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Geometrical congruence, greedy navigability
and myopic transfer in complex networks
and brain connectomes

Carlo Vittorio Cannistraci 1,2,3,4,5,6 & Alessandro Muscoloni 1,4

We introduce in network geometry a measure of geometrical congruence (GC)
to evaluate the extent a network topology follows an underlying geometry.
This requires finding all topological shortest-paths for each nonadjacent node
pair in the network: a nontrivial computational task. Hence, we propose an
optimized algorithm that reduces 26 years of worst scenario computation to
one week parallel computing. Analysing artificial networks with patent geo-
metry we discover that, different from current belief, hyperbolic networks do
not show in general highGC and efficient greedy navigability (GN)with respect
to the geodesics. The myopic transfer which rules GN works best only when
degree-distribution power-law exponent is strictly close to two. Analysing real
networks—whose geometry is often latent—GC overcomes GN as marker to
differentiate phenotypical states in macroscale structural-MRI brain con-
nectomes, suggesting connectomes might have a latent neurobiological geo-
metry accounting for more information than the visible tridimensional
Euclidean.

“There is enough treachery, hatred violence absurdity in the average
human being to supply any given army on any given day […]“.
Although feelings such as treachery and hatred do not complywith the
scope of this study, in the incipit of the poem “The Genious of the
crowd”, Charles Bukowski offers an impressive lecture on how to
leverage the average for analyzing collective behaviors in a complex
disordered system such as our society, and the risks to deviate from
this average by following an incongruent path of creative and indi-
pendent thinking, which might require significantly larger time. Like-
wise, in the footsteps of Bukowski’s lecture from which we took
inspiration, the essence of this study can be summarized in an
aphorism that at the moment might result cryptic, but that at the end
of this scientific essay should reveal its message: “beware the average
geometrical projection of topological shortest paths between two
points in a network and the time to compute them”. Indeed, to fulfill
this aphorism we propose an optimized algorithm that reduces 26

yearsworst scenario of computation to 1 week. And, finally, we are able
to measure the extent to which a network topology is congruent with
an associated manifold geometry.

If the shortest paths provide the syntax of the interactions
between two points, their projections in the respective underlying
geometrical space reveal the semantics: the meaning behind those
interactions. Not suprisingly, studies in network geometry1 suggest
that the latent geometrical space behind the observable topology of a
network drives the navigation2 of the network structure according to
the distances between nodes in the geometrical space3. This means
that the process behind the formation of connectivity in many net-
worked complex systems follows a rule of association between the
latent variables of the system that can be described by a manifold in a
geometrical space. This geometrical space determines also the type of
network. In relation to the global curvature of the manifold we can
have three different types of geometries: hyperbolic (negative
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curvature), Euclidean (zero curvature), elliptic (positive curvature).
Likewise, in network geometry we can encounter: hyperbolic net-
works, Euclidean networks and elliptic networks. Different geometries
can trigger different structural and functional features of the asso-
ciated networks.

Network geometry is currently rising as a compelling research
area in physics1. The question of how network geometry influences
network navigation is a crucial topic in science and engineering, and a
recent review1 (that might soon become an essential reference for the
field of network geometry) reports a list of theoretical studies
according to which hyperbolic networks are maximally efficient for
geometric navigation4,5. The main reason behind this phenomenon is
assumed the proximity of topological shortest paths (TSP) in the
hyperbolic networks to the corresponding geodesics in the underlying
hyperbolic geometry. If we enucleate better this concept, this means
that the projections of the topological shortest paths (pTSP) follow
closely their associated hyperbolic geodesics in the underlying space1,4

and, since in network science this is defined as geometrical con-
gruence of the network topology with the underlying geometry,
hyperbolic networks are believed geometrically congruent1. Another
key property for efficient geometrical navigation is the existence of
super-hubs that interconnect large parts of the network. This happens
when the network degree distribution follows a power-law with
exponent γ < 31,4, in which case scale-free6 networks are termed ultra-
small-world1,7.

Greedy navigation2 is the result of a type of local phenomenon
that we define myopic transfer from a source node to a destination
node. The fact that the transfer is myopic (near-sighted) means that a
node can see only the geometrical distances of its neighbors to the
destination and can proceed transferring to that neighbor node which
is closest to the destination, creating what is called a greedy routing
path (GRP). Boguñá et al.8 proposed a theoretical demonstration that
greedy navigation in networks with γ < 3 and strong clustering (such as
hyperbolic networks4) can always find these ultrashort paths which
follow the geodesics1,8, and thus navigation in hyperbolic networks
with γ < 3 is believed maximally efficient because of their supposed
geometrical congruence1,4. Vice versa, a network that is maximally
navigable by design is considered similar to hyperbolic networks1.

Despite the abovementioned theoretical research, we have not
found any study with computational evidences that validate these
theoretical conclusions by means of numerical simulations that mea-
sure the level of congruence on hyperbolic network models. This
might be due to two factors: (i) the lack of definition of a computa-
tional measure of geometrical congruence in network science; (ii) the
difficulty to design an efficient (reasonable time complexity) algorithm
tomeasure all the shortest paths (and their projections) between each
nonadjacent node pair in the network. Here, we address these pro-
blems: (i) proposing a measure of geometrical congruence of a net-
work topology to a reference geometry, which can be expressed as
geometrical distances or network weights (generated by a latent
geometry); (ii) proposing an innovative algorithm that drastically
reduces the time complexity. Then, we proceed to measure geome-
trical congruence and greedy navigability efficiency in networks with
patent (the contrary of latent in Latin) geometrical space, in the sense
that the coordinates of the network nodes in this space are known; as
opposed to a latent geometrical space in which the coordinates of the
network nodes are unknown. Specifically, we investigate hyperbolic
networks generated with the nonuniform popularity-similarity opti-
mization (nPSO) model9,10 which is a generalization of the PSOmodel11

able to grow realistic hyperbolic soft random geometric graphs with
tailored community structure. Finally, we show how, contrary to the
greedynavigabilitymeasures thatneednodes geometrical coordinates
(patent geometrical space, known or inferred by network embedding),
the proposed geometrical congruence measure can be applied as a
marker to reveal differences in real networks with latent geometrical

space such as brain connectomes, without the requirement of nodes
geometrical coordinates, but only geometrical weights (presumably
associated with the latent space). Indeed, brain connectomes topolo-
gical weights are associated with a developmental neurobiological
geometry which, according to some studies, might be approximated
by hyperbolic distances12–14. However, as amatter of fact, the geometry
is latent because both the type of geometry and the coordinates of the
nodes in this developmental neurobiological space are unknown.

Results
Types of paths and associated lengths in the topological and
geometrical domains
This section aims to introduce the conceptual and visual differences
between the types of paths, lengths and distances we adopt in this
study. For instance, and without loss of generality, let us consider a
network that is generated according to an underlying geometry that is
hyperbolic: a hyperbolic network. We generate it by using the nPSO
hyperbolic networkmodel, which has the following parameters: nodes
size N; average degree �d; power-law exponent γ (generally between 2
and 3, under value 3 the network is considered to acquire a marked
heterogeneous and hierarchical structure); temperature T (generally
between 0 and 1, the closer to 0 themore the network is clustered, the
closer to 1 the more is random); number of tailored community C (a
value of 0 means no tailored community which corresponds with the
standard PSO, value of 1 is not used, any value larger than 1 indicates
the number of tailored communities). More specifically, in Fig. 1 we
display a nPSO hyperbolic network (with N = 100, �d = 8, γ = 2.5, T =0.1
andC = 5) in the native disk representation of the hyperbolic space (see
Code Availability section for the code to reproduce such representa-
tions). Figure 1a displays the network in the hyperbolic disk where the
links are drawn in gray color according to the hyperbolic geodesics.

The greedy routing path (GRP, Fig. 1b, c yellow path) is a directed
path that is generated by a local phenomenonwe termmyopic transfer
from a source node to a destination node in the network. The fact that
the transfer is myopic (near-sighted) means that a node can see only
the geometrical distances of its neighbors to the destination and can
proceed transferring to that neighbor node which is closest to the
destination. Hence, in order to compute the GRP, geometrical knowl-
edge is necessary. The GRP is greedy because it is the result of a local
process that can approximate but does not guarantee to find the
shortest path between twonodes. Thismeans that, although a network
is connected inoneunique component (as theones inour study), there
is not guarantee that a GRP exists (in the sense that it terminates
arriving to destination) for each pair of nodes: some GRPs can get
stuck in local minima4 and do not successfully reach the destination
node. Figure 1b offers an example of a successful GRP (yellow path),
whereas Fig. 1c of an unsuccessful one (yellow path). This happens
because the myopic transfer (also known as greedy forwarding4) is
often inefficient4 and the GRPs might fail (unsuccessful GRP) to arrive
to destination when a loop is formed because a packet returns to the
previously visited node along the path. The GRP is associated with
the greedy routing navigability of a network and more formal details
are provided in the next section. When a GRP is successful to arrive to
destination, it is unique, and the geometrical length of its projection
(pGRP) in the underlying geometrical space—sum of the distances of
the connections involved in such path—is used as a measure that
approximates the distance between two nodes in the graph. To note
that the GRP is a directed path that is asymmetric, meaning that going
from a node i to a node j via a GRP can be different that going from j
to i.

