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Separation of scales and a thermodynamic
description of feature learning in some CNNs

Inbar Seroussi 1 , Gadi Naveh2 & Zohar Ringel2

Deep neural networks (DNNs) are powerful tools for compressing and distil-
ling information. Their scale and complexity, often involving billions of inter-
dependent parameters, render direct microscopic analysis difficult. Under
such circumstances, a common strategy is to identify slow variables that
average the erratic behavior of the fastmicroscopic variables. Here,we identify
a similar separation of scales occurring in fully trained finitely over-
parameterized deep convolutional neural networks (CNNs) and fully con-
nected networks (FCNs). Specifically, we show that DNN layers couple only
through the secondcumulant (kernels) of their activations andpre-activations.
Moreover, the latter fluctuates in a nearly Gaussian manner. For infinite width
DNNs, these kernels are inert, while for finite ones they adapt to the data and
yield a tractable data-aware Gaussian Process. The resulting thermodynamic
theory of deep learning yields accurate predictions in various settings. In
addition, it provides new ways of analyzing and understanding DNNs in
general.

Identifying slow or relevant variables is an essential step in analyzing
large-scale non-linear systems. In the context of deep neural networks
(DNNs), these should be some combinations of the individual weights
that are weakly fluctuating and obey a closed set of equations. One
potential set of such variables is the DNNs’ outputs themselves.
Indeed, in the limit of infinitely over-parameterized DNNs
these provide an elegant picture of deep learning1–3 based on a
mapping to Gaussian Processes (GPs). However, these GP limits
miss out on several qualitative aspects, such as feature learning4,5

and the fact that real-world DNNs are not nearly as over-
parameterized as required for the GP description to hold1,3,6,7.
Obtaining a useful set of slow variables for describing deep
learning at finite over-parameterization is thus an important open
problem in the field.

Several works provide guidelines for this search. Noting that GP
limits can have surprisingly good performance8 and that over-
parameterization is natural to deep learning9,10 we are inclined to
keep some elements of the GP picture. One such element is to work in
function spaceand studypre-activation andoutputs insteadofweights
whose posterior distribution becomes complicated even in the GP
limit11,12. Another element is the layer-wise composition of hidden layer

kernels13 which yields the output kernel of the GP14. Such a layer-wise
picture is also harmonious with the idea that DNN layers should not
correlate strongly, to prevent co-adaptation15. Recently, it was shown
that in some limited settings, making the GP kernel “dynamical” or
flexible, so that it adapts to the dataset, can account for differences
between infinite and finite DNNs3,16–19. Still, the task of finding an
explicit set of equations describing this flexibility in deep non-linear
DNNs remains unsolved. Specifically, while in the GP limit we find
tractable algebraic expressions, involving only basic matrix manip-
ulations, for theDNN’s prediction in the feature learning regime similar
expressions only exist for deep linear16,20 or non-linear networks with
one trainable layer21–23. In a related manner, while the DNN’s outputs
provide a complete set of slow variables in the GP limit, in the finite-
width feature learning regime it is not clear which subset of variables
governs the trained DNN’s behavior other than the entire set of
weights.

In this work, we identify such slow variables and use these to
derive an effective theory for deep learning capable of capturing var-
ious finite channel/width (C/N) effects (such as feature learning) in
convolutional neural networks (CNNs) and fully connected neural
networks (FCNs). We argue that:
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1. For, C,N≫ 1 the erratic behavior of specific channels/neurons
averages out and hidden layers coupled to each other only
through two “slow” variables per layer: the second cumulant of
the pre-activations (pre-kernel), K(l), and the second cumulant of
activations (post-kernel), Q(l), of the lth layer. Furthermore, for
mean square error (MSE) loss, FCNs in the so-called mean-field
(MF) scaling (where the last layer weights are scaled down) or
CNNs with a large read-out layer fan-in behave effectively as a GP
with a data-aware kernel determined by the second cumulant of
pre-activations in thepenultimate layer21.For comparisonbetween
the classical GP limit and the GP process we find, see Fig. 1.

2. In settings where the kernels have a large density of dominant
eigenvalues, the posterior (or trained) pre-activations fluctuate in
a nearly Gaussian manner. Following this, we use a multivariate
Gaussian variational approximation for the posterior pre-
activations and derive explicit matrix equations (Equations of
State) for the covariancematrices governing these pre-activations
and the DNNs predictions.

3. We identify anemergent feature learning scale (FLS) denotedby χ,
proportional to the train MSE times n2 over C (or N). This scale
controls the difference between the finite C,N output kernel (Qf)
and its C,N→∞ limit and in this sense reflects feature learning.
Due to the n2 factor, χ can beO(1) or larger even for C≫ 1, e.g., for
CNN architectures (see Fig. 2 panel c). The same holds, with C
replaced by N, for FCNs in the MF scaling21. Unlike perturbation
theory3,6,23,24, our theory tracks all orders of χ and treats only 1/C, 1/
Nperturbatively. The separation of scales between χ and 1/C, 1/N is

thus central to our analysis. Its manifestation is the fact that fea-
ture learning shifts and stretches the dynamical variables in the
theory (the pre-activations) in a considerable manner yet barely
spoils their Gaussianity.

4. We providewhat is, to the best of our knowledge, the first analytic
predictions for the test performance of a non-linear network with
two trainable layers in the feature learning regime. We do so both
for an FCN and a CNN.

The predictions of our approach are tested on several toy and
real-world examples using direct analytical approaches and numerical
solutions to the equations of state. Our analysis takes a physics view-
point on this complex non-linear problem. Rigorous mathematical
proofs are left as an open problem for future research.

We note that there are several works showing evidence that the
spectrum of the empirical weight correlation matrix show various tail
effects and spikes25.While in deeper layers we focus on pre-activations,
the spectrum of input layer weights we obtained, is Gaussian but not
independent as in ref. 12. Hence, it can produce a variety of spectral
distributions for the covariance matrix, similar to the aforementioned
ones. We note a recent interesting work26 arguing that the test-loss
depends only on the mean and variance of hidden activations. There,
however, the setting is of afixed trainedDNNand the statistics areover
the inputmeasure rather than over the DNN parameters as in our case.
While quantitatively different, our approach is similar in spirit to the
layer-wise Gaussian Processes algorithm19 inspired by DNN experi-
ments. However, our approach provides a more accurate first princi-
ples description of trained DNNs. Additional approaches for finite-
width includeperturbative correction around the infinitewidth limit to
leading3,24 or higher orders27–29. There is however mounting evidence
frombounds onGP limits1,28, numerical experiments3,5,6,23, aswell as the
current work, that such perturbative expansions have slow con-
vergence in practical regimes. In contrast, our EoS are useful both
numerically (see section “Methods” and “Numerical demonstration: 3
layer FCN”) and analytically (see section “Analytical solution of the EoS
- two layer CNN”) and in addition allow us to model pre-activation
distributions in the wild via our pre-kernels (see section “Extensions to
deeper CNNs and subsets of real-world data-sets”).

