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Amino acid variability, tradeoffs and
optimality in human diet

Ziwei Dai 1,2, Weiyan Zheng2 & Jason W. Locasale 1

Studies at the molecular level demonstrate that dietary amino acid intake
produces substantial effects on health and disease bymodulatingmetabolism.
However, how these effects may manifest in human food consumption and
dietary patterns is unknown. Here, we develop a series of algorithms to map,
characterize and model the landscape of amino acid content in human food,
dietary patterns, and individual consumption including relations to health
status, covering over 2,000 foods, ten dietary patterns, and over 30,000
dietary profiles. We find that the type of amino acids contained in foods and
human consumption is highly dynamicwith variability far exceeding that of fat
and carbohydrate. Some amino acids positively associate with conditions such
as obesity while others contained in the same food negatively link to disease.
Using linear programming and machine learning, we show that these health
trade-offs can be accounted for to satisfy biochemical constraints in food and
human eating patterns to construct a Pareto front in dietary practice, a means
of achieving optimality in the face of trade-offs that are commonly considered
in economic and evolutionary theories. Thus this studymay enable the design
of human protein quality intake guidelines based on a quantitative framework.

Diet is generally considered to be a major determinant of human
health and disease1–5. Numerous dietary recommendations, such as the
DietaryGuidelines forAmericans6, have beendeveloped. Thesedietary
recommendations often focus on two major goals: to increase the
diversity and nutrient density of the foods consumed, and to reduce
the intake of certain components known to increase risk of disease7–9.
Such restrictions involve limiting the intake of certain types of car-
bohydrate and fat such as added sugar, saturated fat and trans-fat, and
has rationale based on epidemiology, human10–12 and model organism
research13,14. While it has been widely acknowledged that the types of
dietary carbohydrate and fat are important determinants of the quality
of a diet, protein the othermacronutrient15, is often neglected. Inmost
humannutritional studies albeit with exceptions, protein is considered
as a single variable and often held constant16. Nevertheless, each amino
acid has its specific metabolism17 and is important for numerous cel-
lular and physiological processes. A growing number of studies shows
that variation in dietary intake of amino acids such as serine, glycine,
asparagine, histidine, and methionine mediates health and disease

including cancer through defined molecular mechanisms18–28. Alto-
gether there is a rationale for investigating in a systematic manner
amino acid intake in human diets and possible consequences on
health.

In this study, we investigated the variability of amino acids in
human food and diets and find variability commensurate with what is
observed in fats and carbohydrates. Based on optimizing associations
with health status, we use these analyses to devise guidelines for
dietary amino acids. Finally, we implement machine learning algo-
rithms to design personalized diets based on amino acid intake that
correspond to optimality in specified health statuses.

Results
Amino acid landscape of human food
To characterize the variability of amino acid levels in human food, we
first constructed a database consisting of amino acid profiles in three
levels ofhumandietary components: individual foods, dietary patterns
or representations of patterns of food consumption (e.g. Western,
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Mediterranean, Japanese, Keto, etc), and dietary profiles containing
daily reported food intake (Fig. 1). The abundance of 18 amino acids in
2,335 foods was collected based on nutritional profiles in the United
States of America Department of Agriculture National Nutrient Data-
base for Standard Reference Legacy Release (USDA SR) (Fig. 1a,
Methods). 18 of the 20 amino acids were considered because during
quantitation, amino acids which largely exist in protein-bound forms,
require hydrolysis into free amino acids during which amino groups
from glutamine and asparagine are also hydrolyzed to make glutamic
and aspartic acid. Thus, the abundance of glutamic acid and aspartic
acid from measurements of free amino acid levels reflects the total
abundance of glutamate and glutamine, and the total abundance of

aspartate and asparagine, respectively. The distributions of amino acid
abundance over 2,335 foods show that each amino acid has con-
siderable variability across foods (Coefficient of variation > 0.2 for all
amino acids, Fig. 1b), and amino acids most abundant in human food
are glutamine/glutamate (median = 0.16 g/g total amino acids),
asparagine/aspartate (median = 0.095 g/g total amino acids), leucine
(median = 0.082g/g total amino acids), and lysine (median = 0.076 g/g
total amino acids). On the other hand, amino acids with the lowest
abundance inhuman foods are cystine (median=0.012 g/g total amino
acids), tryptophan (median = 0.012 g/g total amino acids), methionine
(median = 0.024 g/g total amino acids), and histidine (median =
0.028 g/g total amino acids). This ordering largely resembles the
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Fig. 1 | Amino acid landscape of human foods. aWorkflow for construction of the
database for amino acid abundances in human foods. Food images used with
permission from Microsoft. b Ranges of amino acid abundance in human foods.
The horizontal lines indicate median values. The upper and lower bounds of boxes
indicate the range of data. n = 2335 foods. c Principal components analysis (PCA) of
amino acid profiles in human foods. Each dot represents a food. Colors of the dots
indicate different categories of the foods. d Loading of amino acids in the first

principal component in the principal components analysis (PCA). e Average amino
acid abundance in different categories of human foods. f F-statistic values from
one-way analysis of variance (ANOVA) comparing abundanceof single amino acids,
different types of amino acid, different types of carbohydrate, and different types
of fat across human foods. g Violin plots showing the distributions of abundance of
amino acids, carbohydrates, and fats that are the most variable across human
foods. The circles indicate median values. Green dots indicate individual values.
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abundance of amino acids in the proteomes which are conserved
across living organisms29,30. Principal component analysis (PCA) shows
that amino acid abundances canbe clusteredby different categories of
foods (Fig. 1c, Methods). Highly variable amino acids include those
whose dietary modulation has molecular links to cancer progression
and health outcomes, such as methionine (0.031 g/g total amino acids
in eggs compared to 0.013 in legumes) and serine (0.076 g/g total
amino acids in eggs compared to 0.039 in lamb, veal, and gamemeat).
The loadings in the first principal component (Fig. 1d) indicate that the
amino acids with the largest contribution to the first principal com-
ponent are glutamate/glutamine, proline, lysine, and aspartate/aspar-
agine. Each of these amino acids is enriched in at least one major
category of human foods (Fig. 1e), suggesting that the first principal
component mainly reflects differences in amino acid levels across
categories of foods. To quantify the variability of amino acid abun-
dance across foods, we computed the F-statistic fromone-way analysis
of variance (ANOVA), and compared the resulting F-statistic values
with those of carbohydrates (i.e. dietary fiber and sugar) and fats (i.e.
saturated fat,monounsaturated fat, and polyunsaturated fat). Notably,
we found that the ANOVA F-statistics for both single amino acids and
five subtypes of amino acids (essential amino acids, nonessential
amino acids, branched-chain amino acids, ketogenic amino acids, and
glucogenic amino acids) were comparable to or higher than those for
carbohydrates and fats (Fig. 1f, Methods), especially for the amino
acids methionine, histidine, lysine, and proline (F-statistic = 816.2 for
methionine, 566.1 for histidine, 504.3 for lysine, and 362.9 for proline
compared to the range of 45.0 to 119.6 for carbohydrates and the
range of 125.2 to 746.3 for fats, Fig. 1f, g), highlighting the variability of
amino acid abundance in foods which has been largely overlooked
previously.