The topological shortest path (TSP, Fig. 1b dashed black lines) is
the path formed by the smallest number of hops that connects two
nodes in the unweighted network, this means that its computation
does not require knowledge of the underlying geometry. The TSP can
be shorter or equal to the GRP, but at least one ormultiple TSPs always
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a N=100 d=8 T=0.1 γ=2.5 C=5
nPSO network b GRP successful c GRP unsuccessful
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Fig. 1 | Visualization of the different types of paths in the geometrical (hyper-
bolic) space.A nPSO network has been generated with parameters N = 100, �d = 8,
T = 0.1, γ = 2.5 and C = 5. a Representation of the nPSO network in the native disk
representation of the hyperbolic space: the links are in grey colour and follow the
hyperbolic geodesics, the nodes are colored by community membership and
their size is proportional to the logarithm of the degree. b The panel highlights
the hyperbolic geodesic (GEO, red), the geometrical shortest path (GSP, green),
the greedy routing path (GRP, yellow with arrows of directionality) and the
hyperbolic links involved in all the possible topological shortest paths (TSP, black
dashed) between two specific nonadjacent nodes in the network (i and j), char-
acterized by a successful GRP. The exploded-view representation (on the left) of

GEO, GSP and GRP emphasizes the diversity of these paths, the number of path’s
hops and the directionality of GRP is indicated. c Analogous to panel (b) but for
two nonadjacent nodes characterized by an unsuccessful GRP. d The histogram
indicates, at different intervals, the proportion of nonadjacent node pairs within a
certain range of GEO=pTSP values in the nPSO network. e The panel highlights
GEO, GSP, and TSP between two nonadjacent nodes characterized by a ratio
GEO=pTSP=0:61 corresponding to the mode value. f Analogous to panel (e) but
for two nonadjacent nodes characterized by a ratio GEO=pTSP=0:67 corre-
sponding to the mean value. g Analogous to panel (e) but for two nonadjacent
nodes characterized by a ratio GEO=pTSP=0:96 corresponding to a value in the
top 5% of the histogram.
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exist between a given pair of nodes, differently from the GRP that if
exists is unique. The hop length of the TSP can be computed for
instance using Dijkstra’s algorithm15. However, detecting and enu-
merating all the possible TSPs associatedwith each pair of nodes in the
networks is a not trivial computational task and, in this study, we
propose an efficient algorithm to address this problem. Because of
this, we can progress to compute the exact congruence of a network
topology with an underlying geometrical space by measuring the
average deviation of the pTSPs from the associated geodesic. The
pTSP is the geometrical length of the projection of a TSP in the
underlying geometrical space and approximates the distance between
two nodes in the graph.

The geometrical shortest path (GSP, Fig. 1b, green line) is the
weighted shortest path computed using for instance the Johnson’s
algorithm16 on the weighted network. The connections can be weigh-
ted by the geometrical distances between the node pairs, therefore the
length of the GSP is the sum of the geometrical distances of the hops
involved in such path. Note that the pTSP is also a sum of the geo-
metrical distances of the hops involved in the path, but in this case the
path is the TSP, which is computed on the unweighted network. We
clarify that if the GSP and the TSP have the same number of hops, then
the length of the GSP is equivalent to the smallest pTSP. However, the
GSP might also have a larger number of hops than the TSP and, in that
case, there would not be equivalence. For instance, there might be a
GSP as sum of the weights associated with 3 hops, that in total is
shorter than the pTSP associatedwith a TSP of 2 hops. Differently from
theGRP that is unique, but itmight not exist for somenodepairs, there
exists always at least one GSP between a node pair.

The geodesic (GEO, Fig. 1b, red line) is the geometrical distance
between a pair of network nodes in the underlying geometrical space.
Finally, we stress that the GRP is the only path in this section that: (i) is
directed, (ii) canbe asymmetric and (iii) can unsuccessfully stopbefore
arriving to destination.

From myopic transfer and greedy navigability to the geome-
trical congruence
In this section we will introduce the greedy routing navigability
(sometime simplified as greedy routing or greedy navigability) and the
measures currently available to evaluate its performance. Let us con-
sider a scenario in which any node of a network is not aware of the
global network structure but can only see its first neighbor nodes,
therefore having a very restricted local topological knowledge. How
can suchnode transfer packets (of information,matter, energy, etc.) to
specific destination nodes efficiently without global topological
knowledge of the network structure? In brief, the greedy routing
navigability problem deals with understanding and evaluating how
specific topological arrangements of the network can efficiently guide
myopic transfer (in the sense that is near-sighted) from a source node
to a destination node. We propose the definition of myopic transfer in
the previous sections of this study, in order to name the type of local
phenomenon that gives rise to the greedy routing path (GRP).

Following the seminalwork of Kleinberg2, that in 2000 introduced
the concept of greedy routing (GR) navigability in small-word net-
works, in 2008 Boguñá, Krioukov and colleagues3 discovered that the
geometry underlying the network topology is a fundamental property
that modifies greedy routing navigability. The underlying geometry,
which describes the rule of association between the latent variables in
a complex connected system, can shape the network structural con-
nectivity in a way that can facilitate transfer at distance without seeing
at distance, giving rise to this local phenomenon that we suggest to
namemyopic transfer.Note that Krioukov et al.4 used in their study the
term greedy forwarding to define this local transfer. We prefer to use
the expressionmyopic transfer for two reasons. First, the word greedy
refers to the type of algorithm but does not conceptually convey the
near-sighted topological knowledge in which a node lies when it needs

to transfer the packet. Second, the word forwarding might induce to
think that the packet is forwarded towards destination, whereas in
reality this type of local transfer is often inefficient4 and does not
guarantee that in general the packet is forwarded to destination, but it
can also return back remaining stuck. Peculiar topological shapes of a
network carved by nonlinear geometries can facilitate myopic transfer
across some specific directions of the space (topological corridors)
while creating barriers in other directions3.

Krioukov et al.4 proposed several measures to evaluate greedy
routing navigability in hyperbolic networks, whose characteristics and
limitations are discussed in detail in Supplementary Note 1: “Previous
measures for evaluation of greedy routing navigability and their lim-
itations.” In Supplementary Note 1, we also provide technical details on
how to define and test measures for greedy routing navigability. Here
for brevity we discuss the most relevant of these measures that are all
based on the GRPs.

The first is the success ratio, which expresses the proportion (or
percentage) of successful GRPs that reach their destinations. The
second is the hyperbolic stretch, named “stretch” because always
positive. In particular, there are two types of hyperbolic stretches (S2
and S3), which express respectively the average hyperbolic deviations
of the successful GRPs (S2) or the associated GSPs (S3) with respect to
the GEO. Associated GSPsmean that only GSPs between node pairs for
which a successful GRP exists are considered. Indeed, these hyperbolic
stretches account exclusively for a part of the network topology
because they are defined only for the nonadjacent nodes pairs that are
connected by a successful GRP. Therefore, they are well-defined to
evaluate greedy navigability only when the success GRP ratio is high.
This implies that they arenot suitable to evaluate greedynavigability in
general in complex networks, because according Krioukov et al.4 (text
is reported verbatim):≪These GF processes [note: GF stays for greedy
forwarding,which in this studywe refer asmyopic transfer] canbe very
inefficient. They can often get stuck at local minima, or even if they
succeed reaching the destination, they can travel along paths much
longer than the optimal shortest paths available in the network.≫

Nevertheless, Krioukov et al.4 in same study claims (text is
reported verbatim): ≪The lower these two stretches [S2 and S3], the
closer the greedy and shortest paths stay to the hyperbolic geodesics,
and the more congruent we say the network topology is with the
underlying geometry≫. This statement to a certain extent can be also
considered misleading, because, as said above, GRPs can be
unsuccessful4 and a consistent part of nonadjacent node pairs can be
neglected in the computation of S2 and S3 measures, therefore these
twomeasures are not apt to evaluate congruence in complex networks
in general, and might fail also in hyperbolic networks (see Supple-
mentary Note 1 for details). Indeed, to be fair, Krioukov et al.4 never
claimed in their study that S2 and S3 are designed to be measures of
network congruence, but they implied that, to a certain extent and for
what regards only the part of topology that is explored by successful
GRPs, S2 and S3 can offer approximated information on the con-
gruence of the GRPs and the associated GSPs with the underlying
geometry. Yet, a well-posed measure that exactly evaluates the con-
gruence of a network topology with the underlying geometry should
summarize the deviation of the projections of all the topological
shortest paths (pTSPs) with respect to a geometrical reference, as we
explain providing references in the Supplementary Note 1. Indeed, we
remind that, differently for the topological shortest paths’ measures,
the GRP: (i) is directed, (ii) can be asymmetric and (iii) can unsuc-
cessfully stop before arriving to destination. These features are not
appropriate to offer an exact and robust measure of congruence in
complex networks.

We believe that research needs to progress forward “standing on
the shoulders of giants” such as Krioukov and colleagues4. Indeed, we
offered enough evidences to support the need to design: (i) navig-
ability measures that are precise because account for all the GRPs
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(successful and unsuccessful); (ii) congruence measures that are gen-
eral (work with any type of underlying geometry) and are exact
(account for all the network topology).

To address the first point, a measure of navigability that accounts
for all GRPs (successful andunsuccessful)was alreadyproposed byour
group in the studies ofMuscoloni and Cannistraci17,18. The nameof this
measure is GR-score orGR-efficiency (GRE) and it allows assessment of
GR navigability with a unique score that integrates both the concepts
of success ratio and geometrical stretch: a path is assigned a GR-score
of 0 if unsuccessful (worst case), a GR-score of]0,1[if successful with a
stretch greater than 1, and a GR-score of 1 if successful with a stretch 1
(best case). Most importantly, as shown in Fig. 1 of Muscoloni and
Cannistraci17, the introduction of the GRE provides a unique solution
when success ratio and hyperbolic stretch suggest conflicting results.
The mathematic definition and details of GRE are provided in a dedi-
cated “Methods” section.

To address the second point, a measure of congruence is pre-
sented in the next section. Thiswas notpossible to be achieved in 2010
in the study of Krioukov et al.4, because it was not available an efficient
algorithm to detect, enumerate andmeasure the projections of all the
possible shortest paths between nonadjacent pairs of nodes in a net-
work, which is a demanding computational problem. In our study we
present an efficient algorithm to address this computational problem
in large networks, therefore we can propose a measure of congruence
that is general (not only for hyperbolic networks) and exact (because it
considers all possible shortest paths).