Results
Problem statement
Our general setup consists of DNNs trained on a labeled training set of
size n,Dn = fðxμ,yμÞgnμ= 1 = fXn,yg with MSE loss. The input vector is
xμ 2 Rd , and the target yμ is a scalar output. We denote vectors and
tensors by boldface and use μ, ν to represent data point indices.

Our theory can be applied to any finite number of convolutional,
dense, or pooling layers. To illustrate its main aspects, let us focus on
an L-layer fully connected model with width Nl (l∈ [1. . L − 1]),

fθðxÞ=
XNL

j = 1

wðLÞ
j ϕ hðL�1Þ

j ðxÞ
� �
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where θ≔ vec{W(1), . . ,W(L−1), w(L)} are the trainable parameters of the
network arranged in a vector such that (i∈ [1,N1]),wðLÞ 2 RNL�1 ,W ðlÞ 2
RNl ×Nl�1 are the weights of the network, and the input vector x 2 Rd

such that d =N0. The activation function, ϕ : R ! R, is applied
element-wise.

We take the Bayesian Neural network perspective, i.e. the above
network is a random object drawn from a set of Neural networks. The
main object we analyze is the Bayesian posterior distribution of the
DNN outputs pðf ∣DnÞ. The target yμ is the output of the network fθ(xμ)
with additive i.i.d centered Gaussian noise with variance σ2 and an i.i.d
Gaussian prior on weights W ðlÞ

ij ∼Nð0,σ2
l =NlÞ. The posterior can be

rewritten aspðf ∣DnÞ / pðf∣XnÞ exp �P
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Fig. 1 | Feature learning regime versus Gaussian process infinite limit. Learning
as described by our effective theory for antisymetric activation functions. Left: for
infinite width the pre-activations (h(l)), and the output (f) fluctuate according to a
Gaussian distribution with fixed post-kernels QðlÞ

1, Qf,∞, respectively. The complete
set of slow variables are the outputs with fixed kernels. Right: for large but finite
width and number of samples, we obtain an approximately Gaussian distribution
for the pre-activations and outputs with learned pre-kernels K(l) and Kf =Qf + σ

2In,
respectively. The outputs follow a Gaussian Process Regression (GPR) with kernel
Qf. The complete set of slow variables here are both the outputs and the pre and
post-kernels. For general activation, an additional slow variable, corresponding to
the mean of the preactivation, needs to be tracked.
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prior distribution is

pðf∣XnÞ=
Y
μ

δ f ðxμÞ � f θðxμÞ
h i* +

θ

, ð2Þ

where 〈. . . 〉θ denotes an average over the prior distribution of the
weights. We note that there is a correspondence between certain
gradient-based methods and Bayesian Neural Networks (BNNs)30–32.
Recentwork33 shows that BNNs can performonpar or even better than
DNNs trained with SGD. In particular, the equilibrium distribution of
the Langevin-type training algorithm, i.e., full-batch gradient descent
with a small learning rate, along with weight decay, and additive white
noise with variance σ23 is equivalent to the posterior distribution of a
BNNs, pðf∣DnÞ is in function space. Adopting physics notation, it can be
written as pðf∣DnÞ= e�S=ZðDnÞ, where ZðDnÞ=

R
e�S is the partition

function, and S is the action or negative log-posterior (see also
Methods). As shown in Supplementary Material (1) this action is given
by
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where hðlÞ
i 2 Rn. We comment that for rank-deficient matrices, the

inverses are regularized by including a small positive regularizer to be
taken to zero at the end of the computation.

To familiarize ourselves with the action in Eq. (3) let us see how it
reproduces the standard Gaussian Processes picture at infinite
channel/width3,14. Strictly speaking, this action is highly non-linear,
since the ~Q’s matrix elements contain high powers of pre-activations
and since their inverse enters the action. Crucially, however, the ~Q’s
are width-averaged quantities. Thus, at Nl→∞ one may replace them
by their averages. Furthermore, upstream dependencies, wherein h(l)

affects h(l−1), vanish (see Supplementary Material (1)). Roughly
speaking, this is because h(l) only feels the collective effect of all the

neurons in h(l−1) rendering its feedback on any specific neuron
negligible.

Having these two simplifications inmind,webegin a layer-by-layer
downstream analysis of the DNN: As there is no upstream feedback on
h(1), the average of ~Q

ð2Þðhð1ÞÞ (denoted Q(2)) can be carried under the
Gaussian action of the input layer alone (first term in the action).
Replacing ~Q

ð2Þðhð1ÞÞ byQ(2) in the second term in the action, would then
imply that h(2)

fluctuates in a Gaussian manner with Q(2) as its covar-
iancematrix. Next, the average of ~Q

ð3Þðhð2ÞÞ (denotedQ(3)) can be found
based on the now known, Gaussian statistics of h(2). Repeating this
process, the final kernel (Q(L) =Qf) is found and is exactly the one
obtained using the method introduced by Cho and Saul14. Together
with the MSE loss term (last term in the action), we find that the out-
puts (fμ) fluctuate in a Gaussian manner, leading to the standard GP
picture of infinite width trained DNNs3.

Here, however, our focus is at large but finite width (Nl≫ 1). In this
more complex regime, several corrections may appear: (i) The pre-
activations’ average and covariance may deviate from those of a ran-
domDNN. (ii)Q(l), the covariance of activations in the l − 1 layer, would
not solely determine the covariance of pre-activations in the down-
stream layer l, as upstream effects between h(l+1) and h(l) come into play.
(iii) Inter-channel (or inter-neuron in the fully connected case) and
inter-layer correlations may appear. (iv) The fluctuations of pre-
activations may deviate from that of a Gaussian. A priori, all these
correctionsmayplay similarly dominant roles, therebymaking analysis
cumbersome.

Effective GP description in the feature learning regime
The basic analytical insight underlying this work is that these four
types of corrections scale differently with n, d, and Nl. This allows for a
controlled mean-field treatment, which differs substantially from
straightforwardperturbation theory in oneover thewidth. As shown in
Supplementary Material (1.6), corrections of type (iii) are often much
smaller than those of type (i) and (ii). This holds generally for hidden
layerswhenNl’s (or channel’s number forCNNs) aremuch larger than 1.
Considering the output layer of CNNs this requires a large fan-in and
FCNs this holds when using an MF scaling21. Turning to correction of
type (iv) in the l’th layer, these are suppressed when the average ~Q

ðlÞ

has a large density of dominant eigenvalues—a situation relevant for
when n and the input dimension are both large relative to one.

