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Low input capture Hi-C (liCHi-C) identifies
promoter-enhancer interactions at
high-resolution

Laureano Tomás-Daza1,2,14, Llorenç Rovirosa1,14, Paula López-Martí1,2,
Andrea Nieto-Aliseda1, François Serra 1, Ainoa Planas-Riverola1,
Oscar Molina 1, Rebecca McDonald 3, Cedric Ghevaert3,4,
Esther Cuatrecasas5, Dolors Costa6,7,8, Mireia Camós9,10,11, Clara Bueno1,
Pablo Menéndez1,12, Alfonso Valencia 2,12 & Biola M. Javierre 1,13

Long-range interactions between regulatory elements and promoters are key
in gene transcriptional control; however, their study requires large amounts of
starting material, which is not compatible with clinical scenarios nor the study
of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C)
as a cost-effective, flexible method to map and robustly compare promoter
interactomes at high resolution. As proof of its broad applicability, we
implement liCHi-C to study normal and malignant human hematopoietic
hierarchy in clinical samples. We demonstrate that the dynamic promoter
architecture identifies developmental trajectories and orchestrates transcrip-
tional transitions during cell-state commitment.Moreover, liCHi-C enables the
identification of disease-relevant cell types, genes and pathways potentially
deregulated by non-coding alterations at distal regulatory elements. Finally,
we show that liCHi-C can be harnessed to uncover genome-wide structural
variants, resolve their breakpoints and infer their pathogenic effects. Collec-
tively, our optimized liCHi-C method expands the study of 3D chromatin
organization to unique, low-abundance cell populations, and offers an
opportunity to uncover factors and regulatory networks involved in disease
pathogenesis.

Enhancers are critical modulators of gene transcription through phy-
sical interactions with target promoters that often locate distally in the
genome. The physical proximity between enhancers and promoters is
ultimately enabled and determined by the three-dimensional folding

of the chromatin within the nucleus1,2. Although enhancers can be
defined through well-characterized features, predicting their target
genes at distal locations remains challenging due to the high com-
plexity of studying enhancer–promoter interactions and the large
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variability according to cell type and state. This gap of knowledge is
particularly problematic for understanding themolecularmechanisms
associated with inherited and de novo acquired mutations and epi-
mutations involved in common human diseases, which are all highly
enriched at regulatory elements3,4.

To enable the studyof genomic regulatorymechanismsunderlying
disease pathologies at a genome-wide scale, we previously developed
the promoter capture Hi-C (PCHi-C) method5,6. This approach allows
systematic identification of the promoter interactome (i.e., genomic
regions, including distal regulatory regions, in physical proximity with
more than 31,000promoters) independently of the activity statusof the
interacting regions. This method has allowed us to uncover aspects of
the diversity of transcriptional regulatory factors7 and mechanisms in
cell differentiation8,9 and disease5, and it has broadened our capacity to
identify hundreds of potential disease-candidate genes and/or gene
pathways potentially deregulated by noncoding disease-associated
variants5,10–21. However, PCHi-C relies on the availability of millions of
cells, typically ranging between 30 and 50 million cells per biological
replicate, which prohibits the analysis of rare cell populations such as
those commonly obtained in clinical settings.

Here, to overcome this limitation, we present liCHi-C, amini-input
method that allows the generation of high-resolution genome-wide
promoter interactome maps using very low amounts of starting
material. We have validated our method by benchmarking liCHi-C
promoter interactomes against the highest resolution PCHi-C pro-
moter interactomes available to date, demonstrating that the inter-
actomes can be reproducibly interrogated using as low as 50,000 cells
of starting material. As a proof of its potential for discovering insights
about gene transcription regulation, we used liCHi-C to study human
hematopoiesis in vivo and demonstrate its potential for identifying
developmental trajectories and providing mechanistic understanding
of transcriptional dynamics along in vivo cell commitment. Further-
more, we show that liCHi-C can be applied to investigate molecular
links between disease-associated noncoding alterations at distal reg-
ulatory elements with their target genes in rare cell populations that
cannot be characterized using PCHi-C. Finally, to support the broad
applicability of liCHi-C across disease settings, we analyze primary
leukemias and identify patient-specific structural genomic alterations
and cancer-specific topological features potentially implicated in gene
deregulation and disease etiology. All the computational tools to
analyze and integrate liCHi-C data are freely available at https://github.
com/JavierreLab/liCHiC.

Results
Development and optimization of liCHi-C for low-input samples
In order to enable the detection of the promoter interactome using
low-inputmaterial, wemodified the original PCHi-C tominimize losses
during the procedure. Specifically, liCHi-C maximizes library com-
plexity by employing a single tube, modifying reagent concentration
and volume, and eliminating or modifying the sequence of some steps
(Fig. 1A). In addition, it reduces by half the time spent on the library
preparation. For more details, see “Methods” and Supplemen-
tary Fig. 1A.

To systematically evaluate liCHi-C, we generated libraries from
decreasing numbers of human naive B cells (Supplementary Data 1) at
controlled ratios and compared these with the most comprehensive
PCHi-C data available to date from the exact same cell type that used
∼40 million (40M) cells as starting material. Each sample was deep-
sequenced and paired-end reads were mapped and filtered using
HiCUP pipeline22. Visual inspection of normalized liCHi-C and PCHi-C
contact maps showed a high degree of similarity in topological prop-
erties (Supplementary Fig. 1B), and for all experimental conditions (i.e.,
number of starting cells), thepercentageof valid reads (mean = 58.41%;
SD = 5.76%) and the capture efficiency (mean= 61.29%; SD = 9.15%)
were similar between both methods, being 23.58% (SD = 1.59%) of

those contacts in trans (Supplementary Fig. 1C–E and Supplementary
Data 1). Unsurprisingly, given the higher need for amplification, the
PCR duplicates increased with lower amounts of starting cells, ranging
from 86% in 50k cell samples, to 12% of the mapped reads in 40M cell
samples. Interaction matrices were also highly reproducible for both
methods and different amounts of starting material (stratum-adjusted
correlation coefficient (SCC) >0.90 at 100 kb resolution) (Fig. 1B and
Supplementary Fig. 1F). These data suggest that liCHi-C reliably gen-
erates high-quality promoter interactomes, including 31,253 annotated
promoters, and can routinely be performed successfully with an input
as low as 50k cells. Remarkably, liCHi-C was able to achieve a >tenfold
enrichment of readpairs involving promoterswhen comparedwithHi-
C using 800 times less of the starting cells (Supplementary Data 1).

