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DNA 5-methylcytosine detection and
methylation phasing using PacBio circular
consensus sequencing

Peng Ni 1,2,3,8, Fan Nie1,2,3,8, Zeyu Zhong 1,3, Jinrui Xu1,3, Neng Huang1,3,
Jun Zhang1,3, Haochen Zhao1,3, You Zou1,3, Yuanfeng Huang4, Jinchen Li 4,5,
Chuan-Le Xiao 6 , Feng Luo 7 & Jianxin Wang 1,2,3

Long single-molecular sequencing technologies, such as PacBio circular con-
sensus sequencing (CCS) and nanopore sequencing, are advantageous in
detecting DNA 5-methylcytosine in CpGs (5mCpGs), especially in repetitive
genomic regions. However, existing methods for detecting 5mCpGs using
PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-
learning method to detect DNA 5mCpGs using CCS reads. We sequence
polymerase-chain-reaction treated and M.SssI-methyltransferase treated DNA
of one human sample using PacBio CCS for training ccsmeth. Using long
(≥10 Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 Area Under the
Curve on 5mCpG detection at single-molecule resolution. At the genome-wide
site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and
nanopore sequencing using only 10× reads. Furthermore, we develop a
Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation
using CCS reads, and then sequence a Chinese family trio to validate it.
ccsmeth and ccsmethphase can be robust and accurate tools for detecting
DNA 5-methylcytosines.

5-methylcytosine (5mC), the most common form of DNAmethylation,
is involved in regulating many biological processes1. In humans, most
5mCs occur at CpG sites, which are associated with embryonic devel-
opment, diseases, and aging2,3. Bisulfite sequencing (BS-seq) is now the
most widely used methodology for profiling 5mC methylation4. In a
bisulfite-treated genomic DNA, unmethylated cytosines are converted
to uracils, while methylated cytosines are unchanged5. Thus, the
methylation status of a segment of DNA can be yielded at single-
nucleotide resolution. However, bisulfite treatment damages the DNA,
which further leads to DNA degradation and the loss of sequencing

diversity6. Recently, two bisulfite-free methods, ten-eleven transloca-
tion-assisted pyridine borane sequencing7 (TAPS) and enzymatic
methyl-seq8 (EM-seq) were also developed, which are both reported to
have more uniformly coverage and higher unique mapping rates than
BS-seq. Like BS-seq, TAPS and EM-seq can be applied to both short-
read sequencing and long-read sequencing9–11. However, all these
methods need extra laboratory techniques, which further leads to
extra sequencing costs.

Two major long-read sequencing technologies, PacBio single-
molecule real-time (SMRT) sequencing and nanopore sequencing of
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Oxford Nanopore Technologies (ONT), can directly sequence native
DNA without PCR amplification12,13. DNA base modifications alter
polymerase kinetics in SMRT sequencing and affect the electrical
current signals near the modified bases in nanopore sequencing13.
Thus, DNA base modifications can be directly detected from native
DNA reads of SMRT and nanopore sequencing without extra labora-
tory techniques12,13. For nanopore sequencing, computationalmethods
for 5mC detection either apply statistical tests to compare current
signals of native DNA reads with an unmodified control (Tombo14), or
use pre-trainedHiddenMarkovmodels (nanopolish15) and deep neural
network models (Megalodon16, DeepSignal17) without a control data-
set. Previous studies have shown that methods using pre-trained
models achieve high accuracies for DNA 5mC detection from human
nanopore reads18,19.

Pulse signals in SMRT sequencing, which are associated with the
nucleotides in which the polymerization reaction is occurring13,20,
include the interpulse duration (IPD) and the pulse width (PW). IPD
represents the time duration between two consecutive sequenced
bases. PW represents the time duration of a base being sequenced20.
Besides the sequenced nucleotides, base modifications would also
influence pulse signals. Using the differences in pulse signals between
modified and unmodified bases,methods for detecting 5mC and other
base modifications from SMRT data have been developed21. However,
due to the low signal-to-noise ratio, the reliable calling of 5mC using
early version SMRT data requires high coverage of reads (up to
250×)12,13. Based on the fact that unmethylated CpGs in vertebrates
often range over long hypomethylated regions, Suzuki et al. proposed
AgIn, which improved the confidence of 5mCpG detection by com-
bining the IPD features of neighboring CpGs from SMRT data22.
Recently, the PacBio circular consensus sequencing (CCS) technique
was presented23, in which subreads generated from a circularized
template in a single zero-mode waveguide (ZMW) are used to call a
consensus sequence (CCS/HiFi read)withhigh accuracy.Using thenew
CCS technique, Tse et al. developed a convolutional neural network
(CNN)-based method, called holistic kinetic model (HK model), for
genome-wide 5mCpG detection in humans24. For a CCS read, the HK
model first calculates the mean IPD and PW values of each base after
aligning the subreads of the CCS read to the reference genome. Then,
for each CpG site in the CCS read, the HK model organizes the mean
IPD values, the mean PW values, and the sequence context surround-
ing the CpG into a feature matrix. At last, the HK model feeds the
feature matrix into the CNN-based model to get a methylation prob-
ability of the CpG24. HK model achieves above 90% sensitivity and
specificity on 5mCpG detection at read level (i.e., at single-molecule
resolution). However, the HK model requires relatively high CCS sub-
read depth (at least 20× passed subreads for one CCS) for accurate
5mCpG detection, which limits the insert size in library preparation,
further limits the length of CCS reads. Following the HKmodel, PacBio
proposed another CNN-based method primrose25, which has been
claimed to have 85% read-level accuracy on 5mCpG detection from
long PacBio CCS reads. Moreover, PacBio provided primrose’s com-
panion script in pb-CpG-tools (https://github.com/PacificBiosciences/
pb-CpG-tools) to predict the site-level methylation frequencies of
CpGs. Similar to AgIn22, for each CpG in the genome, pb-CpG-tools
organize the read-level methylated probabilities of the CpG and its
neighboring CpGs predicted by primrose as features. Then, pb-CpG-
tools feed the features into a CNN-based model to get a predicted
methylation frequency of the targeted CpG.

In this study, we propose ccsmeth, a deep-learning method to
detect DNA 5mCpGs by using kinetics features (IPDs and PWs) of
PacBio CCS reads. Using bidirectional Gated Recurrent Unit (GRU) and
attentionneural networks, ccsmethdetectsmethylation states ofCpGs
at both read level and genome-wide site level. To assess the perfor-
mance of ccsmeth, we sequenced amplified andM.SssI-treated DNA of
human sample NA12898 using PacBio CCS with 10Kb insert size. We

also sequenced a human male sample SD0651_P1 using both PacBio
CCS with 15 Kb insert size and BS-seq. Experiments on the sequenced
datasets and publicly available datasets of HG00223,26 and CHM1327

show that ccsmeth achieves higher accuracies than the HK model and
primrose for 5mCpG detection at read level. ccsmeth also achieves
high correlations with BS-seq and nanopore sequencing at genome-
wide site level. The results demonstrate that ccsmeth accurately
detects methylation states of CpGs from long (≥10Kb) CCS reads at
both read level and site level.

