic ions in the spectrum, potential peptide remaindermasses in
the spectrum, and potential fragment remainder masses in the spec-
trum (see: Spectral feature calculation). We then check to see which of
these features recurs across representative PSMs within the mass shift

bin (see: Identifying recurring features). Ideally, one could use these
patterns to describe how the PTM in the mass shift bin fragments.
However, detecting a fragmentation pattern this way does not mean
that it necessarily describes the PTM within the mass shift bin. For
example, immonium ions from individual unmodified amino acids will
be detected as recurring features but are related to peptide fragmen-
tation rather thanPTMfragmentation. Similarly, a-ionswill bedetected
as fragment remainder masses because they produce consistent mass
shifts from b-ions. To limit the list of recovered features to only those
that describe the relevant PTM, we thus need to see whether they are
more abundant within the mass shift bin than in some background
dataset. We reasoned that unmodified peptides (contained within the
zero bin) are the best representative of a dataset’s background. Fol-
lowing this logic, we then test whether each recurring feature from the
mass shift bin is more abundant among representative PSMs in the
mass shift bin than the representative PSMs of unmodified peptides
(see: Identifying significant features). Features that pass statistical and
abundance filtering are reported.

Spectral feature calculation
Rather than using every PSM for what is inherently a noisy process, we
select only those that are most likely to have the highest quality
spectra. To do this, PSMs within each mass shift bin are first grouped
by their peptide ion (sequence, modification state, and precursor
charge state), then each group of PSMs has its lowest E-value repre-
sentative selected for all downstream processing.

The first MS/MS spectral feature we analyze is raw spectral ions,
such as immonium and oxonium ions, which we will refer to simply as
diagnostic ions. All spectra from PSMs containing a given delta mass
are stripped of matched a-ions, b-ions, and y-ions (by default). Spectra
are also stripped of a-, b-, and y-ions that are found to be shifted by the
PSM’s delta mass, preventing backbone fragments containing the
modification from being counted as diagnostic ions. At this point, a
spectrum can be thought of as a vector composed of m ions, where
each ioni has a corresponding mzi and inti corresponding to the ion’s
mass at charge state one and its intensity. All remaining ions are con-
sidered potential diagnostic ions and stored in a vector U of lengthm.
This can be represented as

U= ½ mz1, int1
� �

, � � � , mzm, intm
� �� ð1Þ

The second MS/MS spectral feature we analyze in the MS/MS
spectra is peptide remaindermasses. All spectra fromPSMs containing
a given delta mass are stripped of shifted and unshifted a-, b-, and y-
ions, as described above, before precursor remainder mass calcula-
tion. A theoretical peptide mass P of charge state one is calculated
based on the peptide sequence and variable modifications identified
for the PSM during spectral searching but excluding any MS1 mass
shift. Then, the pairwise distance d between each remaining ion in the
MS/MS spectrum and the theoretical peptide mass P is calculated and
stored in a vector V of length m, where m is the number of ions
remaining in the spectrum after filtering. Each component Vi contains
the pairwise distance between P and mzi as well as the intensity inti.
This can be represented as

V = ½V1, � � � ,Vk � ð2Þ

with each component

Vi = ðmzi � P, intiÞ ð3Þ

Intuitively, each component can be interpreted as what the pre-
cursor remainder mass and intensity would be if the ith ion were a
shifted precursor in the spectrum.
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The third MS/MS spectral feature we analyze is fragment
remaindermasses. All spectra fromPSMs containing agivendeltamass
are stripped of unshifted a-, b-, and y-ions only, allowing us to identify
instances where the entire delta mass remains on the fragment ions.
We reasoned that understanding how modifications affect individual
ion series would provide insight into fragmentation patterns, so frag-
ment remaindermasses for b- and y-ions are calculated independently.
Our procedure is similar to the procedure described by Dancik et al. 45.
and reiterated by He et al. 20. For each fragment ion series, the pep-
tide’s theoretical fragment ions of charge state one are calculated
based on the peptide sequence and modifications identified for the
PSMduring spectral searching; the vector F holds each of n theoretical
fragment ions, where n is the length of the peptide minus one and Fj
corresponds to the jth fragment ion. Then, the pairwise distance
between each remaining ion in the MS/MS spectrum and each theo-
retical fragment ion Fj is calculated and stored in a matrixW of sizem
by n, where m is the number of ions remaining in the spectrum. This
can be represented as

W=

W11 � � � W1n

..

. . .
. ..

.

Wm1 . . . Wmn

2
664

3
775 ð4Þ

with each component

Wij = ðmzi � Fj , intiÞ ð5Þ

Intuitively, eachmatrix component can be interpreted aswhat the
jth fragment’s remainder mass and intensity would be if the ith ion in
the spectrum were the jth theoretical fragment’s shifted counterpart.