This leaves us with corrections of types (i) and (ii). Interestingly,
following these corrections to all orders leads to a tractablemean-field
picture of learning. The latter is an augmentation of the standard
correspondence between GPs and DNNs at infinite width (NNGP)14,34:
Pre-activations in different layers or channels/neurons remain

Fig. 2 | Theory versus experiment. a, b Compare fully trained 3-layer FCNs in the
MF scaling with our theoretical predictions. a Studies themost strongly fluctuating
weight mode in the first layer. A QQ-plot is shown, of its empirical distribution
against a normal one, along with histograms together with Gaussian fits (insets). As
the scale of the problem increases, these fluctuations become more and more
Gaussian. b The experimental values and EoS predictions, each normalized by their
values at Nl→∞ with fixed σl (i.e. the GP value). Here we used n = 1024 and d = 128.
c Plots the N (or channel number C) at which the feature learning scale (χ) is 1. This

dictates the crossover betweenweak and strong feature learning in our theory. The
color gradient provides a qualitative separation between large and small, N,C and
thus correlates with the adequateness of our mean-field decoupling for the hidden
layers. Evidently, FCNs with standard scaling (½Qf �μμ =Oð1Þ at n =0) requireNl =O(1)
for appreciable feature learning. However, FCNwith anMF scaling, as well as CNNs
in standard scaling, can exhibit strong feature learningwell within the regimeof our
mean-field decoupling.
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uncorrelated and Gaussian. Correlations only appear between differ-
ent data-points (and latent pixels for CNNs) within the same layer and
channel/neuron. We henceforth denote the covariance of pre-
activations and activations at layer l (up to normalization by the var-
iance of the weights) by K(l) andQ(l) and refer to these as pre-kernel and
post-kernel, respectively. However, in the NNGP34 viewpoint, Q(l) is
simply proportional toK(l) and fully determinedby the upstreamkernel
(Q(l−1)) whereas here K(l) and Q(l) differ and moreover depend both on
the upstream and downstream kernels. Below, we present our theory
for antisymmetric activation function, generalizations to other acti-
vation function such as ReLU, where one needs to track both kernels
and means of pre-activations, could be found in Supplementary
Material (5). Specifically, for the above L-layers FCN with ϕ= erf acti-
vation function, we obtain (see also Fig. 7 and Supplementary Material
(1) for derivation and extension to CNNs and any number of layers)

�f =Qf Qf + σ
2In

h i�1
y

K ðL�1Þ
� ��1

� �
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= QðL�1Þ
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>;
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where ½Qf �μν = σ2
LGðK ðL�1ÞÞμν , ½QðlÞ�μν = σ2

l GðK ðl�1ÞÞμν and GðKÞμν =
2
π sin

�1 2Kμνffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2Kμμ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2Kνν

p
� �

35 for a matrix K 2 Rn×n (equivalent expres-

sions are known for several common activation functions, such as

ReLU14). Also, �f is the average DNN output and DKL(K∣∣Q) is the KL-
divergence between two Gaussians with covariance matrices K and Q.

The input layer post-kernel is K ð1Þ =XnΣX
>
n , where Σ is the covariance

matrix of input layer weights.

As their lack of dependence on width suggests, the first equation
together with the definitions of the post-kernels Q(l),Qf are already
present in the strict GP limit (Nl→∞). They are, respectively, the GP
inference formula and standard kernel recursive equations of random
DNNs14 with erf activation. The remaining equations are, to the best of
our knowledge, novel and follow the changes to the pre-kernels and
post-kernels at finite Nl. These could be solved analytically in some
simple cases (see subsection “Analytical solution of the EoS - two layer
CNN for the case of two-layer CNN”). We note that for non-anti-
symmetric activation, one will also need to track the mean of each
layer’s pre-activation (see Supplementary Material (5)).

To get a qualitative impression of their role, one can consider the
case where the penultimate layer (l = L − 1) is linear, in which case

Qf = σ
2
LK

ðL�1Þ. Consequently,
∂½Qf �μ0 ,ν0
∂½K ðL�1Þ �μ,ν

= σ2
Lδμμ0δνν0 , (where δμν, with

double index refers here to the Kronecker delta) and thus the second
equation simplifies to

σ2
LQ

�1
f = ðQðL�1ÞÞ�1 � σ2

L

NL�1
εε> � ½Qf + σ

2In�
�1

� �
, ð6Þ

where ε = ðy� �fÞ=σ. We note in passing that even for a non-linear
penultimate layer, a similar term will arise from the expansion of Qf in
K(L−1) to linear order. From the above form, several insights can
be drawn.

First, we argue that the above equation implies that the trained
DNN is more susceptible to changes along ε than the DNN at NL−1→∞.
Noting how Q�1

f enters the action (Eq. (3)), it controls the stiffness

associated with fluctuations in f. Hence, Q�1
f makes fluctuations in the

direction of εmore likely than they are according to ðQðL�1ÞÞ�1
. Since ε

measures the discrepancy in train predictions, this effect reduces the
discrepancy by making the DNN more responsive in these directions
than it is at NL−1→∞. The second term, proportional to, Qf + σ

2In
h i�1

amounts to a negligible reduction in fluctuations along eigenvectors of
Qf corresponding to eigenvalues which are larger than σ2.

Using Eq. (6) one can also identify the aforementioned emergent
feature learning scale (or FLS) namely, χ =N�1

L�1ε
>QðL�1Þε. This scale

represents the magnitude of the leading term when one Taylor
expands Qf in 1/NL−1. When χ =O(1) or larger there is a significant
change in the eigenvalues of Qf compared to Q(L−1) which indicates
feature learning. On the other hand, when this quantity is small, we are
closer to the GP regime (see Supplementary Material (1.6)). To assess
the scaling χ, one canconsider the common situationwhereεhas some
non-negligible overlap with dominant eigenvectors of Q(L−1) whose
eigenvalues are on the scale λ. Here we find χ ≈ λ ⋅MSE/σ2 ⋅ n/NL−1,
where MSE denotes the mean train MSE which enters here via ∣∣ε∣∣2/n.
Due to its explicitndependency, and for λ =O(n) at large n36— χmaybe
O(1) even at very large NL−1 and/or when the average MSE is
rather small.

Figure 2c shows the value ofNL−1 (orCL−1) atwhich χ = 1 (i.e.NL−1 or
CL−1 atwhich feature learning becomes a dominant effect) as a function
of n for several DNNs we study. The scale separation, demonstrated
there by the fact that χ can beO(1) in regions where 1/Nl’s is negligible,
is central to our analytical approach.

This scale χ is also the reason that naive perturbation theory in 1/Nl

fails at large n3,6,23,27, as it treats χ and O(1/NL−1) on the same footing,
since they both have a single negative power of NL−1. In contrast, our
EoS treat the FLS non-perturbatively.