Comparison of liCHi-C with other C-basedmethods for profiling
promoter interactomes
To formally compare the performance of liCHi-C to detect promoter
interactions, we used the CHiCAGO pipeline23 to call for significant
interactions (CHiCAGO score >5). Distance distribution and nature of
interacting fragments were similar across cell number conditions and
methods (Supplementary Fig. 2A–C). Specifically, we found a median
linear distance between promoters and their interacting regions of
265 kb (SD = 30 kb), and 89.04% (SD= 3.72%) of these were promoter-
to-non-promoter interactions (Supplementary Fig. 2B, C and Supple-
mentary Data 1). Principal component analysis (PCA) of CHiCAGO
interaction scores across all biological replicates demonstrated that
patterns of promoter interactions are highly consistent across biolo-
gical replicates and group samples according to the number of input
cells (Fig. 1C). To further explore the limits of liCHi-C library com-
plexity we performed hierarchical clustering based on their CHiCAGO
interaction scores. We observed that promoter interactomes gener-
ated from >100k cells reproduce the ones generated with PCHi-C on
40M cells (Supplementary Fig. 2D). Although promoter interactomes
with less than 100k cells showed a different clustering profile, poten-
tially reflecting the reductionof significant interactions due the limited
library complexity, these retain cell-type specific and invariant topo-
logical features (Fig. 1D and Supplementary Fig 2E–G). Collectively,
these results demonstrate the high reproducibility of liCHi-C to profile
promoter interactomes at a similar resolution as PCHi-C, and under-
score the suitability of the approach to investigate these interactions in
cell populations present at relatively low abundance within a sample.

In addition, we benchmarked liCHi-C against other existing
C-based methods used for detecting the 3D genome topologies of
blood lineage, including Low-C24, Hi-C (using a four-cutter25 or a six-
cutter5 restriction enzyme) and TagHi-C26 (Supplementary Fig 3 and
Supplementary Data 2).We called chromatin loops in these datasets at
a resolution of 5 kb, which is similar to the resolution of our liCHi-C
data (∼4096bp), usingHICCUPS27,Mustache28, andHiCExplorer29 loop
callers with standard parameters (for more details, see “Methods”).
Despite the fact that these methods have provided fundamental
insights about the role and regulation of spatio-temporal genome
architecture on rare cell populations, these methods are very limited
with respect to the detection of promoter interactions at restriction
fragment resolution (Supplementary Fig. 3A, B and Supplementary
Data 2). Collectively, these results demonstrate that liCHi-C outper-
forms other existing C-basedmethods at genome-wide and promoter-
wide detection of potential gene-regulatory interactions at high reso-
lution using low cell numbers.

liCHi-C efficiently captures promoter interactomes across dif-
ferent hematopoietic lineages
To assess the capacity of liCHi-C to provide fundamental insight about
in vivo cell differentiation, we performed high-quality liCHi-C experi-
ments in nine distinct cellular populations from the human hemato-
poietic hierarchy (two biological replicates per cell type; 500k cells per
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replicate), including hematopoietic stem and progenitor cells (HSC),
common myeloid progenitors (CMP), common lymphoid B-cell pro-
genitors (CLP) and six differentiated cell types (Supplementary
Fig. 4A–D and Supplementary Data 1). As a more comprehensive vali-
dationof the liCHi-Cmethod,wefirst focusedon the differentiated cell
types for which high quality PCHi-C data is available. Benchmarking of
liCHi-C data against PCHi-C data demonstrated high reproducibility
between both methods for all profiled cell types (SCC > 0.93) (Fig. 2A
and Supplementary Fig. 4D).Moreover, promoter interactomes clearly
separated cell types independently of the method used (Supplemen-
tary Fig. 4G).

We then analyzed liCHi-C data in detail. Applying CHiCAGO we
identified a median of 134,965 high-confidence promoter interactions
(CHiCAGO score >5) per cell type (Supplementary Fig. 4E, F and

Supplementary Data 1). A PCA of interaction scores demonstrated that
promoter interactomeswere highly reproducible and cell-type specific
(Fig. 2B).While thefirst principal component separated cells according
to their myeloid or lymphoid linage, the second principal component
recapitulated the differentiation potential, allowing altogether to
identify both myeloid and lymphoid differentiation trajectories. To
decipher these specificities in greater depth we applied AutoClass
Bayesian clustering and computed the specificity score of each cluster
in each cell type (Fig. 2C, D). Among the 33 clusters, we observed a
stem and progenitor-specific cluster (C3), lymphoid-specific clusters
(e.g., C10, C13), myeloid-specific clusters (e.g., C25, C27) and cell-type
specific clusters (e.g., C4, C7) that contained genes known to be
involved in cellular functions important for the given cell types
(Fig. 2D–G). These observations were clearly illustrated by the
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promoter interactomes of MYB30, which encodes for a transcription
regulator that plays an essential role in the regulation of lymphoid
priming and early B-cell development (Fig. 2E), ITGA2B31, which
encodes for themegakaryocyte-specific surfacemarker CD41 (Fig. 2F),
and SARS232, a housekeeping gene that encodes for the mitochondrial

seryl-tRNA synthetase (Fig. 2G). Collectively, this data demonstrates
that promoter interactomes are specific to the differentiation trajec-
tories of cell types, and further suggests that the highly dynamic
promoter-centric genome architecture recapitulates the develop-
mental history of hematopoietic cell lineages.
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Promoter interactomes reshape transcriptional trajectories
during in vivo cell commitment
To validate the ability of liCHi-C to uncover mechanistic insights on
transcription regulation, we computationally integrated promoter
interactome data with RNA-seq and ChIP-seq data from matched cell
types (Supplementary Fig. 5A–C and Supplementary Data 3). We dis-
tinguish between two types of promoter-interacting regions (PIRs):
non-promoter PIRs (npPIRs), in which the promoter-interacting region
does not contain any captured gene promoter, and promoter PIRs
(pPIRs), in which the promoter interacting region contains at least a
gene promoter. We found high enrichment of histone modifications
indicative of active enhancers (e.g., H3K27ac, H3K4me1) and noncod-
ing transcription of regulatory regions (e.g., H3K4me3)33 at distal

npPIRs. These enrichments were positively associated with the
expression level of linked genes in a cell-type-specificmanner (Fig. 3A).
Conversely, npPIRs of lowly expressed genes tend to bemore enriched
in repressive histone marks, such as H3K27me3 and H3K9me3, than
more highly expressed ones. These enrichment profiles were highly
consistent with the ones obtained with PCHi-C data despite the sig-
nificant difference in the starting cell number (Supplementary Fig. 5D).
Collectively, these results, exemplified by the transcriptional regula-
tion of the T-cell-specific gene GATA334 (Fig. 3B), the B-cell-specific
gene PAX535 (Supplementary Fig. 5E), and the HSC-specific gene CD3436

(Supplementary Fig. 5F), demonstrate the capacity of liCHi-C to iden-
tify distal regulatory elements for each gene in rare cell types, and
suggest that promoter-associated regions are enriched in distal
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regulatory elements that mirror the cell-type specificity of the inter-
acting gene’s expression.