Identifying recurring features
We then determine which features represent the most intensity and
are thus worthy of undergoing testing for enrichment. To do this, we
place every value in a histogram with a bin width of 0.2 mDa spanning
the range of possible features. Each feature (diagnostic ion, peptide
remainder mass, and fragment remainder masses), is given its own
histogram. For peptide and fragment remainder masses, the left tail of
the histogram is truncated at −250Da because values smaller than that
would necessitate the losses of multiple residues. Because peaks in
these histograms are generally too jagged to cleanly identify peaks,
they are smoothed. This is done by calculating a rolling mean across
the histogram, but one that increases in spread for heavier ions to
account for their larger uncertainty inDa terms.The spreadof the peak
in Da is determined by

tol*
massi +massx
� �

1000000
ð6Þ

where the MS/MS spectrum tolerance is tol in ppm terms, the mass of
the ion being inserted is massi, and the average mass of fragment ions
or peptide ions from themass bin ismassx.Themassx term allows us to
properly account for the uncertainty of remainder masses. Distribut-
ing the mass without considering the peptide it came fromwould lead
to improperly small spreads. To illustrate the issue, a peptide
remaindermassof 100Daderived froma 1000Dapeptide shouldhave
an MS/MS error calculated from 1100Da, not 100Da. For diagnostic
ions, a mass of 150Da is used as massx.

Peaks in the histogram are defined by descending each side of a
local maximum bin until a bin with either zero intensity is reached or
the next bin’s value increases. Manual calibration found that a bin-to-
bin tolerance of 1% was enough to prevent noisy bins from splitting
peaks in two. Peaks are then integrated by summing histogram bins
within the MS/MS tolerance without regard for adjacent peak

boundaries. Any peak with an integrated area greater than 0.1% (by
default), representing an average intensity greater than 0.1% of the
base peak, is selected for downstream analysis. A final check is per-
formed to remove redundant peaks where the least intense of any two
histogram peaks that cannot be resolved under the provided MS/MS
tolerance is removed.

Identifying significant features
To find features specific to a particular mass shift, the full feature set—
every major peak from the feature histograms above—needs to have
features pruned from it that are not specific to the mass shift. We
reasoned that peptides without mass shifts would be a good repre-
sentative of a dataset’s noise, and as such testing whether features are
more likely to appear among peptides with a particularmass shift than
thosewithout anymass shift would filter out non-modification-specific
features.

Representative PSMs for every peptide ion with a particular mass
shift and representative PSMs with no mass shift are first assembled,
then every feature from the list of diagnostic ions, precursor remain-
dermasses, and fragment remaindermasses is quantified for each PSM
in both lists. For spectra that do not have the diagnostic feature, the
intensity is coded as a zero. Fragment remainder masses are likely to
appear by chance solely based on the number of theoretical-to-
experimental ion offsets calculated, so PSMs are considered to be
missing a fragment remainder mass if there are fewer than two shifted
ions of the ion type in the spectrum, i.e., fewer than two matching
fragment remaindermasseswithin featurematrixW for any ion type. A
maximum of 1000 representative PSMs are selected per group, with a
seed provided internally for reproducibility.

For every diagnostic feature tested, a series of metrics are pro-
duced forfiltering noise peaks from real peaks. First, the lists of feature
intensities from the unmodified and mass shifted PSMs are compared
via a two-sidedMann-Whitney-U test with tie and continuity correction
(adapted from the Hipparchus statistics library for Java, v1.8). E-values
for each diagnostic feature are calculated by multiplying by the num-
ber of tests performed within the feature class for the current mass
shift. By default, any feature with an E-value less than 0.05 is filtered
out. A second metric to quantitatively assess the strength of the fea-
ture is included in PTM-Shepherd’s output: Area Under the Curve
(AUC). This is commonly used as ameasure of effect size for theMann-
Whitney U test and can be directly interpreted as the probability that a
mass shifted PSM will have a higher intensity for this feature than an
unmodified PSM. Second, we calculate a feature’s fold change of
average intensity across all PSMs. Any features with fold change of less
than 3.0 is filtered out by default. This metric primarily helps to
identify diagnostic ions and non-specific but increased neutral losses
for peptide and fragment remainders. Third, we filter out any features
that are not sensitive for themodification, occurring in less than 25%of
representative PSMs for diagnostic ions and peptide remainder mas-
ses. Owing to the multiple ion requirement for fragment remainder
masses, this filter is reduced to 15% but is accompanied by an ion
propensity filter requiring at least 12.5% of the identified ions within
that series having the mass shift.