We also compared amino acid profiles of plant-based versus
animal-based foods and computed the coefficient of variation (CV) as a
metric quantifying the variability of amino acid profiles among these
foods (Supplementary Fig. 1). We found that although the differences
inmean amino acid levels between plant- and animal-based foodswere
subtle as previous studies show31, there is high variability in amino acid
profiles among plant- or animal-based foods (higher values of CV
among either animal- or plant-based foods compared to the CV among
all foods for all amino acids except for histidine, Supplementary
Fig. 1b). This finding indicates that simply comparing the amino acid
profiles between plant- and animal-based food without consider all
other relevant variables underestimates greatly the variability of amino
acids in human foods. Taken together, these results suggest that dif-
ferences in food intakedue to thehigh variability inaminoacid content
may lead to differences in physiological and cellular effects on
metabolism.

Human dietary patterns are variable in amino acid content
Dietary patterns can be grouped according to eating patterns that
often have a cultural or societal element. They can be characterized by
a combination of certain types of foods consumed (e.g.Mediterranean
diet, which includes high amounts of plant-based foods, high to
moderate amounts of seafood, lowconsumptionof redmeat, andolive
oil as the main source of added fat32), or a specific intake profile of
certain nutrients (e.g. ketogenic diet, which is defined by very high
intake of fat and very low intake of carbohydrate). Adherence to cer-
tain dietary patterns, such as the Mediterranean diet or Japanese diet,
has been associated with increased lifespan and lower risk of
disease33–35. Moreover, some emerging dietary patterns, such as the
ketogenic diet and the Paleo diet, have recently been shown in some
settings to have benefits on metabolic health, neural function, and
longevity36–39. However, it is unclear whether these dietary patterns
differ in their amino acid content, and whether the variability in amino
acid abundance across dietary patterns contributes to the health
outcomes associated with these diets.

To further understand the relationship between human dietary
patterns and amino acid intake, we next developed an algorithm to
quantitatively evaluate amino acid abundance in ten representative
human dietary patterns (Fig. 2a, Supplementary Fig. 2, Supplemen-
taryMethods). Among these dietary patterns, theMediterranean diet
and Japanese diet are two traditional diets believed to have beneficial
influences on health, while the Dietary Approaches to Stop Hyper-
tension (DASH) diet consists of consumption of a variety of low-fat
and minimally processed foods, and the American diet, which
represents the dietary behaviors of a typical individual in western
society is also considered. We also include diets that restrict the
consumption of certain foods (Paleo diet, vegetarian diet, plant-
based diet), diets limiting carbohydrate intake (ketogenic diet, Atkins
diet), and a USDA recommended diet defined based on the daily
nutrient intake goals in the USDA 2015-2020 dietary guidelines for
Americans6. We first computed the range of amino acid intake (i.e.
grams of each amino acid consumed per day) for each dietary pat-
tern using a linear programming algorithm we developed (Fig. 2b,
Supplementary Methods) and found that, although none of these
dietary patterns includes any constraint on amino acid intake, they
still differ greatly with each other in the values of amino acid con-
sumption. Moreover, each dietary pattern allowed for substantial
flexibility in the intake of all amino acids (maximal daily intake/
minimal daily intake > 20 for all dietary patterns and amino acids,
Fig. 2b), revealing the possibility to modulate amino acid intake
under a certain dietary pattern.

To quantify the variability of amino acid composition that is
independent of energy and protein intake, we developed a sampling
algorithmbased on the accelerated convergencehit-and-runmethod40

to quantify the amino acid composition of each diet by sampling
50,000 instances of each diet (Supplementary Methods). We first
confirmed that the sample size of 50,000was sufficient to capture the
distribution of amino acid abundance in a dietary pattern based on the
convergence of the sample mean and standard deviation values
(Supplementary Fig. 3a). PCA of the sampled diets (Fig. 2c) and com-
parison of mean values (Fig. 2d) showed that the ten dietary patterns
also have different signatures of amino acid composition. Notably,
differences in amino acid composition also exist between dietary
patterns similar to each other such as the vegetarian diet and plant-
based diet. Indeed, we observed a 30% of difference in methionine
abundance between vegetarian diet and plant-based diet (0.019 g
methionine/g total AAs in vegetarian diet compared to 0.014 in plant-
based diet), suggesting that small changes in the choice of foods result
in substantial differences in amino acid intake (Fig. 2d, Supplementary
Fig. 3b). We also estimated compositions of carbohydrates and fats in
these diets (Supplementary Fig. 3c), and quantified the variability of
amino acid composition across human diets using F-statistic values
from one-way ANOVA, and compared it with the variability of carbo-
hydrates and fats across dietary patterns (Fig. 2e). Strikingly, we found
that the variability of amino acid composition across diets was much
higher than that of carbohydrates and fats, with the amino acids lysine,
methionine, proline andhistidinebeing themosthighly variable across
human dietary patterns (F-statistic > 50,000 compared to less than
10,000 for carbohydrates and fats, Fig. 2e, f, Supplementary Fig. 3b, c).
Among these amino acids, lysine, histidine and methionine are sig-
nificantly lower in instances of the plant-based diet, and proline is
significantly lower in Paleo diet (Fig. 2f). On the other hand, amino
acids with the lowest F-statistic values hence lowest variability across
dietary patterns are serine (F-statistic = 6.7 × 103), tyrosine (F-statistic =
8.4 × 103), and glycine (F-statistic = 9.4 × 103). Notably, these results
were unaffected by log-transforming the amino acid levels, suggesting
that the findings about variability of amino acids in foods and diets
were robust to changes in scale (Supplementary Fig. 4a-d). To exclude
the possible confounding influence of the correlation between the
absolute levels of amino acid intake and variability of amino acids in
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foods and diets, we confirmed that the median level and F-statistic of
amino acids were uncorrelated with each other in both human foods
and dietary patterns (Pearson’s R = −0.20 for foods and 0.02 for diet-
ary patterns, Supplementary Fig. 4e, f). The amino acid signatures of
human dietary patterns were further validated by measurements of
fasting blood concentrations of the amino acids leucine, isoleucine,
and alanine in human subjects eating plant-based or ketogenic diet
(Supplementary Fig. 4g, h)41. We also confirmed that the amino acid
signatures of human dietary patterns were robust to variation in the
definitions of dietary patterns by comparing amino acid signatures of
Atkins diet and Mediterranean diet computed using different defini-
tions of these diets (Supplementary Fig. 5). Taken together, these
results reveal that the biggest difference in macronutrient composi-
tion across human dietary patterns is in amino acid content, and not
that of carbohydrates or fats. How the diversity in dietary amino acids
results in different health outcomes remains an open question, which