We then applied chromatin assortativity analysis37, which recog-
nizes the preference of network’s nodes to attach to others that have
similar features, to test the potential of liCHi-C to discover proteins or
chromatin marks mediating genomic contacts within the nucleus
(Fig. 3C and Supplementary Fig. 6A). We observed that genomic
regions enriched in H3K9me3 histone modification, which have been
associated with constitutive heterochromatin and lamina-associated
domains, are highly interconnected and may form topological hubs
that collaborate with epigenetics to promote gene silencing (Fig. 3D
and Supplementary Fig. 6B–D). Collectively, these results illustrate the
power of liCHi-C to suggest, after further functional validation, aspects
on the diversity of factors and mechanisms regulating genome
architecture.

liCHi-C enables the discovery of disease-relevant cell types and
disease-associated genes and pathways
Genetic variation, which frequently affects the noncoding genome,
occurs at various levels ranging from single-nucleotide variants, such
as single-nucleotide polymorphisms (SNPs), to larger structural var-
iants (SVs). To test liCHi-C’s ability to uncover associations between
noncoding SNPs and disease etiology, we integrated summary statis-
tics from39 genome-wide association studies (GWAS), including seven
autoimmune diseases, eight myeloid cell traits, four lymphoid cell
traits, nine blood malignancies and eleven traits non-related to the
hematopoietic hierarchy (Supplementary Data 4). Using Blockshifter
analysis we showed that PIRs called by liCHi-C in a cell type, inde-
pendently of whether these are shared or not across cell types, are
enriched for genetic variants associatedwith traits or diseases relevant
to the cell type (Fig. 4A, B). For instance, variants associated with the
final maturation of myeloid cells tend to be more enriched at PIRs in

mature myeloid cells. Interestingly, similar enrichment profiles were
obtained by liCHi-C and PCHi-C despite the dramatic reduction in
starting material (Supplementary Fig. 7A). These data demonstrate
that liCHi-C can trace the ontogeny of activity of the noncoding gen-
ome in association with pathogenic traits and enables the identifica-
tion of cell types presumably implicated in disease etiology.

We next used the Bayesian prioritization strategy COGS to rank
putative disease-associated genes based on GWAS and liCHi-C data.
Excluding SNPs at promoter or coding regions, we assigned 24,504
distal noncoding SNPs to potential target genes, which were located
at a median genomic distance of 187 kb (Fig. 5A). Remarkably, only
19.58% of these were linked to the nearest gene and 38.16% poten-
tially controlled more than one gene. These results highlight the
importance of being able to generate data on long-range interac-
tions between promoters and regulatory elements to avoid mis-
leading associations based on proximity in the context of gene
regulation and disease.

Specifically, using this computational framework on liCHi-C data
we prioritized 6230 candidate genes (with a median of 134 genes per
trait/disease at gene-level score >0.5) and 56 candidate gene pathways
according to the Reactome Pathway Database38 (Fig. 5B). These genes
were highly similar to those prioritized by PCHi-C using 40M cells
(Supplementary Fig. 7B, C). For instance, our data suggested that
deregulation of TLE3, a gene that encodes for a co-repressor protein
that negatively regulates canonical WNT signaling39, could confer
susceptibility to lymphocytic leukemia (Fig. 5C). Moreover, it also
pointed out “activation of BH3-only proteins” pathway, which is
involved in the canonical mitochondrial apoptosis40, as being poten-
tially implicated in this type of cancer (Fig. 5B). These and many other
examples of expected and unexpected genes and pathways potentially
deregulated by noncoding SNPs uncovered in our datasets, warrant
follow-up studies to characterize their functional relevance in disease
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phenotypes. Nonetheless, our results demonstrate the power of liCHi-
C to identify potential disease-causative genes and pathways.

liCHi-C can be used to simultaneously diagnose and discover
translocations, copy number variations (CNVs) and topological
alterations in tumoral samples
After demonstrating the capacity of liCHi-C to prioritize noncoding
SNPs with potential functional relevance in clinical settings, we sought
to investigate SVs affecting larger genomic regions, including trans-
locations and CNVs.Most of the ligation events detected by proximity-
ligation methods, such as liCHi-C, occur between sequences in proxi-
mity along the linear genome and the frequency of these events
decreases logarithmically with the genomic distance that separates
them.However, a translocation alters the linear genome and artificially

increases the number of ligation events between the juxtaposed
regions. Based on this, we reasoned that liCHi-C could detect genome-
wide chromosomal translocations, identify the breakpoints and
uncover alterations in gene promoter interactions that could shed
light on the pathogenic role of SVs. To test this hypothesis, we gen-
erated high-quality liCHi-C libraries using primary blasts from two
pediatric B-cell acute lymphoblastic leukemia (B-ALL) samples (500k
cells per library) (Supplementary Data 1 and Supplementary Fig. 8B–E)
previously analyzed by routine clinical assays (Fig. 6A and Supple-
mentary Fig. 8A). According to FISH and karyotyping analysis, B-ALL
sample 1 carried a balanced translocation between chromosomes 8
and 14, which appeared as “butterfly” blocks of interactions between
the translocated chromosomes on the liCHi-C interaction matrix
(Fig. 6A, top). A closer examination of the interaction directionalities
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identified the restriction fragments affected by the breakpoints and
allowed the reconstruction of the resulting chromosome where the
promoter of MYC becomes rearranged next to the “constant” gene
cluster of the IgH locus (Fig. 6B). Through this focused analysis of
promoter interactions, our data suggested that MYC expression may
be simultaneously controlled by the “MYC blood enhancer cluster”
(BENC)41, located 2Mb downstream, and the IgH-specific enhancer 3′-
regulatory region (3′-RR)42, rearranged 300 kb upstream (Fig. 6C).