Last, we stress that the EoS provide uswith a concrete, effective GP
description for the entire DNN as well as its hidden layers. A priori one
would expect that the normality of pre-activations, a large C,N trait, will
be lost at finite C,N. Yet, we find that pre-activations remain Gaussian
and accommodate strong feature learning effects while maintaining
accurate predictions. This unexpectedly simple behavior opens various
reverse engineering possibilities, wherein one infers the effective ker-
nels from experiments and uses their spectrum and eigenvectors to
rationalize about the DNN (see also Fig. 5). On this note, we comment
that extending the EoS to test points is straightforward by formally
treating the test point as an additional training point with its own
“noise” parameter and then sending it to infinity (see Supplementary
Material (1.4.1.)). For concrete EoS expressions which include test-
points, see section “Analytical solution of the EoS - two layer CNN”.

Numerical demonstration: 3 layer FCN
Next, we test the agreement between the above results and statements
and actual trained DNNs, starting from the 3-layer FCN defined in Eq.
(1) with L = 3.We focus here ona student-teacher settingwith n = 512 or
1024 training data points drawn from iid Gaussian distributions with
unit variance along each input dimension. The target was generated by
a randomly drawn teacher FCN of the same type, only with N1 =N2 = 1.
The student was trained using an analog scaling to the MF scaling21,
wherein the output layerweights are scaled downby a factor of 1=

ffiffiffiffiffi
Nl

p
.

Whereas for the CNNs discussed below, this choice of scaling was not
required, for FCNs we found it necessary for getting any appreciable
feature learning at N1 =N2 =N≫ 1 (Fig. 2c).

As described in the Methods section, we trained 20 FCNs using
our Langevin algorithm until they reached equilibrium. We use these
trained FCNs to calculate various average quantities under our par-
tition function (Eq. (3)). Specifically, we focused on: (i) The normal-
ized train-loss on the scale of σ2, namely MSE =ðσ2P

μy
2
μÞ(ii) The

eigenvalues (λi, i∈ [1. . d]) of the average Σ, where we average over
neurons, training seeds, and training time (the latter within the
equilibrium region). (iii) The normalized overlap (α) between the
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discrepancy in prediction on the training set times the target, namely
α = σ�2 Pn

μ= 1ð�f μ � yμÞyμ=ð
P

μy
2
μÞ. We then used a JAX-based37 numer-

ical solver for the EoS and compared it with the experiment.
As the results of Fig. 2b show, the predictions of our EoS for all

these three quantities converged well as we increased N. Furthermore,
they do so in a region where they differ considerably from their
associated GP limit. Indeed, as shown in the Supplementary Material
(3) the top Σ eigenvalue came out 2–3 times larger than it is in the GP
limit. The associated eigenvector corresponded to the first layer
weights of the teacher (w*). The rest of the eigenvalues remained at
their GP limit values. Put together, this is a clear sign of strong feature
learning.

Notably, however, this notion of feature learning does not
involve compression. Indeed, since Σ has the same variance as in the
GP limit for directions perpendicular to w*, it does not compress the
input by projecting it solely on the label relevant direction (w*).
Instead, it exaggerates the fluctuation of student weights along, w*

thereby making it statistically more likely that hð1Þ
iμ and hð1Þ

iν with
opposite sign ofw* ⋅ xμ andw* ⋅ xν will be further apart in the space of
pre-activations.

Next, we study how χ behaves as a function of n and C (or N) for
different architectures. Figure 2 shows the value ofN (or C) at which
χ = 1. As χ contains a single inverse power of C at ten times this
value, χ would be 0.1 and thus indicate only minor feature learning
effects in our EoS. As N, C diminish from this latter value, our EoS
yield increasingly stronger feature learning effects. We find that
both for CNNs in the standard scaling and for FCNs withMF scaling,
the crossover to feature learning happens well within the validity
region of our mean-field decoupling (i.e. large N or C). In contrast,
FCN with standard scaling shows this crossover when N =O(1),
which is outside the scope of our theory. In this aspect, we com-
ment that there is evidence that FCNs with standard scale are
inferior to those with mean-field scaling38 and perform similarly
to GPs34.

Analytical solution of the EoS - two layer CNN
Having tested our EoS numerically, we turn to show they lend them-
selves, in simple settings, to a fully analytical calculation. Amongst
other things, this will flesh out the non-perturbative nature of our
results. To this end, we consider a simple non-linear CNNwith 2 layers.
Though bounds have been derived39,40, we are not aware of any ana-
lytical predictions for the performance of finite non-linear 2-layer
DNNs, let alone CNNs. It is therefore a natural first application of our

approach. Specifically, we consider

f ðxÞ=
XN
i= 1

XC
c = 1

aicerf wc � xi

	 
 ð7Þ

where x 2 Rd with d =NS andwc,xi 2 RS. The vector xi is given by the
iS, . . , (i + 1)S − 1 coordinates of x. The dataset consists of fxμgnμ= 1 i.i.d.
samples, each sample xμ is a centered Gaussian vector with covariance
Id. We choose a linear target of the form yμ =

P
ia

*
i ðw* � xμ,iÞ where

a*
i ∼Nð0,1=NÞ and w*

s ∼Nð0,1=SÞ. This choice is not crucial, but does
simplify considerably the GP inference part of the computation. We
train this DNN using our Langevin algorithm and tune weight-decay
and gradient noise such that, without any data, aic ∼Nð0,σ2

aðNCÞ�1Þ
and ½wc�s ∼Nð0,σ2

wS
�1Þ.

The equations of state are given by (See Supplementary Material
(3))

�f =Qf ½σ2In +Qf �
�1
y

Qf

h i
μν

=
σ2
a

N

X
i

G XnΣX
>
n

	 

μi,νi

Σ�1
h i

ss0
=

S
σ2
w
δss0 �

1
C
Tr ðεε> � Kf

�1Þ∂Qf

∂Σss0

�� � ð8Þ

Here we denote the discrepancy from the target by ε = ðy� �f Þ=σ2. The
above equations for Σss0 and δμ could be solved numerically. Once Σss0

is obtained, generalizing the EoS to test points is straightforward
(see Supplementary Material (1.4.1)) and amounts to doing GP infer-
ence with Qf. In particular, to obtain the required values of Qf

between a test point x* and a train point, xν one calculates

2σ2
a

P
isin

�1 2x*,iΣxν,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2x*,iΣx*,i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2xν,iΣxν,i

p
� �

=ðπNÞ. The results for both train

and test losses are shown in Fig. 3 in solid lines and match empirical
values well.

To obtain fully analytical results, we proceed with several
approximations for large n. First, we approximate the spectrum of the
matrix ½Qf �μν based on its continuum kernel version Qf ðx,x0Þ. This is
closely related to the equivalent kernel41 approximation, which we
adopt here along with its leading order correction36. Similarly, we use
large n to replace the double summation

P
νμεμεν ½Qf �μν by two inte-

grals over the measure from which xμ are drawn (dμ). See

Fig. 3 | Theory and experiment comparison for the 2-layer non-linear CNN. Left.
Discrepancy measured along target direction normalized by that of the corre-
sponding GP (α/αC→∞). Dots denote empirical values for the test-set. Dashed and
solid lines are theoretical predictions via an approximate-analytical and exact-

numerical solution of the equations of state, respectively. Train-set comparisons
are shown in the inset. Right. Statistics of w ⋅w*/∣w*∣ of the trained CNN (blue)
compared with w projected on a normalized random vector (green) for the
n = 1600 experiment with C = 640. Dashed lines show fit to a Gaussian.
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SupplementaryMaterial (3.1) for further details and a discussion of the
fully connected case (N = 1).