Allele-specific methylation (ASM) occurs in both imprinting and
non-imprinting regions, which are associated with complex
diseases28,29 and cancers30. Recent studies showed that both PacBio
CCS sequencing and nanopore sequencing can be used for haplotype-
aware genome assembly31, variant calling32,33, and methylation
phasing34–37. Here, with the improved 5mCpGdetection of ccsmeth, we
further develop a Nextflow38 pipeline called ccsmethphase to detect
haplotype-aware methylation using CCS reads. We also sequence a
Chinese family trio using PacBioCCS to validate ccsmethphase. Results
on the tested datasets show that ccsmethphase can accurately detect
genome-wide allele-specific methylation. Furthermore, we demon-
strate that PacBio CCS is now a comprehensive and accurate tech-
nology for 5mCpG detection and methylation phasing even in
repetitive genomic regions.

Results
The ccsmeth algorithm for 5mCpG detection
Recurrent neural network (RNN) and attention mechanism are widely
used artificial neural networks in natural language processing39,40. Both
RNN and attentionmechanism have been applied in basemodification
detection fromnanopore long reads16,17,41. Here, wepropose ccsmeth, a
deep-learning method that is composed of bidirectional GRU42 and
Bahdanau attention43 networks, to detect CpG methylation from Pac-
Bio CCS reads. ccsmeth is designed to predict methylation states of
CpGs at both read level and site level. For a targeted CpG, ccsmeth first
predicts the methylation probability (or binary methylation state) of
the CpG in a read (i.e., at single-molecule resolution, read level), and
then summarizes the read-level methylation states to get its methyla-
tion frequency (site level) in the targeted genome (Fig. 1, Methods).
During the generation of a CCS read, the IPD and PW values of each
base in forward and reverse complement strands of the CCS read are
averaged from corresponding subreads (Fig. 1a). To predict the read-
level methylation state of a CpG, ccsmeth extracts a 21-mer sequence
context that includes the CpG itself in the center, with the kinetics
information (the averaged IPD, the averaged PW and the number of
covered subreads) of each base. Since CpG methylation are mostly
symmetric in human44, ccsmeth constructs two feature matrixes from
the forward and reverse complement strand for a symmetric CpG pair
(Fig. 1b). After processing the feature matrixes, ccsmeth outputs a
read-level methylation probability Pr (Pr 2 ½0, 1�).

Before calling methylation at the site level, the CCS reads should
be aligned to the reference genome. In ccsmeth, we provide two
modes to infer the site-level methylation frequency of CpGs: count
mode and model mode (Methods, Supplementary Fig. 1). In count
mode, based on read-level methylation probabilities, binary methyla-
tion state (0 as unmethylated, 1 as methylated) of a CpG in per read is
set by a probability cutoff (0.5 as default). Then the methylation fre-
quency is calculated by counting the number of readswhere theCpG is
predicted asmethylated, and the total number of readsmapped to the
CpG. In the model mode of ccsmeth, we leverage the read-level
methylation probabilities of neighboring CpGs to increase the con-
fidence of the site-level methylation detection in a way similar to pb-
CpG-tools. Specifically, for a targeted CpG, the read-level methylation
probabilities of the CpG and its 10 adjacent CpGs, together with the
distance (in base pair) of all 11 CpGs to the targeted CpG are organized
into a featurematrix. The featurematrix isfirst input into a BIGRU layer
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to capture the forward and reverse flow of interactions between
adjacent CpGs. Then an attention layer is applied to optimize the
weights of each adjacent CpGs, which allows themodel to focus on the
most relevant interactions. A methylation probability Ps (Ps 2 ½0, 1�) is
finally outputted as the methylation frequency of the targeted CpG
(Fig. 1c, Supplementary Fig. 1).

ccsmeth accurately detects CpGmethylation at single-molecule
resolution
To evaluate ccsmeth at read level (i.e., at single-molecule resolution),
we first use three groups of CCS datasets (M01&W01, M02&W02,
M03&W03) sequenced using M.SssI-treated and PCR-treated human
DNA on different versions of PacBio sequencers24. In M.SssI-treated
DNA, the CpG methyltransferase M.SssI methylates all CpGs, while
PCR-treated DNA which is prepared via whole genome amplification
(WGA) contains nearly no methylated bases24. As shown in Supple-
mentary Table 1, M01-03 are M.SssI-treated DNA samples, andW01-03
are PCR-treated DNA samples. For each group of datasets, we ran-
domly select 50%methylated reads and unmethylated reads formodel
training. The remaining 50% methylated and unmethylated reads are
used for testing. We use the same reads to train and test the HK
model24. primrose does not provide the interface for training, so we
exclude it for comparison on these three datasets. As shown in Fig. 2a,
ccsmeth outperforms the HK model on all three datasets. ccsmeth
achieves accuracies of 0.9232, 0.8788, and 0.8765 on M01&W01,
M02&W02, and M03&W03, respectively. The accuracies of ccsmeth
are 5.4%, 4.4%, and 3.7% higher than HK model on the three datasets,
respectively. ccsmeth achieves either around or above 0.95 AUCs,
which are 3.3%, 3.4%, and 2.6% higher than HK model on the three
datasets, respectively.

The read lengths of the three CCS datasets from Tse et al.24 are all
less than 10Kb, while CCS reads used in practice are usually in

10–25 Kb23. Therefore, we further use the long (≥ 10 Kb) CCS reads of
three human samples (NA12898,HG002, and SD0651_P1) for read-level
evaluation (Methods, Supplementary Table 2): The CCS reads of
NA12898 are sequenced using PCR-treated and M.SssI-treated DNA of
NA12898 with 10Kb insert size; The CCS reads of HG002 native DNA
sequenced using three different insert sizes (15Kb, 20Kb, 24Kb) were
taken from Baid et al.26 and Human Pangenome Reference
Consortium23; The CCS reads of SD0651_P1 are sequenced using 15Kb
DNA insert size. The mean subread depths of the CCS reads in these
datasets range from 7.6× to 14.1× (Supplementary Table 1). We train
the read-level model of ccsmeth using NA12898 CCS reads aligned
to autosomes of the reference genome and one SMRT cell of HG002
CCS reads (Methods). The CCS reads of NA12898 aligned to chrX,
6 SMRT cells of HG002 CCS reads and the SD0651_P1 CCS reads
are used for testing (Methods). We run primrose with its built-in
model on the same testing data for comparison. As shown in Fig. 2b,
ccsmeth gets 0.8721-0.9062 accuracies, 0.8621–0.8903 sensitivities,
0.8765–0.9220 specificities, and 0.9464-0.9682 AUCs, which are
higher than those of primrose on all five datasets. Especially, ccsmeth
gets much higher accuracies and specificities on HG002 CCS reads of
15 Kb, 20Kb, and 24Kb insert sizes: >4% higher accuracies and >7%
higher specificities than those of primrose. To compare ccsmeth with
the HK model, we subsampled 100K ZMW reads from the datasets of
NA12898 and three HG002 insert sizes (15 Kb, 20Kb, 24 Kb) since HK
model is extensively time-consuming on large datasets. The results
show that HK model achieves similar accuracies with primrose, espe-
cially on the HG002 datasets. Accuracies of both HK model and
primrose are lower than that of ccsmeth (Supplementary Fig. 2).
Besides evaluating ccsmeth genome widely, we also evaluate ccsmeth
in specific genomic contexts and regions to explore whether the per-
formance of ccsmeth is correlated with any genomic features (Sup-
plementary Note 1). As shown in Supplementary Fig. 3, ccsmeth

Fig. 1 | ccsmeth for 5mCpG detection using PacBio CCS reads. a Illustration of
PacBio CCS. b, c Schema of ccsmeth to predict CpG methylation at read level and

site level. RC reverse complement, BiGRUBidirectional Gated Recurrent Unit layer,
Full Connection fully connected layer, Softmax Softmax layer.
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outperforms primrose in all tested regions. The results also show that
ccsmeth tends to have higher accuracies in regions with high CpG
densities, but has relative lower accuracies in intergenic regions, CpG
shores, CpG shelves, and some repetitive regions.