Fragment ions undergo an additional post-filtering processing
step. Because a theoretical-experimental peak offsetWij is created for
n theoretical ions in the theoretical ion series, a single peak in the
experimental MS/MS spectrum produces a sequence specific pattern.
For example, if the jth residue produces an offset with fragment Fj
from the experimental ion i, the same experimental ion responsible for
that offset will also produce an “echo” offset from fragment Fj-1 equal
to the original offset plus the mass of the residue at position j. Simi-
larly, it will produce an “echo” offset from fragment Fj+1 equal to the
mass of residue j + 1 minus the original offset. Depending on the
fragment ions containing the mass shift, some modifications can
produce very weak signals for their primary mass shift but strong
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signals from shifted fragment ions upstream or downstream of the
modification site. To correct for this, we check for residue enrichment
both on and adjacent to the peptide site responsible for producing the
mass shift. If any residue is found at position j + 1 for a modification
more than50%of the time, the fragment remaindermass is adjustedby
subtracting that residue’s weight from the fragment remaindermass. If
any residue is found at position jmore than 50% of the time, the mass
of residue j is added to the fragment remainder mass. With all frag-
ments downstream of a peptide’s modification site carrying the mass
shift, the residues responsible for these shifts should be roughly uni-
formly distributed across all 20 amino acids. Thus, any mass shift that
is less prevalent than one of these adjusted offsets is unlikely to be a
real peak, and reporting for fragment remainder masses is truncated
after the first adjustment.

Data processing
Four datasets were used throughout thismanuscript. The first consists
of a single Thermo Fisher Raw file “2021-2-23_EA_296_1A_Final.raw”
from ProteomeXchange repository the PXD028853. This contains a
cysteine chemoproteomic probe from Yan et al. (2022)19 that was used
to demonstrate the algorithm. Data was collected on a Thermo Sci-
entific Orbitrap Eclipse Tribrid in DDAmode and processed directly in
FragPipe (v18.0) without conversion to mzML. Data was searched
against the Uniprot reviewed protein sequences database retrieved on
13 June 2021 with decoys and common contaminants appended. An
offset searchwas performed inMSFragger (v3.5)5 by loading the “Mass-
Offset-Common-PTMs” workflow, replacing the offset list with 0 and
463.236554, and replacing the fixed cysteine carbamidomethylation
with a variable one. “Write calibrated MGF”24 was turned on for the
PTM-Shepherd23 diagnostic feature mining module, and “Diagnostic
Feature Discovery” in PTM-Shepherd (v2.0.0) was enabledwith default
parameters. Filtering to 1% PSM, peptide, and protein levels was per-
formed by Philosopher (v4.2.2)46.

The second dataset consists of the Clinical Proteomics Tumor
Analysis Consortium (CPTAC) IMAC-enriched clear cell renal cell car-
cinoma (ccRCC) samples29 from the CPTAC data portal47. These 299
files represent TMT-labeled solid tumor or adjacent normal tissue from
110 human ccRCCpatients. Samples were acquired on a ThermoFisher
Fusion Lumos in data-dependent acquisition (DDA) mode using high-
collisiondissociation (HCD).ThermoFisher rawfileswereconverted to
mzML format using Proteowizard v3.0.1139248 with vendor peakpick-
ing enabled. The 23 TMT-plexes were separated into separate experi-
ment folders and processed using FragPipe v18.0. For the primary
analysis, the default “glyco-N-TMT” workflow was used with minor
changes to account for the goals of the analysis and experimental
setup. Data was searched against the Uniprot reviewed protein
sequences database retrieved on 13 June 2021 with decoys and com-
mon contaminants appended. During the MSFragger5 search, two
variable phosphorylation modifications were allowed on the residues
STY due to the expected enrichment of phosphorylated peptides and
“Write calibrated MGF”24 was turned on for the PTM-Shepherd23 diag-
nostic featuremining module. In PTM-Shepherd, “Assign Glycans with
FDR” was disabled, and “Diagnostic Feature Discovery” was enabled
with default parameters. Finally, “Isobaric Labeling-Based Quantifica-
tion” with TMT-Integrator was disabled. Filtering to 1% PSM, peptide,
andprotein levelswasperformedbyPhilosopher46. PTM-Shepherdwas
then run via command line to enable the reporting of isotopic peaks.

For the secondary analysis wherein known and discovered
diagnostic ions were quantified, PTM-Shepherd’s “Diagnostic Fea-
ture Extraction” module was used with the ion list presented in
Fig. 2b. This was performed using the mzMLs rather than the
deneutrallossed and deisotoped24 mgf files from MSFragger to pre-
vent neutral losses that would be correlated under normal condi-
tions from being anticorrelated in the analysis. For the tertiary
analysis wherein the landscape of diagnostic features was explored,

PTM-Shepherd was rerun, but with the filtering parameters for
diagnostic ions and peptide ions set to 0 for “Min. % of spectra with
ion” and 1 for “Min. intensity fold change.” PSM-level correlations for
all PSMs with mass shifts >50 Da were computed for each diagnostic
ion present in more than 50% of glycan mass shifts. Spectral ions are
normalized to the base peak by default, creating nonlinear rela-
tionships between some ions and necessitating the use of Spear-
man’s rank correlation. Correlation was calculated using the Pandas
package in Python.