Following our approximations, the equations acquire the full
rotation symmetry of the data-set measure, which amount to an
independent orthogonal transformation of each xi. Furthermore,
as shown in Supplementary Material (3), at large S, �f ðxÞ (the con-
tinuum function representing fμ) is linear given a linear target, y(x),
regardless of Σ andhence so is ϵ(x). The above symmetry then implies
that ε(x) is only a function ofw* ⋅ xi and furthermore takes the simple
form ε(x) = αy(x). The quantity α thus measures the overlap between
the discrepancy in predictions (ϵ) and the target. Following this, the
EoS are reduced to a non-linear equation in a single variable α

σ2α = 1� qtrainSλ1l*
Sλ1l* + σ2=n

ð9Þ

where l� ¼ ½1� χ2��1=S; χ2 ¼ C�1α2n2λ1, and λ∞ is the dominant
eigenvalue of Qf ðx,x0Þ associated with a linear function in the limit
C→∞, l* is the eigenvalue of Σ associated with w* (the remaining
eigenvalues are inert and equal to 1/S), χ2 is the FLS for 2-layerCNN, and
we assumed ∣∣a*∣∣2 = ∣∣w*∣∣2 = σ2

a = σ
2
w = 1 (see Supplementary Material

(3). for more generic expressions). The quantity qtrain is exactly one in
the equivalent kernel limit, and its perturbative correction (in 1/n) can
be found in Supplementary Material (3).

Solving the above equation for α, one obtains l* and hence Σ and
alsoQf (via Eq. (8)). Using the obtained,Qf one can calculate the DNN’s
predictions on the test-set. The effect of the FLS is evident in the
second equation, where it controls the deviations from the GP limit.
Here we also recall that α2 is the train MSE over σ4, thus χ2 as defined
above, contains the MSE factor mentioned in the introduction.

To test the theoretical predictions, we trained two such CNNs,
with n = {800, 1600}; S = 64;N = 20 and varying channel number.
Figure 3, left panel, shows the empirical test-set values for α (dots)
compared with a numerical solution of the equations of state (solid
lines) and their analytical solution (dashed lines). For the latter, we
obtained Σ analytically and performed the resulting GP inference with
Qf numerically. The inset tracks the train-set results which, in this case,
are fully analytical and involve no numerical GP inference. Both pre-
dictions match empirical values quite well, even in the regime where
test root MSE is roughly half that of a Gaussian Process (C→∞). The
right panel shows the input layerweights, dottedwithw*/∣w*∣ andwith a
normalized random vector. These remain Gaussian up to minor sta-
tistical noise. Further details can be found in the methods section.

To emphasize the non-perturbative nature of our Eq. (9), let us
assume for the sake of negation that they agree with first order per-
turbation theory in 1/C (as in refs. 3,6,23,24). If so, we may replace α in the
above expression for χ2 by its GP value, as it already contains one
negative power of C and hence receives no further corrections at that
order. Numerics show this value αGP = 0.558 for n = 1600. Plugging this
in, one obtains l* =

2
S ½1� 633:2=C��1. Clearly, this logic leads to a con-

tradiction unless C≫ 633.2. In contrast, our theory provides highly
accurate predictions for n = 1600,C = 320 and C = 640 well away from
where 2

S ½1� 633:2=C��1 admits a perturbation theory in 1/C. In Sup-
plementary Material (6.2) we report additional results on l* over its
GP value.

Extensions to Deeper CNNs and Subsets of Real-World Data-sets
For truly deep CNNs and real-world datasets, obtaining fully analytical
predictions for DNN performance is a challenging task, even in the
C→∞ limit. Still, the EoS could be solved numerically and compared
with experimental values. Furthermore, the quantities which underlie
them could be examined and reasoned upon. We do so here in two
richer settings, a 3-layer CNN trained with a teacher CNN and the
Myrtle-5 CNN42 trained on a subset of CIFAR-10. Our first setting
extends that of the previous subsection by having an extra activated
layer and a target function generated by a similar non-linear teacher
network, having however a single channel. For more details, see sec-
tion “Three layer CNN model definition”.

As the first test of our theory, we examine the fluctuations of pre-
activations in the input and middle layers of the trained student CNN
and check their normality. Specifically, for the input weights wc we
obtain the histogram (over channels, equilibrium samples, and seeds)
of wc ⋅w*/∣w*∣, where w* is the teacher input weight and the histogram
of wc ⋅wr/∣wr∣ where wr is a random vector. Teacher overlap has a
variance of 0.254 here, whereas random overlap variance, averaged
over choices of wr’s, was 0.039 with a std of 0.0043. For the hidden
layer, we obtain the histogram of hð2Þ

c0 � hð2Þ,*
=∣hð1Þ,*∣ where h(2),* are the

teacher’s pre-activations as well as hð2Þ
c0 � hð2Þ

r =∣hð2Þ
r ∣where hð2Þ

r is the pre-
activation of a different randomly chosen teacher. Teacher overlap
variance herewas, 64.4whereas average student variancewas, 2.3with
a std of 0.12. Figure 4 shows the associated histograms alongwith their
fit to aGaussian. The large and consistent differences in the variance of
the fluctuations between teacher directions and random directions
show that we are deep in the feature learning regime. Remarkably, the
fluctuations remain almost perfectly Gaussian. The larger variance
along teacher directions implies that by drawing DNNs from the
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Fig. 4 | Pre-activation statistics in the 3-layer student-teacher setting. Left.
Histogram of student input weight vector, dotted with the normalized teacher
weight (blue) and normalized random weight (green). Right. Histogram of student
hidden layer pre-activations, dotted with the normalized teacher pre-activations
(blue) and normalized pre-activations of a random teacher (green). Dots are

empirical values and dashed lines are Gaussian fits. Insets: 2d histograms along the
same vectors before (left) and after (right) training. Within our framework, these
variances are determined by v⊤K(l)v with v being either randomunit vector or h(l) of
the single channel teacher. Remarkably, despite strong changes to the kernels and
various non-linearities in the action, the pre-activation is almost perfectly Gaussian.
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trained DNN ensemble and diagonalizing their empirical covariance
matrices, one is more likely to find dominant eigenvalues along these
teacher directions.