B-ALL sample 2 carried an unbalanced translocation between the same
chromosomes that generated single blocks of contacts on the nor-
malized liCHi-C interaction matrix (Fig. 6A, bottom). Consequently,
the CEBPD gene43 becomes juxtaposed to the IgH locus, which
potentially alters its regulatory landscape (Supplementary Fig. 8F, G).
Collectively, these results demonstrate liCHi-C’s capacity to generate
high-quality chromatin conformationmaps and regulatory landscapes
directly from primary patient tissue samples to detect any type of
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translocation and surmise the pathogenic effects at a genome-
wide scale.

In addition to chromosome rearrangements, we tested whether
liCHi-C can be used to detect CNVs. Gains or losses of genetic
material imply an increase or decrease in the ligation events within
the altered regions, respectively. Therefore, we reasoned that CNVs
should appear when comparing liCHi-C normalized interaction
matrices of cells carrying the CNV against control cells. To test this
hypothesis, we focused on the B-ALL sample 2 that, according to the
karyotyping analysis, carried a trisomy of chromosome 21 and a
partial trisomy affecting the translocated region of the q arm of
chromosome 8. As shown in Fig. 6A bottom, both trisomies were
identified, demonstrating that liCHi-C can be used for genome-wide
detection of CNVs and to scan breakpoints from primary patient
tissues without the need for a reference.

Finally, we tested the ability of liCHi-C to identify disease-specific
regulatory 3D chromatin landscapes that may be implicated in disease
etiology. To do so, we applied Autoclass Bayesian clustering of liCHi-C
significant interactions (CHiCAGO score >5) called either on B-ALL
samples or on the postulated healthy cells of origin of these hemato-
logical malignancies (i.e., HSC, CLP, and naive B cells) (Fig. 6D). Spe-
cificity score analysis of each cluster in each cell type identified
promoter interactions specifically acquired (C5-9) or lost (C10-19) in
one or both B-ALL samples (Fig. 6E), which included key transcription
factors involved in B-cell differentiation and function (e.g., PAX544,
ARID5B45), well-known tumor suppressor genes (e.g., BTG144, IKZF144)
and protooncogenes (e.g., MYC46). For instance, several HOXA genes
have been associated with normal hematopoiesis and blood
malignancies47,48. According to liCHi-C data, these genes lose con-
nectivity with their enhancers, which could link their transcriptional
deregulation with malignant transformation (Fig. 6F). Collectively,
these results support the broad applicability of liCHi-C to uncover
factors and mechanisms involved in disease etiology through simul-
taneously identifying disease-specific promoter-centered genome
topologies and detecting translocations, CNVs, breakpoints and their
effects on transcriptional deregulation.

liCHi-C can be customized to improve its resolution
liCHi-C resolution is determined by the restriction enzymeused for the
library generation and defines the range of significant interactions to
be detected. To demonstrate the adaptability of our method to
interrogate promoter interactions at different resolutions, we used
primary blasts from a third B-ALL sample to generate two high-quality
liCHi-C libraries using a six-cutter restriction enzyme (HindIII) and a
four-cutter restriction enzyme (MboI) respectively (∼250k cells per
library) (Supplementary Data 1 and Supplementary Fig. 8H–K). Patient
3 carried a monosomy of chromosome 7, which was clearly identified
as a reduction of reads on the contact matrix generated by both
restriction enzymes (Fig. 7A, B).

liCHi-C libraries generated with MboI detected 1.78 times more
significant interactions (Supplementary Fig. 8J), which were

characterized by having half of the median linear distance between
promoters and their interacting regions (Fig. 7C). Indeed, although the
shortest significant interaction was similar for both libraries (2574 bp
for HindIII and 1939 for MboI), the highest frequency of interactions
was foundat a distance2.15 times larger forHindIII restriction (Fig. 7C).
These data, illustrated by the promoter interactome of the DDX41
(Fig. 7D), a DEAD box RNA helicase associated with B-ALL and other
blood malignancies49, demonstrates that the use of a four-cutter
restriction enzyme increases the power to detect short-range interac-
tions and compromises the detection of the long-range ones. Taken
together, our results demonstrate liCHi-C capability to provide fun-
damental and clinical insights about gene-regulatory interactions at
different levels of resolution.

Discussion
High-throughput chromatin conformation capture methodologies
such as Hi-C50 have revolutionized our understanding of long-range
gene transcriptional control. However, many aspects of its dynamics
along in vivo differentiation and stimulation, as well as its alteration in
disease, remain largely unexplored due to the lack of genome-wide
methodologies to study the promoter-centric genome architecture at
high resolution with low-input material. Whereas single-cell51,52 or low-
input24,26,53,54 approaches exist, these generate sparse contact maps
with low resolution that do not allow the study of specific chromatin
interactomes.More recently, HiChIP55 andHiCuT56methods have been
developed to study long-range chromatin interactions mediated by a
specific protein. Although both technologies are compatible with low-
input cell numbers, these rely on the availability of high-quality anti-
bodies that recognize the target protein. Besides, these methods
cannot be used to compare chromatin interactomes between condi-
tions in which the binding of the target protein is different, which is
very common due to the inherent dynamic nature of chromatin.

To overcome these limitations,we have developed liCHi-C, amini-
input cost-effective method to robustly map and compare promoter
interactomes at high resolution in rare cell populations previously
unmeasurable. Up to 12 liCHi-C libraries can be generated in 6 days
with a total cost of 1500 euros per library (including sequencing cost).
Unlike methods that depend on enrichment based on the use of
antibodies55–58, liCHi-C only relies on biotinylated RNAs designed to
hybridize against the annotated promoters to ultimately enrich for
promoter interactions from a Hi-C library. Thus, it is able to identify
long-range contacts of both active and inactive promoters and
robustly compare interactomes between any condition. In addition,
this capture strategy provides high versatility since any customized
capture system from a wide range of coverage can be designed
according to the interactome to be studied. For instance, liCHi-C can
be easily coupled with capture systems designed to study the inter-
actome of a collection of noncoding alterations or the enhancer
interactome. Indeed, it can even be adapted to the study of the
interactome of just a few loci as other 3C-based capture methods
do59,60.