The geometrical congruence problem
Up today, in network geometry, the notion of congruence was visually
and qualitatively introduced when the projections of the topological
shortest paths (pTSP) follow closely their associated geodesic in the
underlying space1,4. However, as we stressed in the introduction and in
the previous section on greedy navigability, a quantitative computa-
tional measure of geometrical congruence is missing in network sci-
ence, and this study aims to fill this conceptual gap.

A first concern to address is on the use of the congruence term.
In mathematics, the ordinary geometrical sense of this word means
that two objects, when they are superimposed (possibly after a
mirroring operation), are perfectly aligned. In this respect two geo-
metric objects are either congruent or not, and therefore the attri-
bute associated with the term congruence in mathematics is a binary
quantity: presence or absence. When this condition is satisfied, we
will call it explicitly hard congruence. Hard in the sense of binary
condition because the etymological meaning of congruence does not
imply this hard interpretation. Indeed, the term congruence comes
from Latin congrŭens -entis and it is believed to be composed of two
words cum (together) and (g)ruēre (to move/to come fast; whereas
the g is a guttural sound that has the intention to reinforce). There-
fore, congruence reads as “to come very fast together”, which can be
used not necessarily in a binary manner but also in a relaxed form, in
order to express in general the extent to which the trajectory of two
paths run close together.

A second concern, evident in the example of Fig. 1 and addressed
in Fig. 2, is that between each pair of nonadjacent nodes there is only
one geodesic but possibly multiple shortest paths. In addition, all
nonadjacent node pairs should be taken into consideration to express a
collective behavior. Therefore, the hard congruence should be defined
in a statisticalmanner as the extent towhich the difference between the
distribution of average shortest paths projections and the distribution
of the geodesics in a network is not statistically significant.

Finally, the third concern is that evaluating the congruence of a
network with its associated geometry is a general problem and not
specific to a certain type of geometry. Therefore, we aim to propose a
solution that is general too. However, without loss of generality, here
we will discuss the paradigmatic case of hyperbolic networks since

they are relatedwith the topic of network navigability, asmentioned in
the introduction.

Figure 1 represents many features of a hyperbolic network with
γ = 2.5 generated with the nPSO model (parameters details in Fig. 1
legend). Thefirst conceptualdissonance emerging fromFig. 1e, f is that
for a certain geodesic we can have multiple topological shortest paths
that visibly diverge from the geodesic, therefore a first step is to ana-
lyze the distribution of this divergence for all nonadjacent node pairs
in the network. Figure 1d reports the histogramwith the distribution of
the ratio between the hyperbolic geodesic (GEO) and the average pTSP
(pTSP) in the network. We remind that the current accepted belief is
that, in hyperbolic networks with γ < 3, the pTSPs follow closely their
associated hyperbolic geodesics in the underlying space1,4 and, since
this is defined as geometrical congruence of the network topology
with the underlying geometry, hyperbolic networks are believed geo-
metrically congruent. However, if this were true, we should expect that
in this network with γ = 2.5 (in Fig. 1d) the distribution of the ratio
GEO=pTSP would be concentrated around one. Unlikely, this is not the
case. Indeed, Fig. 1e, f report that the mean and mode scenarios are
very far from the one theoretically proposed, and a rare scenario such
as the one in Fig. 1g is close but not convincingly matching the theo-
retical conclusion. A possible reason for this discrepancy could be that
due to finite size effect19 the geometrical congruence might emerge in
the asymptotic regime for growingnode sizeNof thenetwork, andone
of the objectives of this study will be to leverage computational tools
to investigate the extent to which this hypothesis is valid for growing
node size N.

The second step is to move forward with a statistical analysis to
appraise whether the distribution of geodesics between all pairwise
nonadjacent nodes significantly differ from the distribution of the
pTSP between the same nodes. Note that pTSP is themeanof the pTSP
between two nodes, we take the mean as centrality measure because
for each geodesic there might be multiple pTSP. Figure 2 displays a
comparison of these two distributions when we fix a parameter of the
nPSO model and we vary the others. This helps to discuss how the
congruence of geodesics and pTSP varies according to a certain spe-
cific structural property which is adopted to shape the hyperbolic
network according to the nPSOmodel. Three structural properties are
discussed: if average degree �d grows (m is the direct nPSO model
parameter, and �d is about 2*m for sparse networks; we considerm= [2,
6, 10] hence �d about [4, 12, 20]), network density increases; if tem-
perature T grows (we consider T = [0.1, 0.5, 0.9]), clustering decreases;
if γ grows (we consider γ = [2, 2.5, 3]), super-hub structure of the net-
work is mitigated. We keep N = 100 because this network node size is
enough to properly discuss these structural properties. For each panel
of thefigure the solid line indicates that community organization is not
imposed (C = 0, this is equivalent to the classical uniform PSOmodel11)
and the dashed line indicates that networks with 4 communities are
considered (C = 4). In general, these two different community organi-
zations seem not relevant for our investigation and therefore they are
not further discussed. Figure 2a has three panels where from left to
right the average degree increaseswhile theother parameters arefixed
to their intermediate value. It emerges that when average degree
grows, pTSP between nodes shrinks and approximates better the
geodesic whose distribution is unimodal. The distribution of pTSP is
multimodal because each peak is associated with a different possible
topological shortest path length. For small average degree equal to 4
the network is closer to a tree and the peaks of the distribution are
associated with topological shortest paths of lengths 2, 3, and 4,
respectively, with path 3 being the prevalent. When average degree is
12, the pTSP distribution has two peaks that are associated with TSP of
lengths 2 and 3. When average degree is 20, there is a prevalence of
TSP of length 2 because the network is quite dense. The peak for
topological shortest paths of length 4 are present only in Fig. 2a
because that is the only subplot with parameter d = 4, the network is
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very sparse, and therefore the path lengths are longer. In Supple-
mentary Fig. 1 we provide further evidence about this phenomenon
induced by sparsity. Figure 2b has three panels where from left to right
the power-law exponent γ increases while the other parameters are
fixed to their intermediate value. It emerges that when γ grows, pTSP
distribution remarkably diverges from the geodesic. For γ = 2, pTSP
distribution has a predominance of TSP of length 2 that are also very
close to the geodesic. Whereas for γ = 2.5 and γ = 3 the trend is similar
and consists of a bimodal distributionwith afirst peak for TSPof length
2 and a second for TSP of length 3, but in general these paths are less
congruent with the geodesic. Figure 2c has three panels where from
left to right the temperatureT increaseswhile theother parameters are
fixed to their intermediate value. It emerges that when T grows (it
means that clustering decreases), pTSP distribution seems tomaintain
the same level of divergence from the geodesic distribution. This
might mislead to the conclusion that clustering does not seem to
impact the geometrical congruence between pTSP and geodesic.
However, a closer investigation of Fig. 2c suggests that when T grows,
pTSP distribution kurtosis is modified. This implies that in nPSO

hyperbolic networks with higher clustering the pTSP values related to
TSP of the same length are more congruent between them. Finally, we
perform for each of the 9 subplots of Fig. 2 aMann–Whitney statistical
test to assess inwhich of these scenarios the geodesic distribution and
pTSP distribution do not differ and we can accept the hypothesis of
hard congruence between geodesics and associated pTSP. Astonish-
ingly, the result of the statistical test (considering p-value < 0.01 as
significance level) is that the hypothesis of hard congruence should be
always rejected: geodesic and pTSP significantly differ for all possible
investigated parameter combinations of the nPSO model hyperbolic
networks. Therefore, the first finding of this study is that we cannot
statistically accept that hyperbolic networks in general are congruent
(or hardly congruent, as we suggest in this study) with their underlying
geometry, which is the current credence in the scientific literature.

Amathematical expression tomeasure geometrical congruence
in networks
At this point of our study, we have to raise the level of the scientific
precision adopted to investigate the hypothesis of geometrical
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Fig. 2 | Comparison of GEO and pTSP distributions in hyperbolic networks. For
each subplot, the nPSO network has been generated with parameters N = 100, C =
[0, 4] and values of �d, T, γ as indicated on top of each subplot. In particular: (a) we
fixed T = 0.5, γ = 2.5 and varied �d = [4, 12, 20]; (b) we fixed �d = 12, T = 0.5 and varied
γ = [2, 2.5, 3]; (c) we fixed �d = 12, γ = 2.5 and varied T = [0.1, 0.5, 0.9]. The different
results for C = 0 and C = 4 are shown within each subplot with a solid and dashed
line, respectively. For a given network, we have computed the geodesics (GEO) and

the pTSP for all pairs of nonadjacent nodes. Then, for both GEO and pTSP we have
estimated by kernel-density the probability density function, which is reported in
the subplots (GEO in red, pTSP in black): x-axis represents the length of the path
(GEOor pTSP) and y-axis the density function. For pTSP we also highlight the peaks
of the distribution that correspond to topological shortest paths of lengths 2,
3, and 4.
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congruence in networkgeometry (which returns particularly useful for
hyperbolic networks), and to do so we have to invent network science
tools that allow to dive deeper in the conceptual and methodical
definition of geometrical congruence. We let you notice that current
network science literature discusses of proximity and congruence of
the geodesic to the pTSP in a qualitative and visual-based fashion that
might leave space to misinterpretation and misunderstanding. Hence,
the second achievement of this study is a methodological contribu-
tion: we introduce a general measure of geometrical congruence in
complex networks that will be fundamental to quantitatively evaluate
the extent to which geometrical networks are congruent with their
underlying geometry. Aswe remarked in the previous section, here the
concept of congruence is used to express the extent to which
the trajectory of two paths run close together, which is different from
the concept of hard congruence standardly adopted in mathematics.