The read-level accuracy of ccsmeth can be further improved by
filtering out ambiguous calls. As shown in Supplementary Fig. 4a, by
filtering out the calls with methylation probability close to 0.5, the
incorrect calls of ccsmeth can be reduced. We define Δp = |Pr – P’

r| to
filter out the ambiguous calls, where Pr is the methylation probability,
and P’

r is the unmethylated probability defined as 1 - Pr. Like
modbam2bed45, we set Δp to 0.33 for testing. Supplementary Fig. 4b
shows that when Δp is set to 0.33, the accuracies of ccsmeth improve
by 3.5-4.2% with 8.9–12.8% of calls being discarded.

ccsmeth accurately detects CpG methylation at genome-wide
site level
We use the CCS reads of HG002, SD0651_P1, and CHM13 to evaluate
ccsmeth on 5mCpG detection at the site level (Methods, Supplemen-
tary Table 1 and 2). 2 SMRT cells of HG002 CCS reads are used to train
the site-levelmodel of ccsmeth; 6 SMRTcells ofHG002CCS reads (two
for each of three insert sizes 15Kb, 20Kb, 24Kb), 2 SMRT cells of
SD0651_P1 15Kb reads, and 2 SMRT cells of CHM13 20Kb reads are used
for testing. There are 25.6×, 17.0×, 28.4×, 19.6×, and 16.5× average
genome coverage of HG002 (15Kb, 20Kb, 24Kb), SD0651_P1 and
CHM13 CCS reads used for testing in total, respectively. We down-
loaded BS-seq and nanopore R9.4.1 sequencing data of the three
human samples as the benchmark (Supplementary Table 3). When
evaluating ccsmeth, we subsample reads of the five datasets under
certain coverages and compare the site-level results of ccsmeth and
primrose with the results of BS-seq and nanopore sequencing
(Fig. 3a–d). We repeat the subsampling of each coverage 5 times and
get averaged values of metrics for comparison. The results show that
the model mode of ccsmeth and primrose/pb-CpG-tools achieve
higher Pearson correlations with BS-seq and nanopore sequencing
than the count mode of ccsmeth and primrose/pb-CpG-tools do.
Meanwhile, by setting Δp to 0.33 to filter out ambiguous calls, the
Pearson correlations of the count mode of ccsmeth with BS-seq and
nanopore sequencing improve by ~1-2% (Fig. 3a–d). On all tested
datasets, ccsmeth achieves higher correlations than primrose/pb-CpG-
tools does in both modes, especially under low coverages. For exam-
ple, using 10× HG002 15 Kb, 20 Kb, and 24Kb CCS reads, ccsmeth in

model mode obtains 0.9198, 0.9083, and 0.9087 correlations with BS-
seq, while primrose/pb-CpG-tools inmodelmode only obtains 0.8864,
0.8653, and 0.8696 correlations, respectively. (Fig. 3a). ccsmeth in
modelmode also obtains0.9062, 0.8967, and0.8952correlationswith
nanopore sequencing when using 10× HG002 15 Kb, 20Kb, and 24Kb
CCS reads, which are 4.3%, 5.5%, and 4.9% higher than those obtained
by primrose/pb-CpG-tools inmodelmode, respectively (Fig. 3b). On all
tested datasets, ccsmeth also gets lower root mean square errors
(RMSEs) than primrose/pb-CpG-tools gets in most cases (Supplemen-
tary Tables 5–12).

The model mode of ccsmeth can also be applied to the read-level
results of primrose. As shown in Supplementary Tables 5–12, primrose
with ccsmeth inmodelmodegets higher correlations and lowerRMSEs
with both BS-seq and nanopore sequencing than primrose with pb-
CpG-tools in count mode gets. Especially, under low coverages (<15×)
of HG002 and CHM13 datasets, primrosewith ccsmeth inmodelmode
outperforms primrose with pb-CpG-tools in model mode (Supple-
mentary Tables 5–10 and 12). These results further demonstrate the
effectiveness of the site-level model of ccsmeth.

We further test ccsmeth using the totalCCS reads ofHG002 15 Kb,
20Kb, 24Kb, SD0651_P1, and CHM13. Using the reads of HG002 15 Kb,
20Kb, and 24Kb datasets, ccsmeth gets 0.9463, 0.9271, and 0.9410
correlations with BS-seq, and gets 0.9287, 0.9127, and 0.9240 corre-
lations with nanopore sequencing, respectively (Fig. 3e). When com-
bining the total 71.0× CCS reads of HG002, ccsmeth achieves 0.9571
and 0.9394 correlations with BS-seq and nanopore sequencing,
respectively (Supplementary Fig. 5, Supplementary Data 1). ccsmeth
gets 0.8750 correlation with BS-seq using the total SD0651_P1 reads,
and gets 0.9328 correlation with nanopore sequencing using total
CHM13 reads (Fig. 3f, g, Supplementary Fig. 6). The results of ccsmeth
on the threeHG002 datasets are also highly correlatedwith each other
(correlations>0.9344), which show the reproducibility of ccsmeth
(Fig. 3e). We further use the 71.0× HG002 CCS reads to explore of
whichCpGcontexts are predictedmore accurately by themodelmode
in terms of methylation frequencies (Supplementary Note 2 and Sup-
plementary Fig. 7).We classify the CpGs into two groupsGm andGc.Gm

contains CpGs whose methylation frequencies are more accurately
predicted by model mode, while Gc contains CpGs whose methylation
frequencies are more accurately predicted by count mode. We find
that the CpGs in Gm tend to have either very low (<0.2) or high (>0.8)
methylation frequencies.