The third dataset consists of a novel protocol for photo-
activatable ribonucleoside-crosslinking from the ProteomeXchange
repository PXD02340126. Only the two 4SU nucleotide-specific raw
files from this repository were used. Samples were acquired on a
Thermo Fisher Orbitrap Fusion Lumos using HCD fragmentation.
Only the two 4SU-specific raw files from the repository were using in
this analysis, and both samples were processing using FragPipe
v18.0 directly without conversion tomzML. Samples were processed
three times. The first, to find diagnostic features, was a standard
open search using the FragPipe default “Open” workflow but with
“Write calibrated MGF” and PTM-Shepherd’s “Diagnostic Feature
Discovery” enabled with default settings. The second, to validate
fragment remainder masses, was adapted from the default “Mass-
Offset-CommonPTMs”workflow but with the mass offsets limited to
0, 226.0594, and 94.0168; “Labile modification search mode”
enabled; “Y ionmasses” and “Diagnostic fragmentmasses” removed;
“Remainder masses” set to 94.0168 and 76.9903; “Write calibrated
MGF” enabled; and PTM-Shepherd’s “Diagnostic Feature Discovery”
enabled with default settings. The settings for the third analysis to
validate an ammonium loss were identical to the second but without
the 76.9903 fragment remainder mass. All analyses were run against
the Uniprot database described above. Crystal-C49 was used to clean
up open search results. Filtering to 1% PSM, peptide, and protein
levels was performed by Philosopher46.

The fourth dataset consists of two samples from the Proteo-
meXchange repository PXD004245 corresponding to ADPR -enriched
samples of mouse and HeLa origin39. The former is derived from
mouse liver, processed in triplicate, and was acquired on a Thermo
Fisher Orbitrap Q-Exactive Plus instrument in DDA mode using HCD.
The latter was treated with H2O2 to induce oxidative stress, then col-
lected in the same manner described above. Raw files were converted
to mzML using Proteowizard v3.0.19296 with vendor peakpicking
enabled. Both datasets were searched against their respective Uniprot
reviewed sequencedatabasedwith decoys and common contaminants
appended, with the mouse database retrieved on 27 September 2021
and the human database described above. Both datasets were sear-
ched separately in FragPipe v18.0 using the default “Labile_ADPR-
ribosylation workflow with a few changes. During the MSFragger
search, “Report mass shift as variable mod” was set to “No” so that
PTM-Shepherd would register these ADPRs as mass shifts and “Write
calibratedMGF”was enabled for the PTM-Shepherd diagnostic feature
mining module. PeptideProphet50 and ProteinProphet defaults for
“Offset search” were loaded, then PTM-Shepherd and its “Diagnostic
Feature Discovery” Module were enabled.

One additional dataset was used to evaluate PTM-Shepherd spe-
cificity. This dataset consists of a subset of the human proteome
dataset obtained from PXD01015425. Specifically, the 36 raw files cor-
responding to the brain tissue labeled “V102” tissue were processed.
This was acquired on a Q Exactive Plus in DDA mode using HCD frag-
mentation. Raw files were searching directly in FragPipe v18.0 as
described above using the default “Open search” workflow with PTM-
Shepherd’s “Diagnostic Feature Discovery” Module enabled.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All data used in this manuscript is publicly available and previously
published. The following datasets were downloaded from Proteo-
meXchange: the cysteine probesdata are available under the accession
code PXD028853, RNA crosslinking data are available under accession
code PXD023401, ADP-ribosylation data are available under accession
code PXD004245 and human brain proteome data are available under
accession code PXD010154. IMAC-enriched glycan datasets were
downloaded from the CPTAC data portal (https://proteomic.
datacommons.cancer.gov/pdc/) and are available under study identi-
fier PDC000471. All data was searched against the Uniprot reviewed
protein sequences database retrieved on 13 June 2021. Source data are
provided with this paper.

Code availability
PTM-Shepherd is open source under an Apache 2.0 license and can be
found at https://github.com/Nesvilab/PTM-Shepherd. The version
used in themanuscript has beenpublicly released (https://github.com/
Nesvilab/PTM-Shepherd/releases/tag/v2.0.0). PTM-Shepherd is dis-
tributed as part of FragPipe [https://github.com/Nesvilab/FragPipe].
Custom secondary analysis and graphing scripts have been archived
on Zenodo (https://doi.org/10.5281/zenodo.8056053).
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