may begin to be answered with nutritional and health data in large
populations of humans.

Landscape of amino acid intake in human dietary profiles
Next, we considered individual dietary amino acid intake profiles
across a population of individuals from diverse ethnic and cultural
backgrounds. We reconstructed the dietary amino acid intake profiles
inmore than 30,000 human subjects in the United States based on 24-
hour dietary recalls in the National Health and Nutrition Examination
Survey (NHANES) 2007-2014 datasets (Fig. 3a). Although 24-hour
dietary recalls used in NHANES have limitations such as under-
reporting of energy intake compared to other approaches for dietary
assessment such as dietary records, this approach has advantages in
large epidemiologic cohorts such as cost-effectiveness42–44. Since the
NHANES datasets do not direct include dietary amino acid intake
values, we developed a set of computational tools for data imputation

Carbohydrate

Fat

Amino acids

Amino acid  subtypes

500000 100000 150000

Fig. 2 | Amino acid landscape of human diets. aWorkflow for the computational
modeling of amino acid abundance in human dietary patterns. Food images used
with permission fromMicrosoft. b Absolute levels of amino acids in human dietary
patterns quantified by the minimal and maximal daily intake values of amino acids
in each dietary pattern. c Principal components analysis (PCA) of relative amino
acid compositions of human diets sampled for all ten dietary patterns. Each dot

represents for a diet. Colors of the dots indicate different dietary patterns.
d Average amino acid composition of the ten human dietary patterns. e F-statistic
values from one-way analysis of variance (ANOVA) comparing the composition of
single amino acids, amino acid subtypes, carbohydrates, and fats across human
dietary patterns. f Violin plots showing the distributions of amino acids that are the
most variable across human dietary patterns. The circles indicate median values.
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and mapping to reconstruct the amino acid profiles for the NHANES
dietary data based on two additional datasets, the USDA SR food
nutritional database and the Food and Nutrient Database for Dietary
Studies (FNDDS) (Fig. 3a). Data imputation using random forest (RF)
regression, an algorithm for multiple imputation which outperformed
other methods in the accuracy of imputation (Supplementary Fig. 6a,
b), was applied to estimate the missing values of amino acid levels in
the USDA SR dataset. The imputed datasets were then used to con-
struct aminoacidprofiles for the FNDDSandNHANESdata bymapping
foods in the USDA dataset to foods in the FNDDS dataset which were
then used to compute nutrient intake values related to the NHANES
dietary recalls (Fig. 3a, Supplementary Methods). To assess the lim-
itations of self-reported dietary profiles in the NHANES data43, we first

compared the distributions of Euclidean distance between matched
(i.e. data from the same individual on different days) and unmatched
(i.e. data from different individuals) dietary intake profiles to confirm
that the dietary intake profiles were consistent between the two 24-
hour recalls (Supplementary Fig. 6c, Wilcoxon’s rank-sum p value
<10−323). We then compared our computed nutrient intake values with
measurements of blood concentrations of related metabolites such as
Vitamin D and found significant positive correlations between self-
reported dietary Vitamin D intake and serum concentration of Vitamin
D (Spearman correlation = 0.39, p value <10−323, Fig. 3b), and between
self-reported dietary protein intake and blood concentration of urea
nitrogen (Spearman correlation = 0.13, p value <10−323, Fig. 3b). Next, to
validate the reconstructed amino acid intake levels, we first compared

Fig. 3 | Landscape of human dietary amino acid intake. a Workflow for recon-
struction of the database consisting of amino acid intake profiles in human dietary
data. Food images used with permission from Microsoft. b Comparison between
nutrient intake values in the self-reported dietary data and laboratory measure-
ments of nutrient-related metabolites in blood. A two-sided Spearman’s rank cor-
relation test was performed to compute the p-value. c Comparison between total
dietary amino acid intake in the reconstructed amino acid intake database and
dietary protein intake in the original dietary data. A two-sided Pearson’s correlation
test was used to compute the p-value. d Comparison of the reconstructed human
dietary amino acid intake values to blood concentrations of amino acids. The dots
represent for mean values and error bars for standard deviations. A two-sided