a b

Fig. 2 | Evaluation of ccsmeth on 5mCpG detection at read level. a Comparing
ccsmeth and HKmodel on three datasets of PCR-treated andM.SssI-treated human
DNA.bComparing ccsmeth and primrose onNA12898 (10 Kb, PCR/M.SssI-treated),
HG002 (15 Kb, 20Kb, 24Kb), and SD0651_P1 (15 Kb) CCS reads. Values in the figure

are the average of 5 repeated tests. AUC area under the curve. The standard
deviation values of the multiple repeated tests are in Supplementary Table 4.
Source data are provided as a Source Data file.
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Fig. 3 | Evaluation of ccsmeth on 5mCpG detection at genome-wide site level.
a–d Comparing ccsmeth and primrose/pb-CpG-tools against BS-seq and nanopore
sequencing under different coverages of HG002, SD0651_P1, and CHM13 CCS
reads. Δp: Difference absolute value between methylated and unmethylated prob-
abilities. Values are the averageof 5 repeated tests. The standarddeviationvalues of
the multiple repeated tests are in Supplementary Tables 5–12. e Evaluation of
ccsmeth model mode against BS-seq and nanopore sequencing using total CCS

reads of HG002 (15Kb) (25.6×), HG002 (20Kb) (17.0×), and HG002 (24 Kb) (28.4×),
respectively. Values in upper triangles are Pearson correlations. CCS PacBio CCS
sequencing;ONTnanopore sequencing, BS-seqbisulfite sequencing. f Evaluationof
ccsmethmodelmode against BS-seq using total 19.6× SD0651_P1 (15 Kb) CCS reads.
r: Pearson correlation. g Evaluation of ccsmeth model mode against nanopore
sequencing using total 16.5× CHM13 (20Kb) CCS reads. Source data underlying a,
b, c, and d are provided as a Source Data file.
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Haplotype-aware methylation calling and ASM detection using
PacBio CCS data
Following ccsmeth, we further develop a Nextflow38 pipeline called
ccsmethphase for haplotype-aware methylation calling and ASM
detection using only PacBio CCS data (Fig. 4a, Methods). In this pipe-
line, ccsmeth is used to call methylation states. Clair333 is used to call
single nucleotide variants (SNVs). The SNVs called by Clair3 are then
phased by WhatsHap46 to generate haplotypes. DSS47 is used to detect
differentially methylated regions (DMRs) between two haplotypes.

We evaluate ccsmethphase with the total 71.0× HG002 CCS reads
(Supplementary Table 2). We also use the HG002 BS-seq data (Sup-
plementary Fig. 8, Supplementary Note 3) and nanopore data (Sup-
plementary Fig. 9, Supplementary Note 4) to phase CpG methylations
for comparison. First, we investigate the haplotype-awaremethylation
status of known imprinted regions using PacBio CCS data. We get 204
known imprinted intervals from Akbari et al.48, in which there are 102
well-characterized imprinted intervals49–53 (Methods). We compare the
methylation difference of each imprinted interval between the two
haplotypes of HG002 (Methods). As shown in Fig. 4b, the well-
characterized imprinted intervals have large methylation differences
between the two haplotypes (median =0.53), while 22.1% of other
known imprinted intervals also show large (>0.5) methylation differ-
ences. The methylation differences of known imprinted intervals got
from CCS data are highly consistent with those got from BS-seq and
nanopore data: Pearson correlations are 0.8605 and 0.9806, respec-
tively (Supplementary Fig. 10 and 11). We examine the known imprin-
ted intervals on SD0651_P1 CCS data and get consistent results
(Supplementary Fig. 12a).

We then assess ccsmethphase on ASM detection using the
HG002 sequencing data. Using the CCS reads, ccsmethphase gen-
erates 14,390 DMRs. Using the BS-seq and nanopore reads with cor-
responding pipelines, 2463 and 16,250 DMRs are generated,
respectively. 81.4% DMRs generated using BS-seq reads are closely
next to the genomic locations of the CCS-generated DMRs (dis-
tance<10 kb), and 70.8% of the DMRs overlap with the CCS-generated
DMRs (Fig. 4c). Among the DMRs generated using nanopore reads,
68.8% DMRs are closely next to the genomic locations of the CCS-
generated DMRs, and 51.7% DMRs overlap with the CCS-generated
DMRs (Fig. 4d). Most of the CCS-generated DMRs are also closely next
to the genomic locations of the DMRs generated using BS-seq and
nanopore data in HG002 (Supplementary Fig. 13). From the SD0651_P1
CCS reads, ccsmethphase generates 8,183 DMRs. In both HG002 and
SD0651, most of the known imprinted intervals are either overlapped
with or near the CCS-generated DMRs (Fig. 4e, Supplementary Fig. 12b
and 14), which also shows the ability of ccsmethphase on ASM detec-
tion. We also assess ccsmethphase on ASM detection using the CCS
data of a Chinese family trio, in which HN0641_FA is the father,
HN0641_MO is themother, andHN0641_S1 is the son. The results show
that ccsmethphase not only can detect known imprinted intervals but
also reveals the patterns of parental imprinting correctly (Supple-
mentary Note 6, Supplementary Figs. 15–18).

We further compare genome-wide site-level methylation fre-
quencies of CpGs at two haplotypes detected by PacBio CCS data with
those by BS-seq and nanopore data. To accomplish this, we would
expect consistent haplotype assignment (i.e., all maternal SNVs are
assigned to one haplotype, and all paternal SNVs are assigned to
another haplotype). However, because of the uneven reads coverage
across the reference genome, we can only generate discrete haplotype
blocks when using reads of a single sample to phase SNVs34. Therefore,
we use the phased SNVs generated by Illumina trio data of HG002 to
phase the CCS and nanopore reads. We compare the methylation
frequencies of the phased CpGs predicted using CCS reads with those
using BS-seq and nanopore reads. PacBio CCS gets >0.93 correlations
with BS-seq and nanopore sequencing in both maternal and paternal
haplotypes (Fig. 4f, g, Supplementary Table 13). This result further

demonstrates that ccsmethphase can accurately detect haplotype-
aware methylation in the human genome using CCS reads.

Assessment of PacBio CCS for methylation detection and phas-
ing in repetitive genomic regions
With longer reads, PacBio CCS is expected to profile methylation of
more CpGs in the human genome than short-read sequencing tech-
nologies do. Using T2T-CHM1327 (T2T: Telomere-to-Telomere) as the
reference genome, we first assess the number of CpGs covered by
HG002 CCS reads, especially in repetitive genomic regions: repetitive
genomic elements annotated by RepeatMasker54,55, segmental duplica-
tions (SDs)56, and peri/centromeric satellites (cenSats)57. We also assess
the total HG002 BS-seq and nanopore reads for comparison (Supple-
mentary Table 3). As shown in Fig. 5a, using 15× coverage of CCS reads,
32.85M (96.9%) of human CpGs are covered, of which there are 31.33M
CpGs covered by at least 5 reads. The CpGs covered by 15× CCS reads
are more than the CpGs covered by 117.5× Illumina BS-seq reads. When
using all 71.0× testing CCS reads, 32.74M (96.6%) CpGs in the human
genome are covered by at least 5 mapped reads, which are almost the
same as the number of CpGs covered by 65.8× nanopore reads (Fig. 5a).
In RepeatMasker repeats, SDs, and cenSats, PacBio CCS detects
methylation states of 96.8%, 88.4%, and 85.3% CpGs, respectively.
Compared to BS-seq, methylation states of 10.4%, 33.6%, and 34.7%
CpGs in RepeatMasker repeats, SDs, and cenSats can only be detected
by using CCS, respectively (Fig. 5b). In non-RepeatMasker regions,
PacBio CCS detects methylation states of 96.1% CpGs, which are 8.9%
more than the CpGs detected by BS-seq (Supplementary Fig. 19a).