We turn to verify the EoS and rationalize the behavior of the pre-
kernels. To this end, we average the empirical pre-activations, over
channels and training seeds, to obtain an estimator for the pre-kernel
and post-kernel of h(2) (i.e. Q(2) and K(2)) and that of the input weights
(Σ). We then obtain ∂DKL(K(2)∣∣Q(2))/∂Σ analytically using the 3rd equa-
tion from Eqs. (5), plugging in the empirical Σ. Finally, we compare the
empirical Σ with that obtained from the last equation from Eqs. (5).
Figure 5 left panel plots the eigenvalues of Σ, our predictions (Σpred),
and the post-kernel of the input layer which is simply σ�2

w S0IS0 ,
showing a goodmatch between the first two. Figure 5 right panel plots
the eigenvalues of Q(2) as predicted from K(2), compared with its
empirical value.

Next, we trained the myrtle-5 CNN42, capable of good perfor-
mance and containing both pooling layers and ReLU activations, with
C = 256 on a subset of CIFAR-10 (n = 2048). Barring some one-
dimensional integrals requiring numerical evaluation, our EoS gen-
eralize straightforwardly to ReLU activation, in which case we are
required to track both K (variances) and means (See Supplementary
Material 5). Thus, for ReLU feature, learning canmanifest itself through
both these quantities. Still, the results below suggest that changes to
kernels play a dominant role (see also Supplementary Material 6.3).
Further analysis of the impact of activation functions on feature
learning is left for future work.

Figure 6 shows histograms of various linear combinations of pre-
activations. These show a strong deviation of trained DNNs from non-
trained DNNs or DNNs at infinite channel/width, and at the same time
show quite a good fit to Gaussian in most cases. This opens the pos-
sibility of reverse engineering the pre-kernels governing this trained
network and using them to rationalize about the DNN, for instance by
identifying their dominant eigenvectors.

The 2nd layer (as well as the input layer, (see Supplementary
Material (6.3))) show deviations from Gaussianity in the leading
eigenvalue. This is expected since the kernels of these layers show
quite a dilute dominant spectrum, whereas VGA requires a contribu-
tion from many adjacent modes (see Supplementary Material (1.3)).
Interestingly, despite this non-Gaussianity in the leading eigenvalue of
layers 1 and 2, Gaussainity is restored in the downstream layers 3 and 4.

Correlations across layers and across channels within the same layer
are veryweak (largely on the order of 10−3) and fully consistentwith the
mean-field decoupling underlying this work. Further technical details
are found in Supplementary Material (6.3).

Discussion
In this work, we presented what is, to the best of our knowledge, a
novelmean-field framework for analyzing finite deep non-linear neural
networks in the feature learning regime. Central to our analysis was a
series of mean-field approximations, revealing that pre-activations are
weakly correlated between layers and follow a Gaussian distribution
within each layer with a pre-kernel K(l). Using the latter together with
the post-kernel Q(l) induced by the upstream layer, explicit equations-
of-state (EoS) governing the statistics of the hidden layers were given.
These enabled us to derive, for the first time, analytical predictions for
the performance of non-linear CNNs and deep non-linear FCNs in the
feature learning regime. We further note that our EoS generalizes
straightforwardly to combined CNN-FCN architectures, ReLU activa-
tion functions (see Supplementary Material 5), pooling layers, and
models with multiple outputs. The GP represented by the equation we
find is a good approximation to the true posterior distribution gen-
erated by a large but finite-width Bayesian neural network. Thus,
among the other advantages of BNNs, providing reliable uncertainty
estimates and principled model comparison33, they may also admit a
concrete interpretation through an effective GP.

Various aspects of this work invite further study. Empirically, it
would be interesting to better characterize the scope of models for
which a Bayesian sampler (or potentially ensemble-averaged NTK
dynamics) leads to Gaussian pre-activations and overall GP-like beha-
vior. Probing the “feature-learning-load” of each layer, by experimen-
tally measuring the differences between the kernels Q(l) and K(l), may
also provide insights on generalization, transfer learning, and pruning,
thus complementing other diagnostic tools suggested recently43. For
instance, transferring a layer with a small feature learning load may
provide little benefit, andpruning a channel having a largeoverlapwith
a leading eigenvalue of K(l) −Q(l) may be harmful.

From the theory side, it is desirable to develop analytical techni-
ques for solving the EoS as well as guarantees regarding the existence
and uniqueness of solutions. In particular, exploring the possibility of
spontaneous symmetry breaking of internal symmetries such as

Eigenvalue numberEigenvalue number
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Fig. 5 | Theoretical, empirical, and GP spectrum of kernels for the 3-layer non-
linear student-teacher CNN setting. Left: the leading 50 eigenvalues making up
the spectrumof Σ for the empirical Σ (blue), the predicted Σ based on the equations
of state (red), and Σ at C→∞ (green). Right: the leading 10 eigenvalues of the post-
kernel of the hidden layer (Q(2)) again for the empirical, predicted, and GP post
kernels. The inset shows the next 90 trailing eigenvalues and reveals a gap

separating the leading S1 eigenvalues from the rest. The dimension of Q(2) here is
Nn= 2000, we focus on large eigenvalues as these dominate the predictions. The
outlier in the left panel is aligned with the teacher weight vector w*. The 30 (or N)
outliers on the right panel are again a feature learning effect and represent the
linear feature proportional tow* in each of the N latent pixels of the hidden layer.
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weight inversion. Providing a mathematical underpinning for the
approximations involved here may lend itself to developing perfor-
mance bounds on the Langevin algorithm and Bayesian neural
networks12,44. Similarly, one can consider using the empirical effective
kernel (Qf) as a starting point to develop GP-based bounds45 on per-
formance. Last, it is interesting to explore the approach to equilibrium
of the training dynamics and adapt the approximations carried here to
the NTK setting1,27.

Methods
Mean field action
Herewe present themain ingredients of our theory, leading to the EoS
we find. Further details can be found in the Supplementary Material.

Decoupling of layers and neurons. First, we provide decoupling of
Eq. (3) into layer-wise neuron-wise terms, wherein each of the terms
depends on the upstream and downstream layers only through
channel-averaged second cumulants of activations and pre-activations
(pre-kernel and post-kernel). Further details are found in Supplemen-
tary Material (1).