Spearman’s rank correlation test was performed to compute the p-value. n = 30899
for dietary intake of amino acids, n = 494 for blood concentration of amino acids.
e Comparison of the reconstructed human dietary amino acid intake values to
uptake fluxes of amino acids. The dots represent formean values and error bars for
standard deviations. A two-sided Spearman’s rank correlation test was performed
to compute the p-value. n = 30899 for dietary intake of amino acids, n = 60 for
amino acid uptake fluxes. f Distributions of amino acid intake in human dietary
intake profiles. The circles indicatemedian values. g Principal components analysis
(PCA) of amino acid intake values in human dietary intake profiles showing their
association with age, sex, ethnicity, and batch of the data.
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the total intake of amino acids and intake of protein in each dietary
intake profile and confirmed that the reconstructed total amino acid
intake closely resembles the known total protein intake (Pearson cor-
relation = 0.99, p value <10−323, Fig. 3c).We then correlated the average
amino acid intake profile in the NHANES datasets with the con-
centrations of amino acids in human blood (Spearman correlation =
0.52, p-value = 0.03, Fig. 3d), uptake fluxes of amino acids in human
cell lines, which reflect demands of amino acids in cultured human
cells (Spearman correlation = 0.70, p value = 0.01, Fig. 3e), and amino
acid composition of several culturemediums (Spearman correlation >
0.5 and p value <0.05 for 4 out of 7 culture media, Supplementary
Fig. 6d). Although measurements of circulating amino acids in the
individuals in NHANES were not available and the correlation between
dietary intake and circulating levels of amino acids in different indi-
viduals could be weak in certain circumstances45, the high correlation
between average dietary amino acid intake and physiological para-
meters related to amino acids suggests that our reconstructed amino
acid intake data may reflect some aspects of physiologicalmetabolism
and suggest that the cellularbehaviors and tissuemicroenvironment in
amino acid metabolism reflect to some extent dietary intake of amino
acids despite the many other factors that influence cellular metabo-
lism. Finally, we compared the amino acid signature of a ketogenic diet
predicted using our sampling-based approach and the amino acid
intake profiles of individuals in the NHANES dataset that reportedly
adhere to a ketogenic diet and found that they were consistent
(Spearman correlation = 0.5, p value = 0.03, Supplementary Fig. 6e,
Supplementary Methods).

We then evaluated the overall variability in the intake of each
amino acid based on the ratio of maximal to minimal intake values in
the human dietary profiles (Fig. 3f), and performed PCA on the
reconstructed dietary amino acid profiles to report the association
between dietary amino acid composition and demographic variables
such as age, sex, and ethnicity (Fig. 3g). We found that among the
population included in the NHANES 2007-2014 cohorts, daily intake of
amino acids typically varies by two to six-fold (e.g. maximal intake/
minimal intake = 4 for tryptophan, 2.5 for methionine, 6.2 for glycine,
and so on). Dietary amino acid composition profiles showed no dif-
ference between batches (Fig. 3g), thus confirming that our recon-
struction is not biased by batch effect. Interestingly, dietary intake of
amino acids was found to correlate with age, while no dependency on
other demographic variables such as sex and ethnicity was observed
(Fig. 3g, Supplementary Fig. 7). These reconstructed dietary amino
acid intake profiles allow us to examine the quantitative relationship
between dietary amino acids and human health.

Dietary amino acid intake associations with human health
We next attempted to link dietary amino acid intake and the pre-
valence of several human diseases based on the reconstructed dietary
amino acid intake profiles and clinical data available in the NHANES
database. We focused on chronic diseases that are a major concern to
human health, such as cardiovascular disease, diabetes, and cancer.
We retrieved the medical information of 18,196 adult subjects in the
NHANES 2007-2014 datasets and defined quantitative scores describ-
ing the prevalence of hypertension, obesity, cancer, and diabetes
based on the examination, laboratory, and questionnaire datasets
(Fig. 4a,Methods). Although the data of diseaseprevalence available in
NHANES do not distinguish new and pre-existing diseases, they can
still provide useful information for identifying the associations
between disease burden and dietary intake. We first computed partial
Spearman’s rank correlation coefficients as a metric to evaluate the
association between dietary amino acid composition and the pre-
valence of each of the four diseases while controlling for confounders,
including demographic and lifestyle-related factors (Supplementary
Fig. 8). Moreover, to control for total energy and total protein intake,
amino acid intake values were normalized to the total intake of all

amino acids. We identified many amino acid intake-disease associa-
tions involving all four diseases considered (statistically significant
associations in 21 out of 72 amino acid-diseasepairs, Fig. 4b,Methods),
among which obesity showed the strongest association with dietary
amino acid composition (obesity prevalence positively correlatedwith
the intake of histidine, alanine, glycine, lysine and methionine, and
negatively correlated with intake of tryptophan, phenylalanine, valine,
serine, asparagine, aspartate, glutamine, and glutamate, Fig. 4b). These
associations between dietary amino acid intake and obesity were
consistent with some observations in molecular studies, such as the
anti-obesity functions of dietary tryptophan and pro-obesity functions
of methionine in mice46,47. As a control, we also correlated the pre-
valence of the four diseases with dietary intake of different types of
carbohydrates and fats. Counterintuitively, we found much fewer
statistically significant associations between dietary intake of carbo-
hydrate and fat (9 significant associations out of 40 disease-nutrient
pairs, Fig. 4c). These results together highlight the unexpectedly
strong association between that dietary intake of amino acids and
human disease which exceeds the association for dietary carbohy-
drates and fats. To further explore these questions, we performed a
comparison of the association between nutrients and human health
using machine learning models predicting health outcomes from dif-
ferent types of nutritional variables (Fig. 4d). We categorized nutri-
tional variables included in the NHANES database into six groups,
including energy, macronutrients, macronutrient compositions (i.e.
fractions of different types of carbohydrate and fat in total carbohy-
drate and fat intake), vitamins, minerals, amino acid compositions (i.e.
intake of each amino acid with the unit g/g total AA), and other
nutrients. For each disease, the nutritional variables were used toge-
therwith the potential confounders as covariates to build anelastic net
regularized logistic regressionmodel to predict the prevalence of that
disease. Survey weights were also considered in this model by inte-
grating the weights in the lost function used in training themodel. The
area under receiver operating characteristic curve (AUC) with 5-fold
cross-validation was used to assess the performance of the models in
predicting diseaseprevalence (Fig. 4e).We then compared the fraction
of nutritional variables that affect disease outcomes (i.e. nutritional
variables with non-zero regression coefficients in themachine learning
models) in amino acid composition, macronutrient composition, and
macronutrient levels as indicators of the importance of that group of
nutritional variables in affecting disease prevalence (Fig. 4f).We found
that the prevalence of all four diseases can be predicted from nutrient
intake (AUC>0.6 for all diseases, Fig. 4e) and dietary amino acid
composition affected the prevalence of all four diseases (each of the
four diseases was affected by at least 20% of the amino acid variables,
Fig. 4f), thereby further supporting the conclusion that the association
between dietary amino acid intake and disease outcomes exceeds the
association for dietary carbohydrates and fats. Furthermore, we also
quantified the importance of each variable in the machine learning
model using standardized regression coefficients to assess its con-
tribution in determining the health outcomes. The computed variable
importance for amino acids were comparable to or higher than those
for dietary carbohydrates and fats (Supplementary Fig. 9a). We also
trained the model using log-transformed variables and found that the
transformation had little impact on the regression coefficients (Sup-
plementary Fig. 9b) and AUC values of the model (Supplementary
Fig. 9c). Taken together, these results suggest that dietary amino acid
intake has strong association with the prevalence of several diseases,
thereby providing a rationale for optimization of dietary amino acid
intake.