The HG002 CCS reads are shorter than the HG002 nanopore
reads (mean read length: 18,797 bp vs. 21,933 bp). However, the num-
ber of CpGs phased by PacBio CCS (i.e., CpGs covered by at least 5
phased CCS reads) is not significantly less than the number of CpGs
phased by nanopore sequencing: 26.97M vs. 27.66M (Fig. 5c). Both
PacBio CCS and nanopore sequencing phase much more CpGs than
BS-seq. with limited read length, BS-seq can only phase 6.71M of
human CpGs. PacBio CCS phases 85.4%, 60.2%, and 46.5% of the CpGs
in RepeatMasker repeats, SDs, and cenSats, which are 63.8%, 45.9%,
and 35.7%more than the CpGsphased by BS-seq, respectively (Fig. 5d).
In non-RepeatMasker regions, PacBio CCS phases 64.4% more CpGs
than BS-seq does (Supplementary Fig. 19b). Notably, PacBio CCS
phases slightly more CpGs than nanopore sequencing in cenSats,
which may indicate that highly accurate CCS reads are more suitable
for SNV detection and methylation phasing across peri/centromeric
regions than nanopore R9.4.1 reads are.

Themethylation frequencies of CpGs predicted using PacBio CCS
in repetitive genomic regions are highly correlated with those pre-
dicted using BS-seq and nanopore sequencing. In the RepeatMasker
repeats, SDs, and cenSats of HG002, PacBio CCS gets 0.9540, 0.9208,
and 0.8822 correlations with BS-seq, and gets 0.9358, 0.9087, and
0.8572 correlations with nanopore sequencing, respectively (Supple-
mentary Table 16). For the haplotype-aware methylation detection in
the repetitive genomic regions of HG002, PacBio CCS also gets >0.89
and >0.90 correlations with BS-seq and nanopore sequencing,
respectively (Supplementary Table 17). In summary, with ccsmeth and
ccsmethphase, PacBio CCS can be a comprehensive and accurate
technology for 5mCpG detection and methylation phasing in repeti-
tive genomic regions.

Discussion
Due to its highly accurate long reads, PacBio CCS is becoming more
widely used in genomics research, such as genome assembly31, SNV
detection33, and structural variant (SV) detection35. However, com-
pared to nanopore sequencing, the application of PacBio CCS on DNA
5mC detection and methylation phasing has not been fully studied
before. In this study, we have developed and validated ccsmeth, a
deep-learning method to detect 5mCpGs from PacBio CCS reads.
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Using BiGRU and attention mechanism, we designed two deep-
learning models in ccsmeth for 5mCpG detection at the read level
and the genome-wide site level, respectively. Furthermore, we devel-
oped a Nextflow pipeline ccsmethphase for methylation phasing and
ASM detection using only PacBio CCS reads.

We systematically evaluated ccsmeth onmultiple human samples
using controlled (PCR-treated and M.SssI-treated) methylation data-
sets, BS-seq and nanopore sequencing. ccsmeth outperforms two
existing CNN-based methods on both read-level and site-level 5mC
prediction. Evaluation of long CCS reads shows that ccsmeth achieves
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Fig. 4 | Methylation phasing of ccsmethphase using the HG002 CCS data.
a Pipeline of ccsmethphase for calling haplotype-aware methylation using CCS
data. b Distribution of methylation differences of known imprinted intervals cal-
culated using CCS data between two haplotypes of HG002. 96 out of 102 “well-
characterized” intervals, and 95 out of 102 “other” intervals which have at least 5
CpGs covered by CCS reads in each haplotype are analyzed. The boxes inside the
violin plots indicate 50th percentile (middle line), 25th and 75th percentile (box),
the smallest value within 1.5 times interquatile range below 25th percentile and
largest value within 1.5 times interquatile range above 75th percentile (whiskers). c,

d Distribution of the number of BS-seq-generated and ONT-generated DMRs in
terms of distance to the closest CCS-generated DMR. e Screenshot of Integrative
Genomics Viewer (chr20:60,671,001-60,673,750) on a DMR of HG002 near the
maternally imprinted gene GNAS. Red and blue dots represent CpGs with high and
lowmethylation probabilities, respectively. f, g Comparing of PacBio CCS with BS-
seq and nanopore sequencing on site-level methylation frequencies of maternal
and paternal haplotypes phased by Illumina trio data. Methyl. diff. methylation
difference, r: Pearson correlation, ONT nanopore sequencing. Source data under-
lying b, c, and d are provided as a Source Data file.
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better performance on site-level prediction, especially under low
coverages. Additionally, we find that the site-level model of ccsmeth
can also be applied to the read-level results of other CCS-based
methods. The experiments also indicate thatwith the improvements in
read quality and yield (such as the recently introduced Revio system),
PacBio CCS has the potential to accomplish genome assembly,
detection of SVs, SNVs, andmethylation using a single sequencing run
of a single sample.

Detecting methylation in non-human species is also important in
the field of genetics and epigenetics. In this study, we further per-
formed PacBio CCS and BS-seq of a ZebrafishDNA sample in parallel to
evaluate ccsmeth with non-human data (Methods). We used the pre-
trained model of ccsmeth to detect 5mCpGmethylation from the CCS
reads of the Zebrafish sample and compare the results with BS-seq.We
also detected 5mCpGmethylation from the CCS reads using primrose
for comparison. The results show that ccsmeth gets higher correla-
tions with BS-seq than primrose does (0.8463 vs. 0.8292), which
demonstrates the robustness of ccsmeth for detecting methylation
from non-human data (Supplementary Fig. 20).

To evaluate ccsmethphase, we designed the other two pipelines
for methylation phasing using BS-seq and nanopore sequencing,
respectively, which were referenced from several previous
studies34,58,59. The results of genome-wide methylation phasing using
ccsmethphase are highly consistent with BS-seq and nanopore
sequencing, including in known imprinted intervals. Assessment of
ccsmethphase shows that PacBio CCS is comparable to nanopore
sequencing on methylation phasing. Both of these long-read technol-
ogies can detect haplotype-aware methylation states of much more
CpGs than BS-seq. While DMRs between haplotypes detected by

nanopore sequencing have beendemonstrated to assist haplotyping48,
DMRs detected by PacBioCCSmay also be further studied on assisting
haplotyping and genome assembly.

Currently, there are also limitations in ccsmeth, as well as other
methods using PacBio CCS for methylation detection. First, although
PacBio CCS reads can be used to detect strand-specificmethylation, all
thesemethods only consider symmetric methylation and combine the
features from both DNA strands to predict the methylation states.
Hence, these methods are incapable of detecting hemimethylated
CpGs, and cannot be applied for 5mC detection in non-CpGs or the
detection of other DNA modifications (such as 6mA60) which don’t
have symmetricmethylation patterns either.We redesign themodel of
ccsmeth to call strand-specific methylation using long CCS reads
(Supplementary Fig. 21a). The strand-specific-methylation model
achieves 0.85 accuracy in the HG002 15 Kb dataset at read level
(Supplementary Fig. 21b). However, compared to the symmetric-
methylation model, the performance of this model is significantly
reduced due to limited subread depth (Supplementary Fig. 21b, c).
Second, whether the design of a site-level model can be directly
applied to the detection of non-CpG 5mCs andothermodifications has
not been verified yet. However, by generating more ground-truth
datasets for other modifications and re-designing models of ccsmeth
according to corresponding patterns of other modifications, we
believe the limitations may all be addressed in future research.