Consider the non-linear terms in action in Eq. (3) which couple the
different layers. This coupling ismediated through the channel/width-
averaged quantities: indeed, h(1) depends on h(2) through the channel/
width averaged square term in h(2), h(2) depends on h(1) through the
average ofϕ(h(1))ϕ(h(1)), and h(3) depends on h(2) through the average of
ϕ(h(2))ϕ(h(2)) and so forth. For, Nl≫ 1 we expect these to be weakly
fluctuating and well approximated by their mean-field values. This
behavior propagates till the output layer, and in particular implies that

the outputs f fluctuate in a Gaussian manner, as previously
conjectured23. As for the dependencyof h(L−1) on the f variables, it is not
through a channel/width averaged quantity. However, we find that in
various scenarios, such as FCNs with MF scaling or CNNs with large N,
the fluctuations of f are suppressed enabling us to replace f by its
average (see SupplementaryMaterial (1.7) and (2.2)). Following this, we
obtain our mean-field action,

SMF =
XL�1

l = 1

S
ðlÞ
MF +Sf ,MF: ð10Þ

This allows us to define the 〈. . . 〉MF with respect to the distribution:
πMFðfhðlÞgL�1

l = 1 ,fÞ= e�SMF=ZMF, and the partition function
ZMF =

R QL�1
l = 1 dh

ðlÞdfπMFðfhðlÞgL�1

l = 1 ,fÞ. Such that

Sf ,MF =
1

2σ2

X
μ

ðf μ � yμÞ2 +
X
μν

1
2
f μ½Qf ��1

μν
f ν ð11Þ

S
ðlÞ
MF =

1
2
Nl + 1

X
μν

Aðl + 1Þ
μν

~Q
ðl + 1Þ
μν ðhðlÞÞ+

X
μνj

1
2
hðlÞ
μj ½QðlÞ��1

μνh
ðlÞ
νj for l 2 ½1, L� 1� ð12Þ

where AðLÞ = σ�4ðy� �f Þðy� �f Þ> � ½Qf + σ
2In�

�1
, and AðlÞ = ½QðlÞ��1	

In�
hhðlÞ

j ðhðlÞ
j ÞT i

MF
½QðlÞ��1


. The post-kernels are defined self-consistently as
Qf = h~Qf iMF

, and QðlÞ = h~QðlÞiMF for l∈ [1, L − 1].
Notably, any coupling between the different layers is only through

static mean-field quantities, namely the pre-kernels and-post kernels.

Fig. 6 | Pre-activation statistics for the myrtle-5 CNN with ReLU activation and
C = 256, trained on n = 2048 CIFAR-10 images. a, b Statistics of pre-activations of
untrained (gray) and trained (blue) Myrtle-5 nets, in the 2nd layer. The histograms
are aggregations over channels and initialization seeds of the pre-activations,
projected on various eigenvectors of the corresponding kernel matrix. a A pro-
jection on the 1st (leading) eigenvector, while b is the same for the 10th eigen-
vector. c, dAre the same as a, b, but for the 4th layer. The fits to a Gaussian (dashed
lines) provide an accuracy measure for our variational Gaussian approximation.
Notice that the equilibrium distribution, even when it is near Gaussian, can differ

from the initial one in either or both its mean and variance, a signature of feature
learning. Generally, we find that Gaussianity increases with the depth of the layer
(i.e. downstream layers are more Gaussian than upstream layers), and with the
index of the eigenvector, we project on (e.g. here projection on the 10th eigen-
vector is more Gaussian than on the 1st eigenvector). More details can be found in
SupplementaryMaterial (6.3),wherewe also showthat correlations are small across
different layers and across channels within each layer, thus justifying neglecting
these in our theory.
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In addition, all neuron-neuron couplings (and similarly, channel-
channel couplings for CNNs) have been removed.

Intra-layer decoupling. Despite the simplified inter-layer coupling
and intra-layer neuron coupling, the mean-field actions are still non-
quadratic for all layers but the output layer. This non-linearity couples
all the h(l) variables for the same neuron (channel in the CNN case) in a
way that is roughly all-to-all in the data-point index. In atomic and
nuclear physics, similar circumstances are well described by self-
consistent Hartree-Fock approximations46–49. In our setting, this
approximation is directly analogous to a variational Gaussian
approximation (VGA). In Supplementary Material (4) we argue that in
the typical case where the diagonal of K(l) is much larger than the off-
diagonal elements, the VGA iswell controlled. Technically, we do so by
showing, order by order in perturbation theory, that the diagrams
accounted for by the VGA approximation dominate all other pertur-
bation theory diagrams. In Supplementary Material (3) we also estab-
lish this using different means for S0≫ 1 for the specific case of two-
layer CNN with a single activated layer. We further comment that the
VGA is exact for deep linear DNNs.

Accordingly, we now look for the Gaussian distribution, governed
by a kernelK(l) which is the closest to the abovenon-quadratic action. In
models with many hidden layers, this leads to the following “inverse
kernel shift” behavior for, 1 < l < L − 2

½½K ðl�1Þ��1�μν = ½½Qðl�1Þ��1�μν +
2Nl

Nl�1

∂DKLðK ðlÞ∣∣QðlÞÞ
∂½K ðl�1Þ�μν

ð13Þ

where l denotes a layer index and DKL(A∣∣B) is the Kullback-Leibler
(KL) divergence between two multivariate Gaussians with covar-
iance matrices A and B. As shown in Supplementary Material (1), for
antisymmetric activation functions, the derivative of the KL-
divergence is explicitly given by Tr½½QðlÞ��1ðK ðlÞ �QðlÞÞ½QðlÞ��1

ð∂QðlÞ=∂K ðl�1Þ
iμ,jν Þ�. For non-anti-symmetric ones, see Supplementary

Material (5).

Three layer CNN model definition
For the analysis in section “Extensions to deeper CNNs and subsets of
real-world data-sets”, we consider a student 3-layer CNN defined by

f ðxÞ=
XN�1

j =0

XC2

c0 = 1

ac0 jϕ hð2Þ
c0 j ðxÞ

� �

hð2Þ
c0 j ðxÞ=

XS1�1

i =0

XC1

c = 1

vc0ciϕ hð1Þ
cjiðxÞ

� �

hð1Þ
cjiðxÞ=wc � xi+ jS1

ð14Þ

Wherewc,xi + jS1
2 RS0 , a 2 RC2 ×N , v 2 RC2 ×C1 × S1 , and the input vector

x 2 Rd with d =NS1S0, and the activation function, ϕ : R ! R, is
applied element-wise. See Fig. 7 for illustration. Similarly to before, the
regression target (yμ) is generated by a random teacher CNN
(yμ = f *(xμ)) having the same architecture as the student, only with
C1 =C2 = 1. In addition, we chose S0 = 50, S1 = 30,N = 2,C1 =C2 = 100 for
the student. We denote teacher weights and pre-activations by *
subscripts. Further details are found in the supplementary Information
section 2.