Given a network with n nodes and e edges, we define the geo-
metrical congruence (GC) as

GC pTSP, RD
� �

=
2

n � n� 1ð Þ � 2 � e

� �
�
X
i<j

RD i, jð Þ
pTSP i, jð Þ ;with i, jð Þ 2 eE

where eE is the set of pairs (i, j) of nonadjacent nodes.
The computation of the pTSP i, jð Þ is nontrivial because it requires

to find all the possible TSP between (i, j). The technical details on how
to design algorithms to address this challenging computational pro-
blem are provided in a dedicated section below. RD(i, j) can be any
node pairwise reference distance (not necessarily restricted to the
geodesic) that is associated with the geometry. For instance, in this
study we consider RD(i, j) equal to the geodesic (GEO) in one case and
to the geometrical shortest path (GSP) in the second case. Hence, in
the first case wemeasure the GC with the geodesic, in the second case
we measure the GC with the GSP. Since a GC =0.5 means that on
average in the network pTSP i, jð Þ is twice the length of RD(i,j) (indi-
cating a low congruence) we consider the following definition of the
scale of values for GC: GC = [0, 0.4 [indicates negligible congruence;
GC = [0.4, 0.6 [indicates low congruence; GC = [0.6, 0.8[indicates

medium congruence; GC = [0.8, 1] indicates high congruence. A basic
requirement of previous measures based on navigability is to have a
connected network (or to consider the largest connected component),
since it is meaningful to measure the navigability only between con-
nected parts. The same basic requirement applies also to the measure
of geometrical congruence. Finally, when the only available knowledge
is the unweighted network topology, in order to determine the links
weights for computing theGSP to adopt asRD, according toMuscoloni
et al.18 a dissimilarity measure between adjacent node pairs associated
with the underlying geometry such as the repulsion-attraction rule
(RA) or the edge betweenness centrality (EBC) can be used.

Geometrical congruence in networks with patent geometry: the
case of hyperbolic networks
Figure 3 reports the values of GC measure and greedy navigability
measure in hyperbolic networks generated with the nPSO model
across different parameter combinations. In particular, Fig. 3a shows a
heatmap with average GC(pTSP, GEO) on 10 realizations of nPSO
hyperbolic networks (N = 100, T =0.1, 4 communities) spanned across
a large combination of average degree �d and power-law exponent γ.
From Fig. 3a emerges that high GC(pTSP, GEO) is reached in these
hyperbolic networks only for γ = 2 and, most importantly, themeasure
of GC(pTSP, GEO) is strongly matched with a measure of navigability
(Fig. 3b) termed greedy routing efficiency17,18 (GRE, whose range of
values is between 0 and 1, see “Methods” for details). We computed
GRE(pGRP, GEO) by comparing the projection of the greedy routing
paths (pGRP) with the respective geodesics between pairs of non-
adjacent nodes. For T = 0.3 (see Supplementary Figs. 2–5) the nPSO
model networks seem to retain similar congruence and navigability,
however for T =0.5 when the clustering vanishes (and consequently
hyperbolic geometry vanishes4,9,11) also the congruence and navig-
ability are significantly affected, and this result is in accordance with
previous conclusions4. Figure 3a, b results are confirmed also for net-
works with N = 1000 and no fixed community organization (see Sup-
plementary Figs. 2–5). Hence, the second finding of this study is that in
general for γ = [2, 3] the hyperbolic networks generated with the nPSO
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Fig. 3 | GC and GRE evaluation on hyperbolic networks. nPSO networks have
been generated with parameters N = 100, �d = [4, 8, 12, 16, 20], T = 0.1, γ = [2,
2.25, 2.5, 2.75, 3] and C = 4. For each combination of parameters, 10 networks
have been generated. For each network we have computed: (a) GC(pTSP,

GEO), (b) GRE(pGRP, GEO), (c) GC(pTSP, GSP) and (d) GRE(pGRP, GSP). Each
heatmap reports the mean value (over 10 network realizations) of the
respective network measure for each combination of �d and γ in the nPSO
generative model.
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model present medium to low congruence and greedy navigability,
and that high congruence/navigability (but not hard congruence)
emerges only for γ proximal to 2 (at least in these nPSO hyperbolic
networks). These computational findings are relevant because they
significantly correct and refine the results of previous theoretical
studies4,8, which are then included in a review study on network
geometry1, according to which the greedy navigation in hyperbolic
networks with γ < 3 can always find ultrashort paths which follow the
geodesics, and thus navigation in these hyperbolic networks is maxi-
mally efficient. This is not true for all hyperbolic networks, and in
Fig. 3a, b (and Supplementary Figs. 2–5) we offer computational evi-
dence based on GC and GRE that this is not true for PSO11 and nPSO9

hyperbolic networks. A possible objection to our result could be that
the geometrical congruence might emerge in the asymptotic regime
for growing node size N of the network and that in this study we offer
evidence only till N = 1000. However, addressing this concern is non-
trivial because the computational complexity of the algorithm is
onerously growing with N and γ. Therefore, to investigate this concern
we had to develop an optimized and parallelized algorithm that is
discussed in the next section. After months of computing we obtained
results to investigate how the trend of GC(pTSP, GEO) (Fig. 4a) and
GRE(pGRP, GEO) (Fig. 4b) varies for growing N (till 105 with computa-
tion and 106 with extrapolation, see Fig. 4 legend for details) and γ = [2,
2.25, 2.5, 2.75, 3]. Since the computation is burdensome in time, the
other parameters that are less important for our investigation were
fixed to reference values: �d = 12, T = 0.1, and C = 4. More parameter
combinations for networks of N = 104 are provided in Supplementary
Figs. 6, 7. The results of this computation confirm that the trend of
GC(pTSP, GEO) (Fig. 4a) and GRE(pGRP, GEO) (Fig. 4b) is not growing
with node size N. Therefore, the results we present discourage the
notion (included in a review study on network geometry1) that in the
asymptotic regime the greedy navigation in hyperbolic networks with
γ< 3 can alwaysfindultrashortpathswhich are (hardly) congruentwith
the geodesics. This is the third finding of our study. Interestingly, if we

change the reference distance from geodesic to GSP (the green line in
Fig. 1b) then the measures GC(pTSP, GSP) and GRE(pGRP, GSP) show
high congruence and high navigability for any parameter combination
(Fig. 3c, d) at T =0.1. And this is confirmed in Fig. 4c, d also for growing
N. On one side, this result suggests that using the GSP as reference
distance for GC and GRE is misleading if the goal is to investigate the
geometrical congruence of a network with its underlying geometry for
different γ values, in which case the geodesic should be used as
reference. On the other side, the proposed GC measure seems prop-
erly designed, since it is strongly associated with GRE on hyperbolic
networks with high clustering (T =0.1) and, as expected according to
theory4, when temperature increases (T =0.3 and T = 0.5, see Supple-
mentary Figs. 2−7), clustering decreases, hyperbolic geometry tend to
vanish and GC(pTSP, GSP) has a tendency to deviate from GRE(pGRP,
GSP) which becomes more evident for C = 4 and N = 1000 (Supple-
mentary Fig. 5). Therefore GC(pTSP, GSP) can still be considered an
interesting marker to compare differences of geometrical congruence
between structural and weighted connectivity across complex net-
works with latent geometry such as brain connectomes as we will
discuss below in the last section of the Results.

An algorithm to compute geometrical congruence in networks
The essence of this section is on how to design an optimized algorithm
that reduces 26 years of worst scenario computation to one week, and
this represents the fourth achievement of our study. Indeed, the pTSP
is the average projection of the topological shortest paths between
twononadjacent nodes in the network. Therefore, in order to compute
the pTSP, we need to find all the topological shortest paths for each
nonadjacent node pair in the network that is a nontrivial computa-
tional task dependent on different topological features.

A standard solution to this problem is given by a recursive
approach (the reasons to prefer a recursive approach to others are
discussed in the respective “Method” section). Starting from a source
node and performing a recursive visit to the neighbors (while avoiding
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Fig. 4 | GC and GRE evaluation for increasing network size. nPSO networks have
been generated with parameters N = [100, 1000, 10000, 100000], �d = 12, T = 0.1,
γ = [2, 2.25, 2.5, 2.75, 3] and C = 4. For each combination of parameters, 10
networks have been generated. For each network we have computed: (a)
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Each plot reports 5 curves for the different values of γ, indicating the mean value

(over 10 network realizations) of the respective network measure for increasing
network size. Error bars are not reported since negligible. In order to provide an
estimation for networks of size N = 1,000,000, for each curve we used the spline
algorithm to perform interpolation at N = [100, 1000, 10,000, 100,000] and
extrapolation at N = 1,000,000, the resulting values are highlighted with
dashed lines.
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loops) up to a recursion depth equal to the maximum shortest path of
the source node, it is guaranteed to traverse once and only once all the
topological shortest paths from the source node to all the other nodes.
The projection (geometrical length) of such paths can be stored while
traversing them, in order to obtain the pTSP from the source node to
all the others at the end of the recursion process. If the recursion
procedure is repeated starting from each node as source, the result is
thepTSP between all nodepairs. Note that the recursions starting from
different source nodes are independent, therefore they can be com-
puted in parallel. We will refer to this algorithmic solution as brute-
force variant, since for each source node the recursion depth is set to
its maximum shortest path. However, one of the main drawbacks of
the brute force algorithm is the redundancy in computing some
shortest paths multiple times. To address this issue, we propose an
optimized algorithm that reduces the redundancy of the computation
preserving the parallelization. Our optimized strategy is twofold and
here we highlight the two main aspects of this algorithm.