Fig. 6 | liCHi-C simultaneously detects translocations, copy number variations,
and topological alterations in tumor samples. A Detection of structural variants
using liCHi-C data for B-cell precursor acute lymphoblastic leukemia (B-ALL) 1 (top)
and B-ALL 2 (bottom). Gray matrices on the left represent the log2 ratio between
B-ALL andCLPcontactmatrices at 1Mb resolution across the genome. Black arrows
indicate the location of copy number gains. On the top right: matrices at a 250 kb
resolution of the chromosomes involved in the translocations. On themiddle right:
zoom-ins of the breakpoint regions and schematic representation of the translo-
cated chromosomes and the location of the FISHprobes. On the bottom right: FISH
images displaying the translocation. B Top: Schematic representation of MYC and
IgHgenes loci. Bottom: interaction landscapeof chromosomes 8 and 14 in common
B-cell lymphoid progenitors (CLP) and B-ALL 1 sample. Interactions within and
between chromosomes are represented over and below the chromosomes,

respectively. C Reconstruction of MYC promoter interaction landscape on the
derivative chromosome in B-ALL 1. Green shades depict the MYC promoter and
BENC enhancer from chromosome 8, and the yellow shadow the 3’ RR enhancer
from chromosome 14. D Heatmap of asinh-transformed CHiCAGO score of sig-
nificant interactions in at least one cell type clustered using Autoclass algorithm.
HSC hematopoietic stem cell, nB naive B cell. EHeatmap of cluster specificity score
of each Autoclass cluster. Clusters containing interactions specific to B-ALL or
interactions specifically lost in B-ALL are boxed. F HOXA gene promoter-centered
interaction landscape (arcs) in CLP, B-ALL 1, and B-ALL 2 samples. Green shade
depicts the HOXA gene cluster, while yellow shades depict putative enhancer
regions for that gene in any of these cell types. Arrows symbolize gene placement
and orientation along the genomic window.
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liCHi-C significantly broadens the capacity for studying organism
developments, in vivo cell commitment, and cellular response to a
wide range of external stimuli. As a proof of concept, we have used
liCHi-C to study human hematopoietic hierarchy. Our data demon-
strates that the promoter interactome can identify the differentiation
trajectory. In addition, this suggests a massive dynamic rewiring of the
three-dimensional epigenetic landscape parallel to transcriptional
decisions during in vivo cell commitment.

liCHi-C enables the study of primary samples, thus addressing a
key limitation of PCHi-C to apply this type of analysis to clinical
samples. This method is especially relevant as most inherited and
acquired mutations and epimutations for common human diseases,
which largely remain unexplored, are all highly enriched at reg-
ulatory elements and cannot be readily modeled in in vitro systems.
Genetic and epigenetic alterations at distal regulatory elements
have the potential to alter the regulatory properties and ultimately
lead to quantitative changes in the expression of distal target genes
with pathological outcomes. As distal regulatory elements and their

topological properties are highly dynamic, cell-type specific, and
state-dependent, it is critical to identify the relevant human cell
types for each disease and profile their full repertoire of regulatory
elements and target genes. Here, we demonstrate that liCHi-C is able
to fulfill this need. Focused on GWAS data, we have demonstrated
that liCHi-C identifies unexpected etiological associations and
exposes disease-associated genes and pathways. Although we have
mostly focused on inherited risk factors, our computational frame-
work can be adapted to study acquired mutations and epimutations
at any type of distal regulatory elements (e.g., silencer or primed
enhancer), since liCHi-C identifies long-range contacts promoters
independently of their activity.

How chromatin organization contributes to disease pathogenesis
remains largely unexplored. As we have shown, liCHi-C has the
potential to contribute to filling this gap of knowledge. Taking malig-
nant neoplasms as amodel, we have shown that liCHi-C can be used to
discover disease-specific topological alterations in clinical samples and
generate hypotheses about genetic factors underlying disease
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mechanisms. Simultaneously, liCHi-C can uncover SVs at a genomic
scale, resolve the positions of their breakpoints and predict their
functional effects, including the formation of regulatory landscapes, in
an agnostic manner. Although we focused on the analysis of translo-
cations and duplications associated with cancer, liCHi-C is also able to
identify and characterize other types of SVs, such as inversions and
deletions in any disease context. In addition, the liCHi-Cmethod holds
high potential for disease diagnosis equivalent to other chromosome
conformation capture technologies61,62, since SVs are hallmarks of
mental retardation, infertility, developmental disorders and cancer.

Despite the broad applicability of our method, there are still
several factors to take into consideration. One inherent limitation of
liCHi-C is that its resolution is determined by the restriction enzyme
used for the library generation. However, as we have demonstrated, it
can be increased by replacing the enzyme by another one with greater
resolution or exchange it for micrococcal nuclease. In addition, the
interpretation of the biological meaning of noncoding alterations
purely based on distal chromatin interactions can be challenging.
Nevertheless, an integrative analysis of liCHi-C data, gene expression
and chromatin statesmight be indicative of causal relationships,which
should be validatedwith functional assays. Finally, the identification of
exact genomic coordinates of the SVbreakpoints is not possible unless
these map near restriction sites. However, long-range sequencing
approaches coupled with liCHi-C can allow to map the SVs at the
nucleotide resolution. Besides, this combinatorial approach increases
the mapability efficiency of the chromatin contacts at repetitive
sequences, which can be target of SVs and other mutations and epi-
mutations. Despite these considerations, our data proves that it is
feasible to generate high-quality genome-wide promoter interaction
maps from lowamountsofprimarypatientmaterial.We anticipate that
the robustness and the inherent flexibility for customization make
liCHi-C an attractive option that will allow the analysis of spatial gen-
ome architecture within reach of personalized clinical diagnostics and
development biology.

Methods
Cell isolation
Naive B cells (nB), naive CD4+ cells (nCD4), naive CD8+ cells (nCD8),
and monocytes (Mon) were obtained from peripheral blood mono-
nuclear cells (PBMCs) from venous blood following standard BLUE-
PRINT protocols. Specifically, nB, nCD4 and nCD8 were isolated using
STEMCELL Technologies Enrichment kits (cat. #19254, #19309, and
#19158, respectively). Mon were isolated by Miltenyi Biotec kit (cat.
#130-091-765). CD34 + cells isolated from cord blood mononuclear
cells were selectedwith the humanCD34Miltenyi Biotec kit (cat. #130-
046-702) and in vitro differentiated into Megakaryocytes (Mk) and
Erythroblasts (Ery). Specifically, thrombopoietin and IL1β for 10 days
and erythropoietin, SCF and IL3 for 14 days were used to differentiate
Mk and Ery, respectively. Hematopoietic stem and progenitor cells
(HSC; CD34+, CD38−) common myeloid progenitors (CMP; CD34+,
CD38+, CD33+) and common lymphoid B-cell progenitors (CLP; CD34+,
CD38+, CD19+)were purifiedbyMiltenyi BiotecCD34-positive selection
kit (cat. #130-046-703) and fluorescence-activated cell sorting (FACS)
from four donations (two per biological replicate) of 15-to 22-week-old
human fetal liver and fetal bone marrow as previously described63.
Briefly, after CD34+ selection, positive cells were stained for flow
cytometry with the following fluorophore-conjugated monoclonal
antibodies, all from BD Biosciences, and used at the manufacturer’s
recommended concentration: CD34 PECy7 (cat. #348811; 1:20 dilu-
tion), CD38 FITC (cat. #555459; 1:5 dilution), CD19 BV421 (cat.
#562440; 1:20dilution) andCD33APC (cat. #551378; 1:5 dilution). FACS
was performed using a BD FACSAria Fusion with BD FACSDiva
8.0.2 software. For more detail about sorting strategies, see Supple-
mentary Fig. 4A. B-ALL samples were isolated from bone marrow of
pediatric patients after CD19+ selection using FACS sorter. All samples

were obtained from consent donations of volunteers after approval by
the Ethics committee.