Guidelines for dietary amino acids and diet design
Dietary recommendations, such as these in the USDA Dietary
Guidelines for Americans, often involve suggestions to consume a
variety of minimally processed foods and recommended ranges
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for intake of nutrients, including macronutrients, vitamins, and
minerals. Since dietary intake of amino acids has been associated
with health outcomes both in molecular studies and by our ana-
lysis thus far, we sought to develop an Artificial Intelligence (AI)
-based approach for the identification of dietary guidelines for
amino acids and design of personalized human diets optimizing
their amino acid composition.

First, we developed an algorithm for the identification of amino
acid intake guidelines based on the associations between dietary
amino acid intake and human health (Fig. 5a). We first focused on
obesity since it had the highest prevalence among all four diseases
and was found to have the strongest association with dietary amino
acid intake among the four diseases considered in this study
(Fig. 4b). We identified two categories of obesity-associated amino
acids according to the corresponding partial Spearman correlation
coefficients and regression coefficients (Fig. 5b), including amino
acids for which the intake positively associate with obesity pre-
valence (‘positive association’, defined by positive Spearman corre-
lation and positive regression coefficient), and those negatively
associate with obesity prevalence (‘negative association’, defined by
negative Spearman correlation and negative regression coefficient).
The amino acids phenylalanine, tryptophan, and valine fell into the

negative association group. On the other hand, the amino acids
glycine and methionine were categorized into the positive associa-
tion group. The association between dietary intake of amino acids
and obesity was not due to changes in calorie intake, since amino
acids positively or negatively associated with obesity were not those
with highest correlation coefficients with calorie intake (Supple-
mentary Fig. 10a).

We also examined whether there exists a dietary pattern that can
minimize the intake of the amino acids positively associated with
obesity while maximizing the intake of the amino acids negatively
associatedwith obesity. To our surprise, no dietary patternwas able to
satisfy all of these requirements. For instance, the plant-based diet has
the lowest levels of methionine, which positively associates with obe-
sity. Nevertheless, the plant-based diet also has the lowest intake of
tryptophan, which negatively associates with obesity, hence cannot
satisfy the requirements of maximizing amino acids negatively asso-
ciated with obesity and minimizing amino acids positively associated
with obesity simultaneously. These results reveal the complexity in the
relationship between dietary amino acid intake and obesity, indicating
trade-offs between the goals of maximizing or minimizing different
groups of amino acids which should be considered while designing
dietary guidelines for amino acids.

Fig. 4 | Amino acid intake is predictive of human health. a Workflow for the
analysis of association between dietary amino acid intake and human health. Ima-
ges used with permission from Microsoft. b Partial Spearman correlation between
prevalenceof humandiseases and dietary intake of amino acids. c Partial Spearman
correlation between prevalence of human diseases and dietary intake of different
types of carbohydrate and fat. d Framework of the machine learning model

predictingprevalenceof humandiseases fromdifferent groups of dietary variables.
e Receiver operating characteristic (ROC) curves of the machine learning models
predicting the four disease outcomes from dietary variables. f Fraction of nutri-
tional variables that affect the disease outcomes inmacronutrients, macronutrient
compositions, and amino acid compositions.
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We therefore sought to define dietary amino acid intake guide-
lines basedon the associationbetweendietary amino acids andobesity
(Fig. 5c), that is, to minimize the total intake of amino acids that
positively associate with obesity (i.e. AAs-to-minimize, including gly-
cine andmethionine), and to maximize the total intake of amino acids
that negatively associate with obesity (i.e. AAs-to-maximize, including
tryptophan, phenylalanine and valine). We first confirmed that both
total AAs-to-minimize and total AAs-to-maximize were significantly

associatedwith obesity prevalence (Chi-squared p value = 1.21×10−11 for
total AAs-to-minimize and 9.12 × 10−11 for total AAs-to-max-
imize, Fig. 5c).

We then further characterized the trade-off between the
requirements of minimizing total AAs-to-minimize and maximizing
total AAs-to-maximize by constructing the Pareto surface based on the
two requirements (Fig. 5d). The concept of Pareto optimality has been
widely applied in economics and engineering, and introduced to
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Fig. 5 | AI for dietary amino acid guidelines and personalized diet design.
a Workflow for AI-assisted identification of dietary amino acid guidelines and
designof personalized diets. Imagesusedwith permission fromMicrosoft.bAmino
acids that positively or negatively associate with obesity prevalence in humans.
c Identification and confirmation of amino acid intake guidelines based on the
association between dietary amino acids and obesity. The p-values were calculated
by two-sided chi-squared test. d Ranges of intake of total amino-acids-to-maximize
and amino-acids-to-minimize in the dietary pattern of the United States of America
Department of Agriculture (USDA) -recommended diet (grey shaded region) and
the Pareto surface (orange bold curve) corresponding to the two guidelines, i.e.