The first aspect on which is based the optimization algorithm is a
strategy that avoids processing the same inputmultiple times: given an
arbitrary node sequence, and before to enter in the parallelized
recursions, the algorithm pre-assigns to each node a maximum
recursion depth adjusted neglecting from the computation of the
maximum the previous nodes in the sequence. This, as amatter of fact,
will exploit the symmetry of the system avoiding that the maximum
recursion depth of a node might be conditioned by the recursion
depth of previous nodes in the sequence, which will be independently
computed in parallel. In simple words, if a node i is before a node j in
the sequence and i determines themaximum recursion depth of j, then
the computation to find all shortest paths from i to j will not be
repeated from j to i. This is the first key contribution of our optimized
algorithmic, which is termedmemoization. The termmemoization has
a very specificmeaning in computer science thatwediscuss in depth in
the respectivemethod section associatedwith this algorithm. For non-
technical readers, this key contribution can be viewed as a memor-
ization strategy ensuring that a function does not run for the same
inputsmore thanonce, bykeeping a record (memory) of the results for
the given inputs.

The secondaspectonwhich isbased theoptimization algorithm is
a strategy to produce a node sequence that improves the efficiency of
the memoization part. Any permutation of the node sequence would
provide the same results of the pTSP between node pairs, but different
permutations can imply different maximum recursion depths for each
node in the sequence, therefore different computational times. In
particular, the more the first nodes in the sequence have many topo-
logical shortest paths of high length, the higher the likelihood that the
following nodes will have a decreased recursion depth, since those
long paths will be removed from the computation of the maximum.
Therefore, a criterion to generate a node sequence that allows a
computational time reduction is crucial. Theoretically, one could
define an objective function (representing the computational load) as
function of the maximum recursion depths of the nodes, then find the
exact sequence of nodes that minimizes it. However, considering that
there are N! permutations of the nodes to test, this solution is unfea-
sible in practice using classical von Neumann computing architecture.
To address this issue, we propose a heuristic approach that provides
an effective solution and consists in ordering the nodes by decreasing
average topological shortest path, which can be computed efficiently
and guarantees that the nodes with many long paths are positioned
first. This is the second contribution in our algorithmic solution, which
is termed prioritization. We note that choosing an optimized order of
the source nodes (prioritization) is strictly synergetic with the mem-
oization, whereas it would not have any effect on the brute-force
approach. Indeed, the prioritization step is antecedent to the mem-
oization, which exploits the node sequence ordering provided by the
prioritization.

Furthermore, we clarify that the prioritization and memoization
are performed in advance before to start any recursion. This keeps the
recursions of different source nodes independent allowing them to
process in parallel. For a careful understanding and discussion of the
technical details behind the algorithm design we refer to: Method
section (Computation of the pTSP between all node pairs: algorithm
design), Supplementary Note 2 section (Pseudocode to compute the
pTSP between all node pairs), Supplementary Note 3 “Space and time
complexity”, Supplementary Note 4 “Running time estimation”.

After introducing the basic concepts behind the two types of
algorithms (brute-force and our optimized algorithm), we will move
forward discussing their running time and time complexity. In Fig. 5a
we report the running time (average time on 10 networks realizations
by nPSO model) of the two different network congruence algorithms
using parallel computation (128 cores). Each of the five curves indi-
cates networks with five different values of γ (2, 2.25, 2.5, 2.75, 3) and
areobtained for increasingnetworknode size values (N= 100, 1 K, 10 K,
100K). Average degree, temperature and number of communities in
the nPSO are respectively fixed to �d = 12, T = 0.1 and C = 4, because
from the previous section we noticed that these are parameters of
second relevance for our investigation and thatwe should concentrate
our attention on understanding the impact of N and γ. The running
time of our optimized algorithm (Fig. 5a, red curve) is negligible (one
second) till N ∼ 1000, it is small for N∼10K (few minutes), whereas it
becomes impactful for N ∼ 100K (in the order of days), although still
feasible as a large-scale computation. In comparison, for N∼ 100K the
running timeof brute-force (Fig. 5a, black curve) significantly increases
tomore than 2months of computation (see Supplementary Note 4 for
details on the running time estimation) for the highest values of γ (2.75
and 3). Hence, the second step of our investigation is to deepen our
understanding of the computational processes behind the algorithmic
running time differences observed in Fig. 5a for N = 100K and the
highest γ values. To this aim in Fig. 5b we repeat the same analysis of
Fig. 5a but specifying the difference between results obtainedwith and
without parallel computation, on networks of sizeN = 100K and for γ =
[2, 2.5, 3]. The first evidence is that both on single core (Fig. 5b right
panel) and 128 cores parallelization (Fig. 5b, left panel), regardless of
the γ value, our algorithm design leads to a reduction of around 90%
with respect to the computational load needed by brute-force. In
addition, it is evident the impact of the power-law exponent γ on the
running time. In case of γ = 3, we notice the reduction from a worst-
case scenario of 26 years for brute-force on single core to the actual
scenario of 7 days for our algorithm on 128 cores, representing a great
computational achievement, which remains relevant even when the
brute-force algorithm is parallelized on 128 cores (2.4 months running
time). Therefore, the third step of our investigation aims to address
two questions: to understand the reason behind this remarkable run-
ning time reduction gained by our optimized algorithm; to identify the
reason behind the impactful running time increase occurred for γ =
2.75, 3 regardless of the algorithm design.

In order to address these two questions, we have to discuss the
time complexity. The general time complexity of this class of algo-
rithms (both brute-force and our optimized algorithm) is analyzed in
details in a dedicated section in Supplementary Note 3 and, with some
approximations, can be formulated as

O N �
Xd
L= 2

ML � kL

 !

where k is the average node degree, d is the network diameter,ML is a
coefficient that expresses the proportion of nodes with recursion
depth equal to L. The analysis of this formulation is not trivial, since it
depends on the distribution of the recursion depths, which in turn are
affected by different topological features of the network. One of such
features is certainly the average node degree (or similarly the edge
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density). The higher the average node degree, the shorter will be the
topological shortest paths, the lower will be the recursion depths. In
the case of networks with a power-law degree distribution, such as the
nPSO networks analyzed, the power-law exponent γ also affects the
recursion depths distribution. Indeed, the lower the γ, the higher
the presence of hubs connecting most of the network, making the
topological shortest paths (and in turn the recursion depths) shorter.
Indeed, networks with γ < 3 are defined as ultra-small world7.

To address the first question on the reason behind the large
running time improvement of our optimized algorithm we note that
the distribution of ML(Fig. 5c, e, g), which is the proportion of nodes
with recursion depth equal to L, is significantly shifted towards small L
values for our optimized algorithm (red bars Fig. 5c, e, g) in compar-
ison to the brute-force (black bars Fig. 5c, e, g). The fact that this
attenuation happens similarly for any value of power-law exponent γ
can explain why in Fig. 5b our optimized algorithm displays a similar
reduction of−90% in running time regardlessof γ. From the theoretical

point of view, recovering the time complexity formula provided above,
this implies that our optimized algorithm attenuates the cost of large L
values and this seems the main reason for its significant running time
reduction. This is confirmed by the fact that the dramatic running time
(without parallel computation, Fig. 5d, f, h) of the brute-force algo-
rithm (black bars Fig. 5d, f, h) for large L values is significantly atte-
nuated by our optimized algorithm (red bars Fig. 5d, f, h), and this
happens likewise for any value of power-law exponent γ.

To address the second question on the reason behind the
impactful running time increase occurred for γ = 2.75, 3 regardless of
the algorithmdesign,wenote thatwith ouroptimized algorithm for γ=
2 (red bars Fig. 5c) most of the recursion depths are distributed
between 2 and 4 (average 3.2), with a network diameter of 6. For γ = 2.5
(red bars Fig. 5e), most of recursion depths are distributed between 3
and 6 (average 4.4), with a diameter of 8. Finally, for γ = 3 (red bars
Fig. 5g), most of the recursion depths are distributed between 3 and 7
(average 5.3), with a diameter of 10. If we now look at the brute-force,
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networks of size N = 100,000. In addition, on top of the barplots, we report the
mean running time required to reach each recursion depth. d, f, h The panels
report, for γ = [2, 2.5, 3] respectively, the running time that would be required to
compute the recursive section of the algorithm for each recursion depth and
without considering parallel computation, both for our algorithm and brute-force,
on networks of size N = 100,000. In all panels, values are averaged over 10 network
realizations anderrorbars are shown, except for panel (a) due to visual overlapwith
the symbols. For more details, please refer to the dedicated section Supplemen-
tary Note 4.
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we note that for γ = 2 (black bars Fig. 5c) most of recursion depths are
between 4 and 5 (average 4.3), for γ = 2.5 (black bars Fig. 5e) between 5
and7 (average6), for γ=3 (blackbars Fig. 5g) between6 and8 (average
7.3). In summary, the mean recursion depths of both algorithms, as
well as their distributions, clearly shift towards larger L values for
higher γ, with the brute-force algorithm which is severely afflicted
because it shifts 1–2 links more than our optimized algorithm. This is,
regardless of the algorithm, at the origin of the strong time complexity
increase especially for γ = 2.75, 3, and it is reflected also in the running
time (without parallel computation) reported in Fig. 5d, f, h, where
looking at the brute-force algorithm from γ = 2 to γ = 2.5 the time
remains under 5 years, but from γ = 2.5 to γ = 3 the time increases to
values that are in the scale of decades.

Geometrical congruence in networks with latent geometry: the
case of brain connectomes
Finally, in the last section of this study, we present results on how to
apply themeasures of greedynavigability andgeometrical congruence
on networks with latent geometry. A network is defined with latent
geometry when we do not know the coordinates of the nodes in the
original space that generated the network topology. Indeed, if we have
thenetworkconnectivity and the coordinates of thenodeswe can infer
what type of geometrical model fits the network geometry.