Bayesian posterior sampling with Langevin-type dynamics
In this section, we give more details regarding the algorithm used to
generate samples from the Bayesian posterior. We train the DNNs
using full-batch gradient descent with weight decay and external white

Gaussian noise. The discrete-timedynamics of the parameters are thus

θt + 1 � θt = � η γθt +∇θt
L θt ,Dn

	 
� �
+ 2σ

ffiffiffi
η

p
ξ t + 1 ð15Þ

where θt is the vector of all network parameters at time step t, γ is the
strength of the weight decay (which, from the Bayesian perspective,
is inversely proportional to the variance of the parameters for the
prior), Lðθt ,DnÞ is the loss as a function of the DNN parameters θt,
and data, σ is the magnitude of noise, η is the learning rate and
ξ t,i ∼Nð0,1Þ. As η→0 these discrete-time dynamics converge to the
continuous-time Langevin equation given by _θðtÞ= �
∇θ

γ
2 k θðtÞk2 +L θðtÞ,Dn

	 
	 

+2σξ tð Þ with ξ iðtÞξ jðt0Þ

D E
= δijδ t � t0ð Þ,

such that as t→∞ the DNN parameters θ will be sampled from the
equilibrium Gibbs distribution in parameter space pðθ∣DnÞ. In
principle, this is true regardless of the initial condition given to the
parameters. However, in practice, to achieve reasonable conver-
gence times we set a random initial condition with zero mean and a
variance that matches that of the Bayesian prior.

This algorithm, used to generate samples from the Bayes pos-
terior, corresponds to the Unadjusted Langevin Algorithm (ULA)50–52,
together with a weight decay term. Hyperparameters such as learning
rate, weight decay, and noise level (or mini-batch size for SGD) can be
experimented with and compared across different training protocols,
thus making ours more tightly connected to gradient-based algo-
rithms used by practitioners for training DNNs, while also conforming
to the Bayesian perspective. While this method of posterior sampling
may be slower to converge compared to other more sophisticated
samplers (such as HMC33), it is simpler (e.g. has no Metropolis accep-
tance step, hence the word “unadjusted”) and admits an intuitive
correspondence with vanilla SGD, where the mini-batch noise is
replaced with white additive noise31. Under some rather mild condi-
tions, ULA has been shown to have good convergence properties50.

Experimental details
Hyperparameters. For the 2-layer CNN experiments, we used S = 64,
N = 20, and varying channel number. The training parameters (noise
andweight-decay) were tuned such that σ2 = 0.1 andweight variance of
2.0 over fan-in, for both layers at n = 0. The target was drawn once for
all experiments using i.i.d. Gaussian centered random a*

i and w*
s with

variances 1/N and 1/S respectively.
For the 3-layer CNN experiments, we took S1 = 50, S0 = 30,N = 2.

The training parameters (noise and weight-decay) were scaled such
that σ2 = 0.005 andweight varianceof 2.0 over fan-in for the inputs and

:
( )

:
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∈ ℝ

∈ ℝ∈ ℝ ∈ ℝ
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Fig. 7 | A 3 layers CNN architecture. An illustration with non-overlaping strides.
The black squares represent the strides window in each layer.
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hidden layer with no training data (at initialization). The weight var-
iance of the read-out layer was 15 over the fan-in. The target was drawn
again once for all experiments from a teacher CNN with C = 1.

For all the myrtle-5 experiments, we used n = 2048,C = 256 and
ReLU activation. The training parameters (noise and weight-decay)
were scaled such that σ2 = 0.005 and weight variance of 2.0 over fan-in
for all layers with no training data (at initialization).

For all the FCN experiments, we used equal width (N1 =N2) and
weight decay corresponding to variance, σ2

w = σ2
a = 2 (with no training

data) in the regular scaling. For the MF scaling, we took σ2
a = 2=N2. The

target was drawn again once for all experiments from a teacher CNN
with N1 =N2 = 1. Specifically, when calculating the emergent scale, we
used σ2

a = 2=256 independent of N2.

Equilibrium sampling. To obtain weakly correlated samples from the
equilibrium distribution of the trained CNNs we used the following
procedure. For the 2 and 3-layer CNNs, we used an adaptive learning
rate scheduler: For the first 100 epochs we used a learning rate lr0/10,
then we crank up the learning rate to lr0. As of epoch 5e3, every 1e3
epoch we estimate the fluctuations of the train-loss and check for
spikes—events in which the train-loss was five times larger than the
standard deviation in the past 500 epochs. If a spike is observed, the
learning rate is reduced by a factor of 0.7. This continues until 5e4
epochs pass without any events. Then the learning rate is reduced
again by a factor of two and remains fixed. Samples from these final
stageswere treated as equilibrium samples.We further checked that (i)
different initialization seeds trained with this protocol reached the
same train-loss statistics. (ii) No further reduction in train-loss occur-
red after the final learning rate reduction. For several runs, we also
verified that increasing the last reduction of learning rate by an addi-
tional factor of 2 did not have any appreciable effect on the loss. The
initial lr0 was ~ 1e − 4 (w.r.t. a standard mean reduction MSE loss) and
the final learning rate was typically ~ 1e − 5. The runs terminated at
epoch 3e5.

For themyrtle-5CNN trainedonCIFAR-10,wefirst ran several runs
for 3e5 epochs using the above procedure and examined those that
reached the lowest train-loss. We then generated a fixed scheduler
based on those more successful instances, running up to 4e5 epochs.
We again verified that further lowering the final learning rate has no
appreciable effect on the training loss, and that different seeds reach
similar final train-loss. This ensures that we are indeed sampling from a
valid equilibrium distribution.

For the 3-layer CNN and Myrtle-5, we found that auto-correlation
times of pre-activations change considerably between the layers.While
the read-out layer typically hadanauto-correlation time of the order of
1e3 epochs (at the lowest learning rates) the auto-correlation times for
the input layers could reach ~1e6 or larger values. To overcome this
issue, when analyzing pre-activations of thesedeeper DNNswe took an
ensemble containing 98 and 234 different initialization seeds for the
3-layer CNN and Myrtle-5 respectively.

For the 3-layer FCN we used a fixed scheduler which starts at 1/2
the maximal stable learning rate and reduces the learning rate by
factors of 2 at 100, 1e5, 1e6, 3e6 epochs and by a factor of 4 at 4e6, 5e6
epochs (factor of 128 in total). Equilibrium samplingwas done between
6e6 − 7e6 epochs.

Numerical solution of the equations of state. For the 2-layer CNN, the
equations of state were solved using Newton-Krylov method53, which
does not require explicit gradients. To facilitate convergence, we
adopted an annealing procedure: For C ~ 1e3, we obtain the solution
using a GP initial value (x0) for Σ. The optimization outcome was then
used as x0 for the next lower value of C. Using 12 CPU cores, this
optimization took several hours. After obtaining Σss0 as a function of C,
the resulting kernel ½Qf �μν wasused in standardGP inference toobtain f
on the test-set. For the 3-layer FCN we used amore efficient JAX-based

code to generate the kernels andkernel derivatives involved in the EoS,
but otherwise followed the same procedure. Optimization took
between several minutes to a few hours on one Titan-X GPU,
depending on parameters.

Data availability
The datasets used in this study are either publicly available online
(such as the CIFAR dataset) or can be generated by the code found in
the following repository https://github.com/zringel/AdaptiveGPs.

Code availability
The code used to perform numerical experiments, analyze data, give
theoretical predictions and generate figures is available in the follow-
ing repository https://github.com/zringel/AdaptiveGPs.
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