maximizing total amino-acids-to-maximize, and minimizing total amino-acids-to-
minimize. e Associations between the obesity prevalence and deviation of dietary
intake profiles from the Pareto surface. P-values were calculated by two-sided chi-
squared test to assess the significance levels of the associations. n = 18 for single
amino acids, n = 2 for AAs-to-maximize or AAs-to-minimize, n = 10 for deviation
from Pareto surface. f Chi-squared p-values quantifying the association between
deviation from Pareto surface and prevalence of obesity and diabetes in the vali-
dation set. The p-values were calculated by two-sided chi-squared test. g Examples
of diets designed according to the amino acid intake guidelines and personalized
preferences of dietary patterns.
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biology to characterize the trade-off between multiple tasks of bac-
teria, cancer cells, and organisms48–51. For each dietary pattern, there
exists a Pareto surface consisting of diets that best balance the needs
to minimize total AAs-to-minimize and to maximize total AAs-to-
maximize, meaning that for a diet within the Pareto surface, any other
diet following this dietary pattern would never have both higher total
intakeofAAs-to-maximize and lower total intakeofAAs-to-minimize at
the same time. We hence developed an algorithm to construct the
Pareto surface for each of the ten dietary patterns considered in this
study (Fig. 5d, Supplementary Fig. 10b, Methods), and quantified the
extent by which a specific diet satisfies the two requirements of max-
imizing total AAs-to-maximize and minimizing total AAs-to-minimize
using the deviation from Pareto surface (Fig. 5d). For each dietary
pattern, we computed the deviation of each NHANES dietary intake
profile from its Pareto surface, and found that the deviation from the
Pareto surface strongly correlates with obesity prevalence (Chi-
squared p values <10−20 for all dietary patterns, Fig. 5e), implying that
diets on the Pareto surface of each dietary pattern are associated with
lower risk of obesity. On average, an individual that eats a diet that is
the top 20% furthest away from the Pareto surface has a 38% higher
chance of being obese compared to one eating a diet among the 20%
closest to the Pareto surface (Fig. 5e).

To test if a similar association between disease prevalence and
deviation from the Pareto surface also exists for other diseases, we
applied this approach to identify amino acids positively and negatively
associatedwith diabetes (Supplementary Fig. 10c) and constructed the
Pareto surfaces based on those diabetes-associated amino acids. We
found that deviation from the Pareto surface defined based on those
amino acids also correlates with diabetes prevalence (Supplementary
Fig. 10d). Finally, we used the NHANES 2015-2016 dataset, which was
not used in learning the relationship between dietary amino acids and
disease outcomes, as an external validation of the association of obe-
sity and diabetes with the deviation from their corresponding Pareto
surfaces (Chi-squared p-value <0.05 for both diabetes and obesity and
all 10 diets, Fig. 5f, Supplementary Fig. 10e-g).

These findings not only reveal novel relationship between dietary
aminoacid intake andhealth, but also allowus todesigndiets that have
amino acid profiles associated with lower risk of obesity and satisfy
personalized needs and requirements such as preferred dietary pat-
terns according to the constructed Pareto surface of the preferred
dietary pattern. Hence, based on such strategy, we developed an AI for
designing diets including theMediterranean, Paleo, and ketogenic diet
(Fig. 5g). Starting from a user-defined dietary pattern, the AI searches
all combinations of foods that satisfy the requirements of that dietary
pattern for diets (i.e. combinations of foods) that lie on the Pareto
front determined by the two objectives of minimizing the total intake
of amino acids positively associated with obesity and maximizing the
total intake of amino acids negatively associated with obesity. Each
diet contains a variety of foods from diverse sources and keeps the
features of the corresponding dietary pattern.

Discussion
This study develops data resources and computational techniques to
begin to address two major limitations in the nutritional sciences: 1)
the lack of systematic collections of nutritional information and 2) the
lack of computational tools to probe the connections in food, dietary
patterns and practices, and health status. Consequentially, we made a
number offindings about the variability of amino acids across different
types of human foods and dietary patterns and the unexpected asso-
ciations between dietary amino acid intake, food and dietary patterns,
and health. Unexpected links from amino acid intake to pathology
such as obesity highlight non-intuitive diet-disease associations and
inherent trade-offs in amino acid content in food.

While we were able to use the tools we devised to study andmake
discoveries about the landscape of amino acid intake, these cap-
abilities are generalizable to any systematic analysis of human food
anddiet. For instance, it is still unclearhowdietarypatterns andhuman
dietary records differ with each other in micronutrients such as vita-
mins,minerals, dietaryfiber, added sugars, and howpersonalizeddiets
canbe designed to covermore nutritional goals. The application of the
algorithms we developed in this study may help address these
questions.

This study has some limitations. First, the association between
dietary amino acids and human diseases is observational and does not
directly imply causality. Nevertheless, some amino acid-disease asso-
ciations identified by our analysis have been observed in experimental
studies. For instance, tryptophan, which was found to be negatively
associated with obesity in our study, was shown in mice to reduce
appetite and weight gain through the production of serotonin in
brain46. On the other hand, dietary restriction of methionine in mice
and human has been shown to improve metabolic health and increase
fat oxidation, which may contribute to the anti-obesity effects of
dietary methionine restriction47,52,53. However, given the complexity of
nutritional regulation of human health and the collinearity between
intake of nutrients, our analyses have limitations in that they are
exploratory and unable to obtain causal relationships between dietary
amino acids and human health. Other factors that may affect how
dietary amino acids impact human health, such as digestion and
absorption of protein and amino acids, are also not considered in our
analyses because physiological data quantifying these aspects at the
population level are still largely missing. Further studies, such as ran-
domized controlled trials that directly compare the health outcomes
of diets differingwith eachother in amino acids, are necessary but also
limited to the cohort in consideration and the pre-determined end
points.

Second, the computational analyses of amino acid landscape in
human dietary patterns were performed using a sampling-based
approach that generates random diets following a specific dietary
pattern. The rationale for this strategy is that the abundances of amino
acids are uniformly distributed in the feasible region defined by the
constraints related to that dietary pattern. Moreover, the sampling
approach does not explicitly treat the coupling between intake of
amino acids in human diets as constraints. The correlation between
amino acid intake sampled by our algorithm is a direct consequence of
the geometryof the feasible region. Thereby, it is worth noting that the
distribution of intake of single amino acids and the correlation
between intake of different amino acids predicted by this method
could be different from the actual distribution of amino acid intake in
people adhering to the corresponding dietary pattern.