Contrary to the greedy navigability measures that can be applied
only on networks with patent geometrical space, the proposed geo-
metrical congruence measure can be employed as a marker to reveal
differences in real networks with latent geometrical space. In simple
terms thismeans that to compute the greedy navigabilitymeasures we
need to know or hypothesize: network connectivity and nodes geo-
metrical coordinates (known or inferred by network embedding). The
node geometrical coordinates are in turn used to compute the node
pairs distances considered in the myopic transfer that forms a greedy
routing path. As a further clarification, if the space is originally latent
and a patent space is inferred using network embedding algorithms18,
this is an intermediate step that is not related with greedy navigability
measures, which therefore cannot be directly applied to networkswith
latent space. Differently, the geometrical congruence can bemeasured
having at hand just connectivity information: the network connectivity
and its links weights (node coordinates are not required). In the
unwished scenario that the network topology is unweighted, a dis-
similaritymeasurebetween adjacent nodepairwise associatedwith the
underlying geometry such as the repulsion-attraction rule (RA) or the
edge betweenness centrality (EBC) can be used18.

Most real networks are associated with a latent space. It means
that even though their nodes have coordinates in a visible 2D or 3D
space, this visible space does not match the latent geometrical space
according to which the connectivity is shaped. Thismakes navigability
measures difficult to apply because the latent space is often multi-
dimensional and the number and type of variables are unknown. For
instance, a recent study demonstrated that the structural core of a
particular type of maritime networks is associated with variables that
measure the international trade statuses of countries20. Emblematic
examples of latent space networks are social networks, where nodes
are individuals and possible latent variables are geographical location
(visual space), cultural interests, political interests, economical inter-
ests, job, education, different types of hobbies, etc. Another paradig-
matic example ismacroscale structuralMRI brain connectomes,where
the nodes are brain areas and the latent variables are: 3D anatomical
location (visual space) and many unknown developmental neurobio-
logical variables that determine the circuital maps of the brain and
their complex connectivity architecture. Indeed, knowing the 3D
location of the nodes is not enough to reconstruct the latent geome-
trical space to which the connectivity is associated.

In this study, we focus our investigation on the comparison
between greedy navigability and geometrical congruence in

macroscale structuralMRI brain connectomes, aiming to address three
questions. The first is inherent to this network geometry study and
regards whether we can provide any computational evidence that
geometrical congruence, as theoretically expected, offers a concrete
advantage on measuring properties of latent space networks with
respect to greedy navigability. The second is an open problem in
network neuroscience21. Several measures of greedy navigability were
proposed by Krioukov et al. for hyperbolic networks, such as hyper-
bolic stretches4, but they were supposed to work primarily in hyper-
bolic networks. Unfortunately, we offered evidence that even in
hyperbolic networks these measures show some inconsistencies,
because of the limitations reported in the Results section of this study
that is dedicated to navigability. Therefore, to address such issues,
Muscoloni et al.17,18 designed ameasure of network greedy navigability
efficiency for complex networks in general (not only hyperbolic), and
successively Seguin et al.21 discussed and motivated its application on
brain connectomes.Herewewish tomake a step forward to investigate
whether greedy navigability efficiency, and consequently also geo-
metrical congruence, can be used as markers to differentiate different
phenotypical states in brain connectomes. The third is a relevant
debated problem at the interface between network geometry and
network neuroscience. It regards whether navigability and congruence
can be used to gain any evidence at support of the thesis that mac-
roscale structural MRI brain connectomes might have a latent devel-
opmental neurobiological geometry which accounts for more
information content than the 3D visible Euclidean geometry. Indeed,
brain networks are associated with a developmental neurobiological
geometrywhich also influencedbyneuronal plasticity22 and, according
to some studies, might be approximated by hyperbolic distances12–14.
However, as a matter of fact, it is latent because both the type of
geometry and the coordinates of the nodes in this developmental
neurobiological space are unknown.

To address these questions, we consider 614 macroscale struc-
tural MRI brain connectomes of healthy resting-state individuals from
Faskowitz et al.23, that can be divided for sex (230 male versus 384
females) or for age range (223 in [7 to 30] and 215 in [55 to 85]).
Connectomic links can be weighted according to two different dis-
similarities: the inverse of the number of streamlines (NOS) and the
mere three-dimensional Euclidean (3D) distance between two nodes.
These two different dissimilarities are associated with two different
geometrical spaces. The NOS is obtained by diffusion tensor imaging
tractography analysis and therefore is related with an unknown
developmental neurobiological geometry, which is behind the con-
nectivity captured by anatomical imaging. Instead, the mere three-
dimensional Euclidean (3D) distance can be considered as a control
hypothesis. It can help to evaluate the extent to which, in terms of
navigability and congruence, the latent neurobiological-driven geo-
metry encoded in NOS explains brain connectivity differences better
than the visible Euclidean geometry.

Results in Fig. 6a, d evidence that GC(pTSP, GSP) difference
(considering NOS) is statistically significant (p-value < 0.01,
Mann–Whitney test) both for sex and age, respectively. Although this
result is significant, it does not say anything about the extent to which
GC can be used as a marker that quantifies differences in brain con-
nectomes and whether it works better than the greedy navigability
efficiency—also known in network neuroscience as Efficiency Ratio (ER)
—proposed in the previous studies17,18,21. Therefore, we evaluated the
extent to which GC and ER can discriminate two states considering the
area under precision recall curve (AUPR), which is robust against dif-
ferent group sizes24. In addition, we evaluated whether a certain value
of AUPR is statistically significant in comparison to a random permu-
tation of the labels considering ameasure called trustworthiness25. We
consider AUPR-trustworthiness—with Bonferroni correction over the 4
markers—significant when p-value < 0.01. Results in Fig. 6b, c reveal
that GC performs always better than ER to measure the sex
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connectomic separation regardless of the type of link weight dissim-
ilarity (NOS or 3D), in addition the AUPR of GC is always statistically
significant, whereas the one of ER is not for 3D Euclidean. Results in
Fig. 6e reveal that GC performs better than ER to measure the age
connectomic separation using link weight dissimilarity NOS, and GC is
the only one to provide a statistically significant AUPR, whereas ER
does not. Results in Fig. 6f show that both GC and ER fail, therefore 3D
Euclidean weights are not a sufficient source of information to mea-
sure values of AUPR that are significant for age. Therefore, the reply to
the first question is yes: geometrical congruence, as theoretically
expected, offers a concrete advantage on measuring properties of
latent space networks with respect to greedy navigability, because the
fact that does not need any hypothesis on the node coordinates
relaxes a constraint that is source of uncertainty in analysis of latent
space networks. The reply to the second question is yes: greedy
navigability efficiency, and consequently alsogeometrical congruence,
can be used asmarkers to differentiate different phenotypical states in
brain connectomes. However, we discover that (at least on these data)
geometrical congruence works in general better, and this represents
the fifth achievement of this study. Finally, all results in Fig. 6 suggest
that NOS is a better link weight dissimilarity with respect to 3D. Hence,
the reply to the third question is yes: navigability and congruenceoffer
evidence at support of the thesis that macroscale structural MRI brain
connectomes might have a latent developmental neurobiological
geometry (waiting for more evidences about whether it is
hyperbolic12–14) which accounts for more information content than the
3D visible Euclidean geometry. However, to avoid misunderstandings,

we clarify that the measures of congruence and navigability discussed
in this study aremodel-free and therefore donotmake any assumption
on the type of underlying geometry of the complex networks. For this
reason, they cannot be directly employed to determine the type of
geometry behind complex networks. This might require to build a null
geometrical model, to use as a reference, and with respect to which
variations of congruence and navigability should be compared. This is
not the topic of the present study, and we hope that future studies
might investigate how to exploit congruence and navigability to infer
the nature (elliptic, Euclidean, hyperbolic) of the latent geometry
behind many real networks.

Discussion
At first, we redefine the concept of congruence in network geometry
not as hard congruence, which is the ordinary geometrical sense used
in mathematics, but in a relaxed form to expresses in general, and in a
not-binarymanner, the extent to which the trajectory of two paths run
close together. Next, we notice that between each pair of nonadjacent
nodes we have only one geodesic but possibly multiple shortest paths.
In addition, all nonadjacent node pairs should be taken in considera-
tion to express a collective behavior. Therefore, the hard congruence
should be defined in a statistical manner as the extent to which the
difference between the distribution of average shortest paths projec-
tions and the distribution of the geodesics in a network is not statis-
tically significant. Then, we considered networks with patent (the
contrary of latent in Latin) geometrical space, meaning that the
coordinates of the network nodes in this space are known. Specifically,
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Fig. 6 | GC asmarker for sex and age discrimination in structural connectomes.
Wehave analyzed a dataset of structural connectomeswith sex and age annotation.
For each network, we have computed the GC(GSP, pTSP) and the ER with connec-
tion weights based on NOS or 3D (see “Methods” for details). a We divided the
connectomes in twogroups related tomale and female subjects, for each groupwe
have estimated by kernel-density the probability density function of GC, which is
reported in the subplot (male in black dashed line, female in red solid line): x-axis
represents the GC(GSP, pTSP) and y-axis the density function. The p-value of the
Mann–Whitney test shows that GC can significantly discriminate betweenmale and
female connectomes (p-value < 0.01). b, c The barplots compare the AUPR of GC
and ER methods in discriminating between male and female connectomes, when

using connectionweights based on NOS (b) or 3D (c). An asterisk indicates that the
AUPR-trustworthiness25 with Bonferroni correctionover the 4markers is significant
(p-value <0.01).dWehave repeated the same analysis as in (a), but considering two
groups of connectomes related to two age-ranges of the subjects: [7–30] (black
dashed line) and [55–85] (red solid line). The p-value of the Mann–Whitney test
shows that GC can significantly discriminate between connectomes of young and
elderly subjects (p-value < 0.01). e, f The barplots compare the AUPR of GC and ER
methods in discriminating between connectomes related to two age-ranges, when
using connection weights based on NOS (e) or 3D (f). An asterisk indicates that the
AUPR-trustworthiness with Bonferroni correction over the 4 markers is significant
(p-value < 0.01).
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we investigate hyperbolic networks generated with the nonuniform
popularity-similarity optimization (nPSO) model9,10. As a consequence
of this investigation, the first finding of this study is that we cannot
statistically accept that hyperbolic networks in general are congruent
(or hardly congruent, as we suggest in this study) with their underlying
geometry, which is the current credence in the scientific literature1.