In summary, together with PacBio CCS, ccsmeth and ccsmeth-
phase can become well-applicable methods for genome-wide 5mCpG
detection and methylation phasing. We expect that our proposed
methods will facilitate the analysis of haplotype-aware methylation
mechanisms as well as the detection of other modifications.

c d

a b

Fig. 5 | Comparison of the number of CpGs detected/phased by using CCS/BS-
seq/nanopore sequencing in the human genome. a The number of CpGs in
autosomes and sex chromosomes detected byusing difference coverage ofHG002
CCS reads. Values for 5×–70× are the average of 5 repeated tests. b Comparison of
the number of CpGs detected by the total HG002 BS-seq (117.5×), ONT (65.8×), and
CCS (71.0×) reads in repeats annotated by RepeatMasker, segmental duplications,
and peri/centromeric regions of autosomes and sex chromosomes. CpGs covered
by at least 5 reads are analyzed. c The number of CpGs in autosomes phased by
usingdifference coverageofHG002CCS reads. Values for 5×-70×are the averageof

5 repeated tests. d Comparison of the number of CpGs phased by using the total
HG002 BS-seq (117.5×), ONT (65.8×), and CCS (71.0×) reads in repeats annotated by
RepeatMasker, segmental duplications, and peri/centromeric regions of auto-
somes. CpGs covered by at least 5 phased reads are analyzed. The standard
deviation values of the multiple repeated tests of figures a and c are in Supple-
mentary Tables 14–15. Values in the titles of Venn graphs in sub-figures b and d are
the total numberofCpGs in corresponding regionsof theT2T-CHM13genome. cov.
coverage, SDs segmental duplications, cenSats peri/centromeric satellites. Source
data underlying a and c are provided as a Source Data file.
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Methods
Ethical statement and sample collection
This study is compliant with the “Guidance of the Ministry of Science
and Technology (MOST) of China for the Review and Approval of
Human Genetic Resources”. The genome sequencing of the Chinese
sample SD0651_P1 and the Chinese family trio (HN0641_FA,
HN0641_MO, HN0641_S1) was approved by the Research Ethics Com-
mittee in the School of Life Sciences, Central South University (No.
2021-1-6). We selected the Chinese samples from the Chinese autism
spectrum disorder cohort61 with no specific sex or age requirements.
All the participants signed the informed consent before sample col-
lection. The genomic DNA for PacBio sequencing and bisulfite
sequencing was extracted from the peripheral blood of each sample.
For the experiment of Zebrafish sample, all animal protocols were
reviewed and approved by the Animal Care and Use Committee at
Zhongshan Ophthalmic Center, Sun Yat-sen University.

PacBio CCS data of human
We sequenced a SMRT cell CCS data of NA12898 (GM12898 cell line
from Coriell Institute). ~11μg genomic DNA was extracted using QIA-
GEN MagAttract HMW DNA Kit (QIAGEN, Cat# 67563). The extracted
DNAofNA12898wasamplified viawhole genomeamplification.Half of
the amplified DNA was then treated with the CpG methyltransferase
M.SssI. Before library preparation, the genomic DNA was sheared to
~20Kb on a MegaRuptor3 (Diagenode). Libraries of the M.SssI-treated
DNA and the other half amplified DNA were prepared in 10 Kb insert
size with the Express Template Prep kit 2.0 (PacBio, No. 100-938-900),
and were then barcoded to sequence on a PacBio Sequel II sequencer
with Sequel II sequencing kit 2.0 (PacBio, No. 101-826-100). We
sequenced the native genomic DNA of four Chinese samples using the
same procedure on the Sequel II system. We got 2 SMRT cells of CCS
reads (19.6× mean genome coverage in total) in 15Kb insert size for
SD0651_P1. We also got 2 SMRT cells of CCS reads in 15 Kb insert size
for theHN0641 trio samples. There are 21.8×, 22.4×, and 21.1× reads for
HN0641_FA, HN0641_MO, and HN0641_S1, respectively.

We downloaded three CCS raw subreads of a human sample from
Tse et al.24: M01 and W01; M02 and W02; M03 and W03. Each of the
three datasets contains two groups of reads: the methylated reads
sequenced using M.SssI-treated DNA (M01, M02, and M03) and the
unmethylated reads sequenced using amplified DNA (W01, W02, and
W03). The three datasets were sequenced on PacBio sequencers with
Sequel I sequencing kit 3.0, Sequel II sequencing kit 1.0, and Sequel II
sequencing kit 2.0, respectively.

We downloaded 9 SMRT cells of HG002 CCS raw subreads in
15 Kb, 20Kb, and 24Kb insert sizes from Baid et al.26 and Human
Pangenome Reference Consortium23. We also got 2 SMRT cells of
CHM13 CCS raw subreads in 20Kb insert size from Nurk et al.27. CCS
subreads in all datasets were processed to generate CCS reads using
pbccs (v6.4.0, https://github.com/PacificBiosciences/ccs). Details of all
CCS data are provided in Supplementary Table 1.

Data partition of the PacBio CCS data of human
For each dataset of M.SssI-treated and PCR-treated human DNA from
Tse et al.24, we randomly select 50% methylated reads and 50%
unmethylated reads for model training, while the remaining 50%
methylated and unmethylated reads are used for evaluation at
read level.

To evaluate ccsmethusingdatasets of longCCS reads,we train the
read-level model of ccsmeth using NA12898 CCS reads aligned to
autosomes and a SMRT cell of HG002 CCS reads. We use another 2
SMRTcells ofHG002 reads for site-levelmodel training. TheCCS reads
of NA12898 aligned to chrX and chrM, the left 6 SMRT cells of HG002
CCS reads, the 2 SMRT cells of CHM13 CCS reads, and the CCS reads of
the HD0641 family trio are used for evaluation (Supplementary
Table 2).

Illumina and nanopore data of human
We sequenced the SD0651_P1 sample using BS-seq. The extracted
genomic DNA (≥ 1μg) was first sheared by Covaris and purified to
200–350bp. The sheared DNA was then end-repaired and ligated to
methylated adapters. The adapter-ligated DNAwas bisulfite-converted
with EZ DNA Methylation-Gold Kit (Zymo Research, Cat# D5006) and
then PCR-amplified. Qubit® 2.0 Fluorometer (Invitrogen) was used to
quantify the DNA fragments of the library. Finally, the library was
sequenced on a NovaSeq6000 sequencer (Illumina). In total, we got
15.7× coverage of 2 × 150 bp paired reads.

We downloaded BS-seq and nanopore R9.4.1 data of HG002 from
ONT Open Datasets (https://labs.epi2me.io/dataindex/). There are
117.5× coverage of 2 × 150 bp paired reads of BS-seq, and 9.5 million
(65.8× coverage) nanopore reads with a mean length of 21,933 bp for
HG002. We also got Illumina whole-genome sequencing (WGS) trio
data of HG002 from GIAB62, in which there are 63.1×, 55.7×, and 67.9×
coverage of 2 × 250bp paired reads for HG002, HG003, and HG004,
respectively. We downloaded 6.7 million (41.8× coverage) nanopore
R9.4.1 reads of CHM13 from Nurk et al.27. The mean length of the
CHM13 nanopore reads is 19,891 bp.