Fixation and cell quantification
Cells were quantified, resuspended in 1ml of RPMI 1640 culture
medium containing 10% FBS and 2% of methanol-free formaldehyde
(Thermo Fisher cat. #28908) and incubated in a rocker for 10min at
room temperature. Formaldehydewasquenchedwith glycine to a final
concentration of 0.125M. Then, cells were washed with cold 1× PBS.
Specific cell numbers were sorted into low-retention 1.5-ml tubes (BD
FACSJazz sorter, 1.0 Drop Pure sorting mode), pelleted, flash-frozen in
dry ice and stored at −80 °C.

liCHi-C method
During the whole protocol, low-retention tips and tubes were used to
minimize cell loss. Pelleted cells were softly resuspended in 500 µl ice-
cold lysis buffer (10mM Tris-HCl pH 8.0, 10mMNaCl, 0.2% IGEPAL CA-
630, 1× cOmplete EDTA-free protease inhibitor cocktail (Merck cat.
#11873580001)) and incubated 30min on ice to extract the nuclei. Soft
inversions of the tube were performed during the incubation every
5min. Nuclei were centrifuged (1000×g and 4 °C for 10min) and 450 µl
of supernatantwasdiscarded (50 µl of supernatantwas left in the tube to
avoid cell losses). The cell pelletwas resuspended in 500 µl ice-cold 1.25×
NEB2 buffer (New England Biolabs cat. #B7002S). After centrifugation
(1000×g and 4 °C for 10min), 500 µl of supernatant was removed.

Afterward, 129 µl of 1.25× NE Buffer 2 were added to the low-
retention tube to obtain a final volumeof 179 µl. Then, 5.5 µl of 10% SDS
(AppliChem cat. #A0676,0250) were laid on the wall of the tube and
mixed by inversion. After incubation at 37 °C and 950 rpm for 30min,
37.5 µl 10% Triton X-100 (AppliChem cat. #A4975,0100) were laid on
the wall of the tube, mixed by inversion and incubated at 37 °C and
950 rpm for 30min. Chromatin within the nuclei was overnight
digested at 37 °C and 950 rpm after adding 7.5 µl of HindIII restriction
enzymeat 100U/µl or 37.5 µl ofMboI restriction enzyme at 25U/µl (New
England Biolabs cat. #R0104T or #R0147M). The following day, an
extra digestion during one more hour was performed after adding
2.5 µl of the HindII enzyme or 12.5 µl of the MboI enzyme.

After digestion, MboI enzyme was washed with NEBuffer 2 by
centrifuging the sample and removing the supernatant to avoid pos-
sible re-digestion of ligated fragments afterward. Cohesive restriction
fragment ends were filled in during 75min at 37 °C. To do so, 30 µl of
master mix composed by 5μl of 5U/μl Klenow polymerase (New Eng-
land Biolabs cat. #M0210L), 0.75 µl of each 10mM dCTP, dGTP, and
dTTP, and 18.75 µl of 0.4mM biotin-14-dATP (Invitrogen #19524-016)
were added.

In-nucleus ligation of DNA fragments was carried out during 4 h at
16 °C after adding 12.5 µl of 1U/μl T4 DNA ligase (Thermo Fisher cat.
#15224025), 50 µl of 10× ligation buffer (NEB #B0202S), 5 μl of 10mg/
ml BSA (NEB # B9001S) and 170.5ml of water. Afterward, DNA ligation
products were decrosslinked by adding 30 µl of Proteinase K 10mg/ml
(Merck cat. #3115879001) and incubating overnight at 65 °C. The fol-
lowing day, an extra decrosslink during two more hours was per-
formed after adding 15 µl of the Proteinase K enzyme.

To purify the decrosslinked DNA ligation products, a single
phenol–chloroform–isoamyl alcohol (25:24:1 v/v) purification was
carried out followed by ethanol precipitation for 1 h at −80 °C in the
presence of 30 µg Glycoblue (Thermo Fisher cat. #AM9515) as a
coprecipitant. DNA ligation products were resuspended in 130 µl of
nuclease-free water and concentration was assessed by fluorimetric
quantification using the Qubit dsDNAHS Assay Kit (Thermo Fisher cat.
#Q32851).

Optional 3C controls assessing the detection of cell-type invariant
interactions in the HindIII liCHi-C libraries can be performed by
amplifying 50–100 ng of the DNA with 37 cycles of PCR amplification
(see Supplementary Data 5 for primer information) and running the
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reactions in a 1.6% agarose gel. Correct fill-in and ligation can also be
tested by reamplifying 2.5 µl of PCR products five more cycles, differ-
entially digesting the product with either HindIII, NheI (Thermo Fisher
cat. #ER0975), both enzymes or none and running the product on a
1.6% agarose gel.

Biotin removal of the non-ligated ends was skipped. DNA ligation
products were sonicated using Covaris M220 focused-ultrasonicator
(20% duty factor, 50peak incident power, 200 cycles per burst, 65 s) in
130 µl tubes (Covaris cat. #520077). After shearing, DNA ends were
repaired by adding 6.5 µl of T4 DNA polymerase 3U/µl (New England
Biolabs cat. #M0203L), 6.5 µl of T4 polynucleotide kinase 10U/µl (New
England Biolabs cat. #M0201L) 1.3 µl of Klenowpolymerase 5U/µl (New
England Biolabs cat. #M0210L), 18 µl of dNTP mix 2.5mM each and
18 µl of 10× ligation buffer (New England Biolabs cat. #B0202S) and
incubating for 30min at 20 °C.