The second achievement of this study is a methodological con-
tribution: we introduce a generalmeasure of geometrical congruence in
complex networks to quantitatively evaluate the extent to which
geometrical networks are congruent with their related geometry.
Specifically, we defined a measure that considers the average ratio
(calculated for each nonadjacent node pair in the network) between a
reference value associated with the geometry (for instance the geo-
desic or any dissimilarity) and the average shortest paths projection.

Performing accurate computation based on this geometrical
congruence measure, we could exclude that the congruence between
geodesics and average shortest path projections, as well as the asso-
ciated greedy routing efficiency, are growing with node size N in
hyperbolic networks. Therefore, the results we present discourage the
notion (included in a review study on network geometry1) that in the
asymptotic regime the greedy navigation in hyperbolic networks with
γ< 3 can alwaysfindultrashortpathswhich are (hardly) congruentwith
the geodesics. This is the third finding of our study.

However, in order to compute the average projection of the
topological shortest paths between two nonadjacent nodes in the
network, we need to find all the topological shortest paths for each
nonadjacent node pair in the network, that is a nontrivial computa-
tional task dependent on different topological features. Therefore, the
fourth achievement of this studywas to design anoptimized algorithm
that reduces 26 years ofworst scenariocomputation tooneweekusing
parallel computing.

Finally, differently from greedy navigability measures that need
nodes geometrical coordinates (patent geometrical space), we show
that the proposed geometrical congruence, as theoretically expected,
offers a concrete advantage on measuring properties of latent space
networks. The fact that geometrical congruence does not need any
hypothesis on the node coordinates relaxes a constraint that is source
of uncertainty in analysis of latent spacenetworks. Indeed, we discover
that geometrical congruence works in general better than greedy
navigability efficiency asmarker to differentiate phenotypical states in
brain connectomes, and this represents the fifth achievement of
this study.

Altogether these findings could have practical impact on real
applications for the design and engineering of communications net-
works, such as Internet, or for quantitative investigation of the
topological-geometrical coupling, which is a promising measurable
network feature that might be associated with the organization and
functionality of brain connectomes or other complex networks26–29.

Methods
Geometrical congruence (GC)
Given a network with n nodes and e edges, we define the geometrical
congruence (GC) as

GC pTSP, RD
� �

=
2

n � n� 1ð Þ � 2 � e

� �
�
X
i<j

RD i, jð Þ
pTSP i, jð Þ ;with i, jð Þ 2 eE

where eE is the set of pairs (i, j) of nonadjacent nodes.
In practice, for each pair (i, j) of nonadjacent nodes we compute

the ratio between RD(i, j), which is a reference distance, and pTSP i, jð Þ,
which is the mean projection of all the TSP between (i, j). The GC is
obtained as the average of such ratios, assuming values between 0 and
1. Note that RD(i, j) = RD(j,i) and pTSP i, jð Þ=pTSP j, ið Þ, therefore we only
evaluate for pairs (i, j) such that i < j, resulting in a total of n� n�1ð Þ�2�e

2
undirected node pairs to be averaged. RD(i, j) can be any node pairwise

reference distance. In this study, in one case we consider RD(i,j) equal
to the geodesic (GEO) and in another case equal to the geometrical
shortest path (GSP).

In the case of GEO, in our analysis they correspond to the pairwise
hyperbolic distances between the nodes in the hyperbolic disk, which
are provided in output by the nPSO model9,10 when generating a net-
work (see “Methods” section related to the nPSO model).

In the caseofGSP, they correspond to theweighted shortestpaths
computed using the Johnson’s algorithm16 on the weighted network,
where the connections are weighted by distances between the node
pairs. If known, such distances can correspond to the geodesics,
otherwise the weights can also represent other types of distances. The
length of the GSP is equal to the sum of the distances of the connec-
tions involved in such a path.

The computation of the pTSP i, jð Þ requires to find all the possible
TSP between (i, j). First of all, we apply the Johnson’s algorithm16 on the
unweighted network to obtain the length of the TSP for all the node
pairs (this is a one-time computation, not needed for each pair indi-
vidually). Then, we apply the algorithm to compute the pTSP between
all node pairs, which is presented as pseudocode in Supplementary
Note 2 and discussed in a dedicated “Methods” section.

A basic requirement of previousmeasures based on navigability is
to have a connected network (or to consider the largest connected
component), since it is meaningful to measure the navigability only
between connected parts. The same basic requirement applies also to
the measure of geometrical congruence. This guarantees that RD(i, j)
and pTSP i, jð Þ are always finite quantities.

Greedy routing efficiency (GRE)
Given a network with n nodes and e edges, the greedy routing effi-
ciency (GRE)17,18 with respect to the set eE ofnonadjacent nodepairs (i, j)
is

GRE pGRP, RDð Þ= 1
n � n� 1ð Þ � 2 � e

� �
�
X RD i, jð Þ

pGRP i, jð Þ ;with i, jð Þ 2 eE
In practice, for each pair (i, j) of nonadjacent nodes we compute

the ratio between RD(i, j), which is a reference distance, and pGRP(i, j),
which is the projection of the greedy routing path between (i, j) and set
to infinite when the greedy routing is unsuccessful. The GRE is
obtained as the average of such ratios, assuming values between 0 and
1. Note that pGRP(i, j) can be different (asymmetric) from pGRP(j,i),
therefore we evaluate both pairs (i, j) and (j,i), resulting in a total of
n � n� 1ð Þ � 2 � e directed node pairs to be averaged. RD(i, j) can be any
nodepairwise reference distance. In this study, in one caseweconsider
RD(i,j) equal to the geodesic (GEO) and in another case equal to the
geometrical shortest path (GSP), for more details please refer to the
previous section on geometrical congruence (GC).

In the measure of greedy routing efficiency introduced in the
original publications17,18,21, all the n � n� 1ð Þ node pairs have been con-
sidered, both adjacent and nonadjacent nodes, and the associated
formula is

GRE pGRP, RDð Þ= 1
n � n� 1ð Þ

� �
�
X RD i, jð Þ

pGRP i, jð Þ ;with i, jð Þ 2 E

where E is the set of pairs (i, j) of both adjacent andnonadjacent nodes.
We note that in the GRE formulation adopted in this study only non-
adjacent node pairs have been considered, in order to guarantee a fair
comparison of the values with respect to the measure of geometrical
congruence (GC), which is also evaluated only for nonadjacent node
pairs. In addition, we clarify that in the previous publications17,18, in
which we originally introduce GRE, the formula was given only for the
special case that pGRP is unweighted (hence it is the number of the
greedy routing hops between two nodes) and RD =TSP. Here instead
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we propose a more general formula based on any reference distance
that, according to the context of the scientific study, canbe adequately
selected.

Computation of the pTSP between all node pairs: algorithm
design
We recall that the pTSP is the average projection of the topological
shortest paths between two nodes. Therefore, in order to compute the
pTSP between all node pairs, we need to find all the topological
shortest paths between all node pairs.

Let us analyze a first solution computing the pTSP for each indi-
vidual node pair i, jð Þ. This solution can be implemented with a recur-
sive approach. Starting from source node i and performing a recursive
visit to the neighbors (while avoiding loops) up to target node j, it is
guaranteed to traverse once and only once all the topological shortest
paths from i to j. The projection (geometrical length) of such paths can
be storedwhile traversing them, in order to compute their average, i.e.
the pTSP i, jð Þ, at the end of the recursion process. If this recursion
procedure is repeated for each node pair i, jð Þ, the result is the pTSP
between all node pairs. This naïve solution contains plenty of redun-
dant computation that could be avoided with a smarter approach,
which is still brute-force (in the sense that all node pairs are con-
sidered) and is analyzed below.

The brute-force version is based on introducing the concept of

maximumdepth. Let us consider the computation of pTSPði, j*Þ, where
j* is a node at the maximum topological shortest paths from i:

TSPði, j*Þ= maxj2 1,N½ �, j≠i TSPði, jÞ. Starting from source node i the

neighbors are recursively visited until reaching the target node j* at

recursion depth equal to TSPði, j*Þ. Let us now consider the computa-

tion of pTSP i, kð Þ, where k is any other node. Starting from sourcenode
i the neighbors are recursively visited until reaching the target node k

at recursion depth equal to TSP i, kð Þ≤TSPði, j*Þ. The key concept to
understand is the following: all the paths visited in this recursion have

been already visited during the previous computation of pTSPði, j*Þ,
therefore we could have computed also pTSP i, kð Þ while computing

pTSPði, j*Þ. In other words, during the recursive procedure from source

i to a node j* at the maximum topological shortest paths from i, not
only it is guaranteed to traverse once and only once all the topological

shortestpaths from i to j*, but it is also guaranteed to traverse onceand
only once all the topological shortest paths from i to all the other
nodes k. This has a significant implication to improve the naïve solu-

tion for computing the pTSP between all node pairs: instead of per-
forming one recursive procedure for each node pair i, jð Þ with depth

TSPði, jÞ and compute pTSP i, jð Þ, it is sufficient to performone recursive

procedurewithmaximumdepth TSPði, j*Þ for each node i and compute

pTSP i, jð Þ for all j 2 1,N½ �,j≠i at once. In few words, the brute-force

algorithm avoids redundantly compute any TSP i, kð Þ≤TSPði, j*Þ,
whereas the naïve algorithm redundantly compute TSP i, kð Þ in a
explicit way as a node pair and in an implicit way as an intermediate
node pair on other TSP i, jð Þ≥TSP i, kð Þ. We refer to this algorithmic
solution as brute-force variant, since for each source node the recur-
sion depth is always set to its maximum shortest path, implying that
the TSP i, jð Þ for all node pairs are computed without considering a
further possible optimization, which we discuss next.