We used Bismark63 (v0.23.1) to process all BS-seq data. For the
nanopore data, we basecalled the Fast5 files (raw reads) using Guppy
(version 4.2.2+effbaf8). Then we used DeepSignal2 (v0.1.2, https://
github.com/PengNi/deepsignal2), an improved version of
DeepSignal17, to call methylation from the nanopore reads. Details of
all Illumina and nanopore data used in this study are provided in
Supplementary Table 3.

Reference genome and annotations
We used CHM13 v2.027 as the human reference genome to process all
sequencing data. The gene annotations were downloaded from the
GitHub repository marbl/CHM1327. The annotations of repetitive
genomic elements (RepeatMasker)54,55, segmental duplications56, peri/
centromeric satellites57, and CpG islands were downloaded from cor-
responding tracks of UCSC Genome Browser (T2T CHM13v2.0/hs1)64.

We got 205 known imprinted intervals of human from Akbari
et al.48, which were generated from five previous studies49–53. Of these
intervals, there were 102 “well-characterized” intervals that were
reported by at least two studies49. By using UCSC LiftOver65, GRCh38
coordinates of 204 intervals (102 “well-characterized” and 102 “other”
intervals) were successfully converted to CHM13 coordinates.

PacBio CCS and BS-seq data of Zebrafish
We sequenced the Zebrafish sample using PacBio CCS and BS-seq with
the same procedure for sequencing the human samples. The genomic
DNA of Zebrafish was extracted from the muscular tissues of the
Zebrafish adults (TU wild-type line, male and female), which were
provided by China Zebrafish Resource Center. >10μg and >1μg DNA
wasused for PacBioCCS andBS-seq, respectively. In total,wegot 23.3×
CCS reads and 29.5× BS-seq reads.

Methylation calling of ccsmeth at read level
To call CpG methylation at read level, ccsmeth needs CCS reads with
kinetics information in BAM format, which can be generated from raw
subreads by pbccs with “--hifi-kinetics” option. The process of ccsmeth
to call methylation at reads level is as follows (Fig. 1):
(1) Feature extraction. Each CCS read with kinetics information

contains IPD and PW values for bases in forward and reverse
complement strands of the read, which are averaged from cor-
respondingbases in subreads. Before extracting features forCpGs
in a CCS read, we first normalize the IPD and PW values of each
strand in the read using Z-score normalization. Then for a CpG in
the forward strand of the CCS read, we extract a 21-mer sequence
context surrounding the CpG. Finally, the averaged IPD and PW
values, the number of covered subreads of each base in the 21-
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mer, together with the 21-mer nucleotide sequence form a 4 × 21
feature matrix. We also construct a feature matrix for the
symmetric CpG in the reverse complement strand using the
same way.

(2) Methylation state prediction. We use the two feature matrixes to
predict a single methylation state for the symmetric CpG pair.
Each of the twomatrixes is fed into a deep neural network, which
contains three bidirectionalGatedRecurrentUnit (BiGRU) layers42

and one Bahdanau attention layer43 (Fig. 1b, Supplementary
Note 5). Each BiGRU layer has a hidden size of 256. The outputs
from the two attention layers are processed by a full connection
layer and then by a Softmax layer. Finally, a methylation prob-
ability Pr is outputted. A binary methylation state of the CpG is
also set based on Pr: if Pr >0.5, the CpG is predicted asmethylated,
otherwise is predicted as unmethylated.

Methylation calling of ccsmeth at site level
We used the following steps to call CpG methylation at site level:
(1) Alignment. CCS reads should be aligned to the reference genome

before site-level methylation calling. We use pbmm2 (v1.9.0,
https://github.com/PacificBiosciences/pbmm2), a modified ver-
sion of minimap266 for PacBio native data formats, to align all the
CCS reads used in this study.

(2) Methylation calling in count mode. In count mode, based on the
binary methylation states of CpGs in the mapped reads, the
methylation frequency of a CpG is calculated as the number of
reads where the CpG is called methylated divided by the total
number of reads mapped to the CpG (Supplementary Fig. 1).

(3) Methylation calling in model mode. In model mode, we used the
information of neighboring CpGs to predict site-levelmethylation
frequencies in a way similar to pb-CpG-tools. For a targeted CpG,
the read-level methylation probabilities of the CpG and each of its
10 adjacent CpGs are first summarized in a histogram with 20
discretized bins separately. Then each histogram is normalized by
its L2-norm67 value. The distances of 11 CpGs to the targeted CpG
have also been calculated. 11 normalized histograms and the 11
distance values are organized into a 21 × 11 featurematrix, which is
then fed into a BiGRU layer and an attention layer (Fig. 1c). The
BiGRU layer has a hidden size of 32. At last, ccsmeth outputs a
methylation probability Ps (Ps 2 ½0, 1�) as the methylation fre-
quency of the targeted CpG.

Model training of ccsmeth

(1) Training of the read-level model. For the datasets of M.SssI-
treated and amplified DNA, we extract positive (methylated) and
negative (methylated) samples from reads of M.SssI-treated and
PCR-treatedDNA, respectively. For CCS data of native DNA, based
on the results of BS-seq, we take CpGs which are covered with at
least 5 reads and have 100% methylation frequency as high-
confidence methylated sites. CpGs that have at least 5 mapped
reads and zero methylation frequency are selected as high-
confidence unmethylated sites. Then we extract positive and
negative samples from the reads which are mapped to the high-
confidence methylated and unmethylated sites, respectively.
To train themodel of ccsmeth for read-level 5mCpGdetection, we
split the total training samples at a ratio of 99:1 as the training
dataset and the validation dataset. The model parameters are
learned on the training dataset by minimizing the loss calculated
by cross-entropy (Supplementary Note 5) with a batch size of 512
and an initial learning rate of 0.001. The learning rate is adopted
by Adam optimizer68 and decays by a factor of 0.1 after every
epoch. The parameter betas in Adam optimizer are set to (0.9,
0.999). We use two strategies to prevent overfitting. First, we add
a dropout layer in each of the GRU layers and the fully connected

layer.We set the dropout probability to 0.5 at each dropout layer.
Second, we use early stopping69 during training. We set at least 10
epochs and at most 50 epochs for each training. The model
parameters with the current best performance on the validation
dataset are saved in every epoch. During epochs 10 to 50, if the
best performance of the current epoch decreases, we stop the
training process.

(2) Training of the site-level model. The training of the site-level
model of ccsmeth is treated as a regression problem. From the
results of BS-seq, we select CpGs with at least 10× coverage, and
use the methylation frequencies of the CpGs as training targets.
We then generate the read-level methylation probabilities calcu-
lated by ccsmeth for each targeted CpG as features. The targeted
CpGs, alongside the features, are then split at a ratio of 99:1 as the
training dataset and the validation dataset. Finally, we use the
same training process of the read-levelmodel to train the site-level
model but with a different loss function: during the training of the
site-level model, we use the mean squared error (MSE) (Supple-
mentary Note 5) instead of cross-entropy to calculate the loss.