Biotinylated informative DNA ligation products were pulled down
using DynabeadsMyOne streptavidin C1 paramagnetic beads (Thermo
Fisher cat. #65001). After thorough washing of the ligation products-
beads complex and having the sample in 35.7 µl of volume, blunt DNA
fragments on the beads were adenine-tailed by adding 7 µl of Klenow
3’→5’ exo- polymerase 5U/µl (New England Biolabs cat. #M0212L), 2.3 µl
of dATP 10mM and 5 µl NEB2 of 10x NEBuffer 2 and incubating the
mixture 30min at 37 °C and a further 10min at 65 °C to inactivate the
enzyme.

After thorough washing of the ligation products-beads complex
and having the sample in 50 µl of 1× ligation buffer, PE Illumina adap-
ters (Supplementary Data 5) were ligated to the adenine-tailed DNA
fragments by adding 1 µl of T4 DNA ligase 2000U/µl (New England
Biolabs cat. #M0202T) and 4 µl of preannealed adapter mix 15 µM and
incubating the mixture 2 h at room temperature.

The bead-bound ligation products were amplified 8–13 cycles by
PCR (Supplementary Data 5 for cycle recommendations according to
starting cell number) using Phusion high-fidelity PCR master mix with
HF buffer (New England Biolabs cat. #M0531L).

After recovering the amplified library from the supernatant, size
distributionwas tailored to 300–800bpbydouble-sided size selection
and purified using CleanNGS SPRI beads (0.4–1 volumes; CleanNA cat.
#CNGS-0050). DNA concentration was quantified on an Agilent
Tapestation platformusing high sensitivity D1000ScreenTape system,
and samples were stored at −20 °C.

Enrichment of promoter-containing ligation products was per-
formed using SureSelectXT Target Enrichment System for the Illumina
Platform (Agilent Technologies) as instructed by the manufacturer, and
the library was amplified four cycles by PCR using Phusion high-fidelity
PCR master mix with HF buffer (New England Biolabs cat. #M0531L).
Finally, the end product was purified using CleanNGS SPRI beads (0.9
volumes; CleanNA cat. #CNGS-0050) and paired-end sequenced.

Sequencing
B-ALL liCHi-C libraries were sequenced by Macrogen Inc using HiseqX
150 + 150PE platform. The rest of liCHi-C libraries were sequenced by
BGI Genomics using DNBseq 100 + 100PE platform.

B-ALL cytogenetic and FISH analysis
Cytogenetic analyses of B-ALL samples were carried out on G-banded
chromosomes obtained from 24-h unstimulated culture. FISH analyses
were performed on fixed cell suspensions of the bone marrow using
the LSI MYC probe (Metasystems, XL MYC BA) and the LSI IGH probe
(Metasystems, XL IGH BA), respectively. Between 200 and 400 inter-
phase nuclei were scored.

liCHi-C processing
Paired-end reads were processed using HiCUP22 (0.8.2). First, the
genome was computationally digested using the target sequence of
the restriction enzyme. Then, the different steps of the HiCUP pipeline

were applied to map the reads to the human genome (GRCh38.p13),
filter out all the experimental artifacts and remove the duplicated
reads and retain only the valid unique paired reads. To assess the
capture efficiency, we filtered out those paired reads forwhich any end
overlaps with a captured restriction fragment, retaining only the
unique captured valid reads for further analysis. Library statistics for all
samples are presented in Supplementary Data 1.

liCHi-C interaction calling
Interaction confidence scores were computed using the CHiCAGO R
package23,64 (1.14.0). In summary, this pipeline implements a statistical
model with two components (biological and technical background),
together with normalization andmultiple testing methods for capture
Hi-C data. CHiCAGO analysis was performed in merged samples to
increase the sensitivity, after assessing for reproducibility between
biological replicates using: (i) the stratum-adjusted correlation coeffi-
cient according to ref. 65, averaged over chromosomes, (ii) principal
component analysis, and (iii) hierarchical clustering. The reproduci-
bility score was also used to compare PCHi-C and liCHi-C libraries of
the same cell types. Significant interactions with a CHiCAGO score ≥5
were considered as high-confidence interactions. Interaction statistics
for all samples are presented in SupplementaryData 1. liCHi-C datasets
are available in EGA under the accession number EGAS00001006305.

Loop calling using Hi-C, low-C, and TagHi-C
Loop calling was performed on Hi-C, TagHi-C, and Low-C data.
Accession information is presented in Supplementary Data 2. Datasets
were processed with HiCUP22 (0.8.2) as detailed above, using the
human (GRCh38.p13) and mouse reference genomes (GRCm39). Loop
calling was performed with three different methods: HICCUPS27

(1.22.01), Mustache28 (1.2.7), and HiCExplorer29 (3.7.2). All loop callers
were used with default parameters on Knight–Ruiz normalized matri-
ces at 5 kb resolution and a maximum loop distance of 8Mb. Specific
parameters for HICCUPS were: -cpu-ignore_sparsity; for Mustache, the
P value threshold was set to 0.05.

Clustering of promoter interactions
Interactions were clustered using the Autoclass (3.3.6) algorithm and
for each cluster a specificity score was computed using the asinh-
transformed CHiCAGO scores5. Clustering of cell types was performed
using a hierarchical method with average linkage based on Euclidean
distances, and principal component analysis was performed using the
prcomp function in R. For interaction data handling we used an in-
house R package which allows us to compute distance distributions,
filter interactions by the presence of histones marks, or generate vir-
tual 4C of specific genes.

ChIP-seq processing
Paired-end reads were processed following ENCODE standards. Reads
were trimmed using Trim Galore (0.6.5) to remove sequencing adap-
ters, and then mapped using bowtie2 (2.3.2) to the reference genome
(GRCh38.p13) with -very sensitive parameter. We filtered out low-
quality reads, reads overlapping the ENCODE blacklist and duplicated
reads. Peak calling was performed using macs2 (2.2.7.1) in broad and
narrowmode depending on the histonemark using an input sample as
control, with default parameters. Bigwig files were generated using the
function bamCoverage fromdeepTools (3.2.1) and scaled based on the
background normalization of the samples before merging the biolo-
gical replicates together for visualization purposes66. All ChIP-seq data
analyzed in this article are presented in Supplementary Data 3, which
also includes the accession information.

Histones mark enrichment at PIRs
Enrichment of the different histones mark ChIP-seq in both pro-
moters and npPIRs was performed using a permutation test
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implemented in RegioneReloaded (1.0.0) (https://github.com/
RMalinverni/regioneReloaded) with 5000 randomizations using
the randomizeRegions option. Promoter interactions were classified
based on the RPKM expression quartiles of their genes, and the
promoters and npPIRs analyzed separately, generating four groups
of either promoters or npPIRs from lower expression to higher
expression.