Let us consider the brute-force variant and an arbitrary order of
the source nodes n1,n2, . . . ,nN . The first source node n1 has recursion
depth equal to Ln1

= maxj2 1,N½ �,j≠1 TSPðn1,njÞ and it computes all

pTSPðn1,njÞ with j 2 1,N½ �, j ≠ 1. The second source node n2 has recur-
sion depth equal to Ln2

= maxj2 1,N½ �,j≠2 TSPðn2,njÞ and it computes all

pTSPðn2,njÞ with j 2 1,N½ �, j ≠ 2. However, because of the symmetric

property pTSP i, jð Þ � pTSPðj, iÞ, the second source node n2 does not

actually need to compute pTSP n2,n1

� �
, because the first source node

n1 already computed pTSP n1,n2

� �
. This also implies that n2 does not

need to considern1 in the computation of the recursiondepth, and can
set it instead as Ln2

= maxj = 3,...,N TSPðn2,njÞ. This optimization inwhich

the pTSP for the symmetric pair is not computed again can be inter-
preted as memoization: an optimization technique ensuring that a
function does not run for the same inputs more than once, by keeping
a record of the results for the given inputs. In general, in the brute-force
variant, the ith source node ni has recursion depth equal to

Lni
= maxj2 1,N½ �,j≠i TSPðni,njÞ and it computes all pTSPðni,njÞ with

j 2 1,N½ �,j≠i. Instead, in thememoization variant, the ith source node ni

has recursion depth equal to Lni
= maxj = i + 1,...,N TSPðni,njÞ and it com-

putes all pTSPðni,njÞ with j = i+ 1, . . . ,N. The computational advantage
of the memoization variant comes from the following: since every
subsequent source node does not consider the previous ones in the
computation of themaximum topological shortest path, the recursion
depth will be either equal or lower with respect to the brute-force
variant.When it is lower, redundant TSPðni,njÞ computation is avoided
because the recursion depth is adapted to the arbitrary order of the
source nodes n1,n2, . . . ,nN . We clarify that thememoization, intended

as the fact that the pTSP for symmetric pairs is only consideredonce, is
present regardless of whether the recursion depth will be equal or
lower, and it represents the first contribution in our algorithmic solu-
tion. Note that the recursions starting from different source nodes are
independent, therefore they can be computed in parallel. This is pos-
sible because the maximum recursion depth for each source node is
assigned before the recursion starts.

Now we take a step further in the analysis and discuss the choice
of the arbitrary order of the source nodes. On one side, any permu-
tation would provide the same results of the pTSP between all node
pairs. On the other side, different permutations can imply different
recursion depths to be computed for the source nodes, therefore
different computational times. In particular, the more the first source
nodes have many topological shortest paths of high length, the higher
the likelihood that following nodes will have a decreased recursion
depth, since those long paths will be removed from the computation
of the maximum. Given this, we need to find a criterion to select a
permutation of nodes that would lead to a computational time
advantage.

Theoretically, one could define an objective function (representing
the computational load) as function of the recursion depths of the
source nodes, then find the exact sequence of source nodes that
minimizes it. However, considering that there are N! permutations of
the nodes to test, this solution is unfeasible in practice. For this reason,
we decided to adopt a heuristic approach that provides an effective
solution and consists in ordering the source nodes by decreasing
average topological shortest path, which can be computed efficiently
and guarantees that the nodeswithmany longpaths are positioned first.
This is the second contribution in our algorithmic solution, which we
call prioritization. We highlight that choosing an optimized order of the
source nodes (prioritization) is strictly synergetic with thememoization,
whereas it would not have any effect on the brute-force approach.

In order to keep independent the recursions of different source
nodes, which allows to process them in parallel, the prioritization step
and the computation of the recursion depths for all source nodes can
be performed in advance before any recursion. This pre-processing, in
which we set the recursion depths and potentially reduce them with
respect to the brute-force variant, results in a pre-pruning of the brute-
force recursion tree.

At last, we would like to discuss potential questions that might
arise. In particular, we can notice that while performing the recursion
starting from a certain source node i up to reaching its recursion
depth, some intermediate paths could be topological shortest paths
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starting from a different node j. Here a question that might arise is
why such paths are not stored in order to not be visited again when
the recursion from source node j will be performed. Unfortunately,
there are multiple issues related to this problem. First of all, the
space complexity. Storing for a later usage all the topological
shortest paths that are visited during a recursion would require a
significant amount of space, which would make the computation
unfeasible for networks of large size. Second, storing information
from the recursion of node i and using it for the recursion of node j
introduces a dependency between recursions of different source
nodes, implying that they cannot be processed in parallel. Third, it is
not clear whether there is an algorithmic solution to indicate to the
recursion from node j to simply skip exactly those paths stored
during the recursion from node i. Even if such algorithmic solution
exists and the memory does not represent a problem, it is not
guaranteed that the time to store all the intermediate topological
shortest paths, plus the time to indicate to the next recursions to skip
them, plus the fact that the computation is not parallelized, still
would provide a running time advantage with respect to simply tra-
versing those paths again.

Nonuniform popularity-similarity optimization model (nPSO)
and classical popularity-similarity optimization model (PSO)
The Popularity-Similarity-Optimization (PSO) model11 is a recently
introduced generative model for networks that is based on growing
soft random geometric graphs in the hyperbolic space. In this model
the networks evolve optimizing a trade-off between node popularity
(abstractedby the radial coordinate) and similarity (representedby the
angular distance). The PSO model can reproduce many structural
properties of real networks: clustering, small-worldness (concurrent
low characteristic path length and high clustering), node degree het-
erogeneity with power-law degree distribution and rich-clubness.
However, being the nodes uniformly distributed over the angular
coordinate, the model lacks a non-trivial community structure.

The nonuniform PSO (nPSO) model9,10 is a recently introduced
generative model for realistic networks that is based on growing soft
randomgeometric graphswith tailored community organization in the
hyperbolic space. It is a generalization of the PSOmodel that exploits a
nonuniformdistribution of nodes over the angular coordinate in order
to generate networks characterized by communities, with the possi-
bility to tune their number, size andmixing property. In this study, we
adopted a Gaussian mixture distribution of angular coordinates, with
communities that emerge in correspondence of the different Gaus-
sians, and the parameter setting suggested in the original studies9,10.
Given the number of components C, they have means equidistantly
arranged over the angular space, μi =

2π
C � i� 1ð Þ, the same standard

deviation fixed to 1/6 of the distance between two adjacent means,
σi =

1
6 � 2πC , and equal mixing proportions, ρi =

1
C i= 1 . . .Cð Þ. The com-

munity memberships are assigned considering for each node the
component whose mean is the closest in the angular space. The other
parameters of themodel are:N, the number of nodes;m, aroundhalf of
the average node degree; T, the network temperature, inversely rela-
ted to the clustering; γ, the exponent of the power-law degree dis-
tribution. Given the input parameters (N, m, T, γ, C), the nPSO model
provides in output: the adjacency matrix of the network; the geome-
trical coordinates of the nodes in the hyperbolic disk, the community
memberships of the nodes; the pairwise hyperbolic distances (geo-
desics) between the nodes. For details on the generative procedure
please refer to the original studies9,10. The MATLAB code is publicly
available at the GitHub repository: https://github.com/biomedical-
cybernetics/nPSO_model.

Structural connectomes data
The dataset includes tractography-based connectivity matrices of 614
healthy individuals (Male = 230, Female = 384) generated by the

enhanced Nathan Kline Institute-Rockland Sample (NKI-RS;
fcon_1000.projects.nitrc.org/indi/enhanced/)30. Streamline count
adjacency matrices were constructed by counting the NOS that ter-
minated in each region of interest of the Yeo network functional par-
cellation (114 cortical nodes)31. The whole dataset (n = 614) was used to
assess sex differences at the brain network level. In addition, from this
dataset we also extracted a subset of n = 438 connectivity matrices of
individuals in two different age ranges: [7, 30] years old (n = 223) and
[55,85] years old (n = 215). Further details on this dataset are available
in23, which is the study that processed the connectomes and made
them publicly available.

The NOS weights represent connection strengths, however our
computation requires weights to represent distances between the
nodes. Longer white matter projections are more expensive in
terms of their material and energy costs, thus making brain regions
that are spatially close more likely to be connected32. Following this
rationale, two brain regions connected by a higher number of
streamlines tend to be at lower distance. Therefore, for every edge
(i,j), the weight has been reversed according to the following for-
mula:

w* i, jð Þ= 1
1 +w i, jð Þ

wherewði,jÞ is the original weight (NOS) between the adjacent nodes i
and j and w* i, jð Þ represent the reversed weight which we consider for
our brain connectomic analysis.

Hardware and software
MATLAB code has been used for all the simulations. The computation
was executed exploiting several server nodes of the High-Performance
Computing (HPC) cluster of ZIH, TU Dresden, each with 512 GB RAM,
2x AMD EPYC CPU 7702 @ 2.0GHz (2×64 cores).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The artificial network datasets generated and analyzed in this study
canbe reproduced using the original code of the nPSOmodel available
here: https://github.com/biomedical-cybernetics/nPSO_model. The
parameters to generate the networks are all disclosed in the study.

The macroscale structural MRI brain connectomes dataset is
available directly from the original study of Faskowitz et al.23

Code availability
The MATLAB code to compute GC and GRE measures, to reproduce
the results of somemain figures of the study, and to plot the networks
native disk representation in the hyperbolic space, is publicly available
at the GitHub repository: https://github.com/biomedical-cybernetics/
geometrical_congruence.

The DOI of the current first release of the code is https://doi.org/
10.5281/zenodo.7221662.

If available in the future, the updated versions of the code (i.e. the
most recent release) will be associated with this link that always point
to the latest https://zenodo.org/badge/latestdoi/550208431.
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