We also note that the datasets used in this study are not com-
pletely free of bias. The majority of entries in the databases of foods
and humandietary data arewestern, while foods frequently consumed
in other geographical regions and by other cultural groups, such as
Asians and Africans, are largely underrepresented. Therefore, appli-
cation of our findings to non-western populations may be limited.
Nevertheless, we are optimistic that this limitation could be addressed
by extending the coverage of the existing nutritional and epidemio-
logical datasets to non-western populations54,55.

Methods
Acquisition of datasets
Microsoft Access database files for USDA National Nutrient Database
for StandardReference (SR) and theUSDAFoodandNutrientDatabase
for Dietary Studies (FNDDS) were downloaded from the website for
USDA Agricultural Research Service: https://www.ars.usda.gov/
northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-
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research-center/methods-and-application-of-food-composition-
laboratory/mafcl-site-pages/sr17-sr28/ (SR), and https://www.ars.usda.
gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-
research-center/food-surveys-research-group/docs/fndds-download-
databases/ (FNDDS). SAS (.xpt) files for NHANES 2007-2008, 2009-
2010, 2011-2012, 2013-2014, 2015-2016 datasets, including demo-
graphics data, dietary data, examination data, laboratory data and
questionnaire data were retrieved from https://wwwn.cdc.gov/nchs/
nhanes/Default.aspx, and converted to R data frames using the func-
tion ‘sasxport.get()’ in the R package ‘Hmisc’. More details about pro-
cedures for pre-processing of the data are described in Supplementary
Methods.

Computer algorithms and their implementation
Details about the computer algorithms used in this study, including
these for reconstruction of amino acid landscape in human foods,
dietary patterns, and dietary intake profiles, are explained below. A full
description of the methodology is provided in the Supplementary
Methods. The regularized logistic regressionmodel and algorithms for
imputation and reconstruction of amino acid profiles in the NHANES
database, including imputation of missing data, andmapping of foods
in the USDA SR, FNDDS, and NHANES databases, were implemented in
R. All other algorithms used in this study were implemented in
MATLAB. The database for amino acid abundance in human foods,
dietary patterns and dietary intake profiles was implemented in both
Microsoft Access database file and Microsoft Excel files. All database
files are freely available for download at the GitHub repository: https://
github.com/ziweidai/AA_human_diet/tree/main/6-Database.

Mathematical definition of diets
A diet is defined as a combination of foods consumed by an individual
on a daily basis, and the consumed amount of each food included in
this diet. A subset of foods (2335 foods in total) in the USDA standard
reference food composition database release 28 (USDA SR28) was
considered in defining diets. Other foods were discarded in this ana-
lysis due to missing values in important nutrients such as carbohy-
drate, fat, protein, vitamins, minerals, and amino acids. Thus, each diet
is defined as a numeric vector with 2335 elements, each of which
describes the amount of the corresponding food in this diet:

x =

x1
x2

..

.

x2335

2
66664

3
77775

ð1Þ

Mathematical definition of human dietary patterns
Human dietary patterns are defined mathematically as a set of con-
straints on the composition of foods or nutrients in a diet following
that dietary pattern. Three types of constraints are considered in
defining a human dietary pattern: constraints on consumption of
foods, constraints on absolute intake of nutrients, and constraints on
ratio between intake of different nutrients. Detailed descriptions of
how these constraints are derived are in the Supplementary Methods.
Briefly, a general mathematical form for definition of a human dietary
pattern is below:

x ≥0

ln ≤Cx ≤un

lf ≤Dx ≤uf

Ex ≤0

8>>><
>>>:

ð2Þ

In which x ≥0 is the constraint that consumption of each food is
nonnegative, ln ≤Cx ≤un is the constraint on consumption of foods,

lf ≤Dx ≤uf is the constraint on absolute values of nutrient intake,
Ex ≤0 is the constraint on ratio between intake of different nutrients.

Quantification of amino acids in human dietary patterns
Ranges of absolute amino acid levels in human dietary patterns
definedby (2)weredeterminedby solving the two linearprogramming
problems below:

minaT
i x,s:t:

x ≥0

ln ≤Cx ≤un

lf ≤Dx ≤uf

Ex ≤0

8>>><
>>>:

ð3Þ

maxaT
i x,s:t:

x ≥0

ln ≤Cx ≤un

lf ≤Dx ≤uf

Ex ≤0

8>>><
>>>:

ð4Þ

The solutions of (3) and (4) give the lower and upper bounds of
the intake of the i-th amino acid in the dietary pattern. Amino acid
composition of a dietary pattern (i.e. intake of each single amino acid
relative to the total intake of all amino acids) was estimated by uni-
formly sampling 50,000 randomdiets under that dietary pattern using
a modified hit-and-run sampling algorithm (details described in the
Supplementary Methods) to simulate the probability distribution of
amino acid composition in that dietary pattern.

Imputation of missing data
Missing data imputation for the USDA SR and FNDDS datasets was
performed using the random forest algorithm implemented in the R
package ‘missForest’. To adjust for the collinearity between amino
acids and protein in human foods, absolute levels of amino acids were
transformed by normalizing to one plus the level of protein in each
food:

dYAA =
YAA

1 + Yprotein
ð5Þ

The transformed amino acid variables were then used together with
absolute levels of other nutrients as the input to the missing data
imputation algorithm. After imputation has been done for the trans-
formed variables dYAA, imputation for absolute levels of amino acids
can be calculated from the imputed dYAA values:

Y ðiÞ
AA =

dY ðiÞ
AAð1 + Y ðiÞ

proteinÞ ð6Þ

In which the superscript (i) indicates imputed variables. After data
imputation with the USDA SR datasets, nutritional composition values
of foods in the FNDDS datasets, which were further used to compute
dietary intake of nutrients in the NHANES data, were computed using
the imputed USDA SR datasets together with themapping information
from foods in SR to foods in FNDDS with factors for moisture and fat
adjustments and retention factors for nutrients considered.