Chromatin assortativity
Chromatin assortativity was computed for the promoter—pPIR and
promoter—npPIR subnetworks separately using ChAseR (0.0.0.9) R
package (https://bitbucket.org/eraineri/chaser)37. We validated our
results against a set of 1000 randomizations preserving the genomic
distances between nodes and the chromosomes distribution of inter-
actions. The abundance of each histone mark on the nodes of the
networks was also computed.

Gene ontology and pathways enrichment analysis
Gene ontology (GO) enrichment analysis was performed using clus-
terProfiler (4.2.2) R package for the three ontologies: molecular func-
tions, biological processes and cellular components. The pathway
analysiswasdoneusingReactomePA67 (1.38.0).Weused theprioritized
protein-coding genes by COGS (gene score > = 0.5) to compute
enrichment in genes in Reactome pathways, adjusting P values by false
discovery rate. Inboth analyses,weused as universe all the genes in the
capture design.

Data visualization
To visualize the contact matrices, the bam files, containing unique
captured valid reads, were transformed into pair files using bam2pairs
(0.3.7) (https://github.com/4dn-dcic/pairix). Then they were con-
verted into matrices in cool format with a resolution of 1Mb, 250kb
and 100 kbusing cooler68 (0.8.11). The visualizationof thematriceswas
done using HiCExplorer69 (3.7.2). For the visualization of significant
interactions generated by liCHi-C we used the WashU Epigenome
Browser70 (46.2) and karyoploteR R package71 (1.22.0).

GWAS summary statistics and imputation
GWAS summary data was obtained from theNHGRI-EBI GWASCatalog72

and from the UK Biobank - Neale Lab (UK Biobank, n.d.; http://www.
nealelab.is/uk-biobank). Accession information is included in Supple-
mentary Data 4. Those datasets that were not in GRCh38 coordinates
were converted to it using liftOver. To avoid spuriously strong associa-
tion statistics, we filtered out SNPs with P value <5 × 10−8 for which there
were no SNPs in LD (r2 > 0.6 using 1000 genomes EUR cohort as a
reference genotype set73 or within 50 kb with P value < 105. To increase
the power of the GWAS we applied the Poor Man’s Imputation to the
summary statistics described above using as reference genotype set the
1000 Genomes EUR cohort5. We used the GRCh38 HapMap Phase II
genetic map lifted from GRCh37 coordinates74 to define regions with
1 cM recombination frequency to be used for the imputation. The MHC
region (GRCh38:6:25–35Mb) was excluded from the analysis. Man-
hattan plots were visualized using the qqman package75 (0.1.8).

GWAS enrichment at PIRs
Enrichment of SNPs in PIRs was performed using Blockshifter which
considers the correlation between GWAS and PIRs5. Blockshifter com-
putes a z-score using a competitive test for each trait and cell-type set.

liCHi-C GWAS prioritizing genes
Prioritization of relevant genes for each GWAS trait and cell type was
performed using the COGS algorithm5. Briefly, this method considers
linkage disequilibrium to estimate the posterior probability of each
SNP being casual for each trait. Then, these SNPs were used to com-
pute a gene score for all the genes involved in liCHi-C significant

interactions in at least one cell type. This gene score is composed of
three components: coding SNPs annotated by VEP76 (104); SNPs loca-
ted in promoter regions; and SNPs overlapping Other-Ends.

SVs analysis
Translocations of B-ALL samples were identified using PLIER61 (0.21).
Briefly, it compares the genome-wide interactions of a region against a
set of random permutations computing a z-score. To detect CNVs, we
applied Control-FREEC77 (11.5), which uses a sliding window approach
to calculate read count and normalize it using a control sample. Spe-
cifically, we used naive B samples as control and the following specific
parameters: window size = 200,000; ploidy = 2; breakPoint
Threshold = 1.3; breakPointType = 4; forceGCcontentNormalization
= 2; minCNAlength = 3; mateOrientation =0; and the hg38mappability
track. Visual inspection of both translocations and CNVs was per-
formed by computing the ratio between the contactmatrices of B-ALL
and CLP samples.

Institutional review board statement
The study design and conduct complied with all relevant regulations
regarding the use of human study participants and approved by the
Institutional Review Board of the Clinical Research Ethics Committee
of University Hospital Germans Trias i Pujol (REF.CEI: PI-18-205). The
study was conducted in accordance to the criteria set by the Declara-
tion of Helsinki.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. All raw and processed liCHi-C datasets
generated in this study have been deposited in EGAunder the accession
number EGAS00001006305. These datasets will be shared with con-
trolled access in accordance with the ethical consent signed by the
volunteers and it is limited to not-for-profit organizations after pro-
viding documentation of local IRB/ERB approval. Data Access Com-
mittee, led by Biola M. Javierre (bmjavierre@carrerasresearch.org), will
determine access permissions in a timeframe of fifteen workdays.
Reference genomes were obtained from Ensembl: GRCh38.p13 (release
104) and GRCm39 (release 106). The 1000 Genomes variants data was
downloaded from the International Genome Sample Resource (data
collection: 1000 Genomes on GRCh38), and the GRCh38 genetic map
was obtained from http://csg.sph.umich.edu/locuszoom/download/
recomb-hg38.tar.gz. PCHi-C data analyzed in the study is available at
EGA (accession number: EGAS00001001911). Data used for the bench-
marking of C-basedmethods was publicly available under the following
accession codes: E-MTAB-5875 at ArrayExpress for Low-C data;
EGAS00001004763 and EGAS00001001911 at EGA for Hi-C data;
GSE161082 and GSE152918 at Gene Expression Omnibus (GEO) for
TagHi-C data. Data of publicly available omics including ChIP-seq and
RNA-seq was obtained from BLUEPRINT (http://dcc.blueprint-
epigenome.eu) and ROADMAP (http://www.roadmapepigenomics.
org); and GWAS Summary Statistics were downloaded from the
NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas) and from the
UK Biobank—Neale Lab (http://www.nealelab.is/uk-biobank). More
details about access information to publicly available data used on the
study (i.e., RNA-seq, ChIP-seq, GWAS, and 3C-based methods data) are
included in Supplementary Data 2–4.

Code availability
All the analyses done in the present article are accessible in the GitHub
repository https://github.com/JavierreLab/liCHiC, which is linked to
the https://doi.org/10.5281/zenodo.7351026.
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