Evaluation of ccsmeth

(1) Evaluation at read level. For the controlled methylation datasets,
we extract positive and negative samples from the reads of PCR-
treated andM.SssI-treatedDNA, respectively. For theCCS reads of
HG002 and SD0651_P1, we first select high-confidencemethylated
and unmethylated sites from the results of BS-seq. Then we
extract positive and negative samples of the selected sites from
CCS reads.We calculate accuracy, sensitivity, specificity, and Area
Under the Curve (AUC) based on the prediction of randomly
selected 100,000 positive samples and 100,000 negative sam-
ples. We repeat the subsampling 5 times for each evaluation. (2)
Evaluation at site level. We evaluate ccsmeth at the genome-wide
site level by comparing per-site methylation frequencies pre-
dicted by ccsmeth with the results of BS-seq and nanopore
sequencing. Using the methylation frequencies of CpGs, Pearson
correlation (r), the coefficient of determination (r2), Spearman
correlation (ρ), and rootmean square error (RMSE) are calculated.
For each comparison, we only compare CpGs that have at least 5×
coverage in results of both PacBio CCS and BS-seq (or nanopore
sequencing). To evaluate the methylation frequencies predicted
by ccsmeth under different coverage of CCS reads, we randomly
subsample the CCS reads using rasusa70 (v0.7.0).
ccsmeth is implemented using Python3 and PyTorch (version
1.11.0). We evaluate ccsmeth, HK model, primrose (version 1.3.0),
andpb-CpG-tools (v1.1.0) on the sametestingdatasets. The source
code of the HK model was taken from Tse et al.24 under the
CUHK software license. We also compared the runtime and
peak memory of the main steps of ccsmeth, HK model,
and primrose (Supplementary Note 7, Supplementary Fig. 22,
and Supplementary Tables 18–19).

ccsmethphase for methylation phasing and ASM detection
In the ccsmethphase pipeline (Fig. 4a), we use ccsmeth to call read-
level methylation from PacBio CCS reads. Then the CCS reads are
aligned to the reference genome by using pbmm2 (v1.9.0). We use
Clair333 (v0.1-r11 minor 2) with the “hifi”model to call variants and only
keep the “PASS” SNVs (i.e., high-quality SNVs). We use WhatsHap46

(version 1.4) to phase the “PASS” SNVs, and then to phase the reads
(i.e., tag the reads by the haplotypes). The methylation frequencies of
CpGs in each haplotype are then inferred by ccsmeth. At last, we use
DSS47 (version 2.44.0) with default parameters to perform differential
methylation analysis (DMA). By taking methylation frequencies of
CpGs in two haplotypes as input, DSS calls differentially methylated
regions (DMRs) usingWald tests47.Weonly consider regions generated
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by DSS with p-value < 0.001 and |methylation difference | >0.2 as
significant DMRs.

ccsmethphase is implemented by integrating ccsmeth and other
necessary tools using Nextflow (version 22.04.5.5708). We evaluated
the runtimeof the ccsmethphase pipeline on anHPC cluster. Details of
the evaluation are shown in Supplementary Note 7, Supplementary
Table 20, and Supplementary Fig. 23.

Methylation difference of known imprinted intervals between
two haplotypes
We compare the haplotype-level methylation difference of each
known imprinted interval calculated by ccsmethphase with the results
of BS-seq andnanopore sequencing (SupplementaryNote 3 and4). For
each interval, we first split the CpGs in the reads which are mapped to
the interval into two groups (Ghp1 andGhp2) according to the haplotype
tags of the reads. Then we calculate the methylation level of the
interval in each haplotype (Mhp1 andMhp2) as the fraction of CpGs that
are predicted as methylated in the corresponding group (Eq. (1)). At
last, we calculate the methylation difference of the interval between
two haplotypes (Eq. (2)). Note that we only calculate the methylation
difference of intervals that have at least 5 CpGs covered by reads in
both haplotypes.

Mhp1 =
No:of methylated CpGs inGhp1

No: of total CpGs inGhp1
,Mhp2 =

No:of methylated CpGs inGhp2

No: of total CpGs inGhp2

ð1Þ

Mdif f = ∣Mhp1 �Mhp2∣ ð2Þ

Statistics and reproducibility
This study obtained 5 human samples (NA12898, SD0651_P1,
HN0641_FA, HN0641_MO, HN0641_S1) for generating PacBio CCS data.
We also used publicly available datasets of samples M01&W01,
M02&W02, M03&W03, HG002, and CHM13. The training and evalua-
tion process of the proposed method followed standard practices for
separating training, validation, and testing datasets. During evaluation,
we performed orthogonal validation for samples HG002, CHM13, and
SD0651_P1 by using nanopore sequencing andbisulfite sequencing.We
also compared the results of sequencing data from different HG002
SMRT cells to validate the reproducibility. No statistical method was
used to predetermine sample size. CCS reads that have less than 3 full-
length subreads, and “Fail” Nanopore sequencing reads (mean Q-
score≤9) were not used in the study. The experiments were not ran-
domized. The Investigators were not blinded to allocation during
experiments and outcome assessment. All the statistical details for
training and evaluation can be found in the figure legends, Methods
section, and Supplementary information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data generated in this study have been deposited in the
Genome Sequence Archive71 in National Genomics Data Center72,
Beijing Institute of Genomics (BIG, http://gsa.big.ac.cn), Chinese
Academy of Sciences, under Project accession No. PRJCA015556. The
sequencing data of NA12898 (GSA-Human accession No. HRA004180)
and the Zebrafish sample (GSA accession No. CRA010412) is available
under open access. The sequencing data of SD0651_P1 and theHN0641
family trio (GSA-human accession No. HRA004202) is available under
restricted access, which can be granted by the Data Access Committee
(DAC). Access can be obtained for research use only by completing the
application form via GSA. Users can register and login to GSA [https://

ngdc.cncb.ac.cn/gsa-human/] and follow the guidance of “Request
Data” [https://ngdc.cncb.ac.cn/gsa-human/document/GSA-Human_
Request_Guide_for_Users_us.pdf] to request the data.

The CCS datasets of M.SssI-treated and PCR-treated DNA (M01-
03,W01-03) are available fromTse et al.24. TheCCS reads ofHG002 are
available from Google Cloud26 [https://console.cloud.google.com/
storage/browser/brain-genomics-public/research/deepconsensus/
publication/sequencing] and the Human Reference Pangenome Con-
sortium GitHub repository [https://github.com/human-pangenomics/
HG002_Data_Freeze_v1.0]. Rawnanopore reads of HG002 are available
at ONTOpen Datasets [https://labs.epi2me.io/gm24385_2020.11/] with
theflowcell ID PAG07165. TheBS-seq reads ofHG002 are also available
at ONT Open Datasets [https://labs.epi2me.io/gm24385-5mc/]. The
Illumina WGS 2 × 250bp reads of AshkenazimTrio (HG002, HG003,
and HG004) are available at the GIAB GitHub repository [https://
github.com/genome-in-a-bottle/giab_data_indexes]. The CHM13 CCS
and nanopore reads are available at GitHub repository marbl/CHM1327

[https://github.com/marbl/CHM13]. Source data are provided with
this paper.

Code availability
ccsmeth is publicly available at GitHub [https://github.com/PengNi/
ccsmeth]. ccsmethphase is publicly available at GitHub [https://github.
com/PengNi/ccsmethphase] and Zenodo73.
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