Definition of disease variables
Binary disease variables indicating the presence of pathological
conditions, including obesity, hypertension, diabetes, and cancer,
were constructed based on the datasets ‘Examination data’,
‘Laboratory data’, and ‘Questionnaire data’ in the NHANES databases

Article https://doi.org/10.1038/s41467-022-34486-0

Nature Communications |         (2022) 13:6683 10

https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr17-sr28/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr17-sr28/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://github.com/ziweidai/AA_human_diet/tree/main/6-Database
https://github.com/ziweidai/AA_human_diet/tree/main/6-Database


2007-2008, 2009-2010, 2011-2012, 2013-2014, and 2015-2016. Adults
with BMI values higher than 30were considered obese. Hypertension
was defined as the condition of systolic blood pressure (the variables
‘bpxsy1’, ‘bpxsy2’ and ‘bpxsy3’, corresponding to three consecutive
measurements) being higher than 120mm Hg and diastolic
blood pressure (the variables ‘bpxdi1’, ‘bpxdi2’ and ‘bpxdi3’, corre-
sponding to three consecutive measurements) being higher than
80mm Hg. Diabetes was defined as the condition of glycohe-
moglobin levels (the variable ‘lbxgh’) being higher than 6.5%, fasting
plasma glucose concentration (the variable ‘lbxglu’) higher than
126mg/dL, and blood glucose concentration in response to oral
glucose tolerance test (the variable ‘lbxglt’) higher than 200mg/dL.
Information about the presence of cancer was obtained from
answers to the question ‘Have you ever been told by a doctor or
other health professional that you had cancer or a malignancy of any
kind?’ in the questionnaire about medical conditions, in which the
answers ‘yes’ or ‘no’ were linked to the presence or absence of can-
cer, while the answers ‘refused’ and ‘don’t know’ were considered as
missing data.

Identification of amino acids associated with diseases
A logistic regression model with elastic net regularization of the
regression coefficients was built to predict disease prevalence from
dietary variables. Under the assumption that the interactions between
dietary variables and potential confounders are additive, the model
has the form below:

p y= 1∣xAA,xnut ,xc

� �
=

eðwAA
TxAA +wnut

Txnut +wc
Txc +bÞ

1 + eðwAA
TxAA +wnut

Txnut +wc
Txc +bÞ

ð7Þ

This model links dietary amino acid composition (xAA), other
dietary variables (xnut), and potential confounders (xc) to the disease
outcome (y, value 1 means that the individual has that disease). The R
package ‘glmnet’ was used to train the model and assess its perfor-
mance using 5-fold cross validation with the survey weight of each
sample in the NHANES dataset taken into consideration. Feature
importance for each variable in xAA, xnut and xc was computed by
absolute value of the standardized regression coefficient (i.e. the
product of the original regression coefficient and the standard devia-
tion of the variable). Partial Spearman’s rank correlation coefficients
were also computed as an additional metric quantifying the associa-
tion between dietary variables and disease prevalence. Amino acids
with positive partial Spearman’s rank correlation coefficients and
positive regression coefficients with a disease were considered posi-
tively associated with that disease, and those with negative partial
Spearman’s rank correlation coefficients and negative regression
coefficients with that disease were considered negatively associated
with that disease.

Analysis of Pareto optimality
After identification of amino acids positively or negatively associated
with a disease, the general mathematical form of optimizing the two
amino acid intake goals of minimizing total intake of amino acids
positively associated with that disease and maximizing total intake of
amino acids negatively associated with that disease under a dietary
pattern is defined as shown below:

maxaT
+ x,minaT

�x,s:t:

x ≥0

ln ≤Cx ≤un

lf ≤Dx ≤uf

Ex ≤0

8>>><
>>>:

ð8Þ

A feasible solution x0 of this problem is defined as a Pareto
solution if for any other feasible solution x1,a

T
�x1>a

T
�x0 ifa

T
+ x1>a

T
+ x0,

and aT
+ x1<a

T
+ x0 if aT

�x1<a
T
�x0. The Pareto surface consisting of all

solutions with Pareto optimality was then constructed using the ε-
Constraint algorithm to calculate 100 different solutions uniformly
distributed in the Pareto surface. Deviation of a diet from the Pareto
surface was then computed by calculating the shortest distance
between the diet and the 100 Pareto solutions in terms of the total
daily intake of AAs-to-maximize and AAs-to-minimize.

Statistical analysis
Principal component analysis was performed using the MATLAB built-
in function ‘pca()’. One-way ANOVAwas performed using the MATLAB
built-in function ‘anova1()’. Elastic net regularized logistic regression
models were constructed, trained, and evaluated using the functions
‘cv.glmnet()’, ‘glmnet()’, ‘predict()’ and ‘performance()’ in the R
packages ‘glmnet’ and ‘ROCR’. Chi-squared test was performed using
the MATLAB built-in function ‘crosstab()’. Relationships with p-value
<0.05 were considered significant. Partial Spearman’s rank correlation
coefficients were computed using the MATLAB built-in function ‘par-
tialcorr()’ with p-values adjusted using the Benjamini-Hochberg pro-
cedure. Associations with adjusted p-value <0.05 were considered
significant. Average amino acid abundances in food categories or
dietary patterns were computed using the mean values of amino acid
abundances across all foods in that food category or instances in that
dietary pattern.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The dataset containing abundanceof nutrients in human foods used in
this study is available in the United States of America Department of
Agriculture National Nutrient Database for Standard Reference Legacy
Release (USDA SR) [https://data.nal.usda.gov/dataset/usda-national-
nutrient-database-standard-reference-legacy-release]. Demographic,
dietary, examination, laboratory, and questionnaire datasets used in
this study are available in the National Health and Nutrition Examina-
tion Survey (NHANES) database [https://wwwn.cdc.gov/nchs/nhanes/
Default.aspx]. All datasets generated in this study are available at the
GitHubpageof ZiweiDai: https://github.com/ziweidai/AA_human_diet.
The datasets have also been deposited to Zenodo and can be accessed
by the DOI identifier 10.5281/zenodo.7212850 [https://doi.org/10.5281/
zenodo.7212850].

Code availability
All code and scripts generated in this study are available at the GitHub
pageofZiwei Dai: https://github.com/ziweidai/AA_human_diet and can
be accessed by the DOI identifier https://doi.org/10.5281/zenodo.
7212850 [https://doi.org/10.5281/zenodo.7212850].
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