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Leaf water content contributes to global leaf
trait relationships

Zhiqiang Wang 1,2, Heng Huang 3,4 , Han Wang5, Josep Peñuelas 6,7,
Jordi Sardans 6,7, Ülo Niinemets8, Karl J. Niklas 9, Yan Li10, Jiangbo Xie10 &
Ian J. Wright11,12

Leaf functional traits are important indicators of plant growth and ecosystem
dynamics. Despite a wealth of knowledge about leaf trait relationships, a
mechanistic understanding of how biotic and abiotic factors quantitatively
influence leaf trait variation and scaling is still incomplete. We propose that
leaf water content (LWC) inherently affects other leaf traits, although its role
has been largely neglected. Here, we present a modification of a previously
validated model based on metabolic theory and use an extensive global leaf
trait dataset to test it. Analyses show that mass-based photosynthetic capacity
and specific leaf area increase nonlinearly with LWC, as predicted by the
model. When the effects of temperature and LWC are controlled, the numer-
ical values for the leaf area-mass scaling exponents converge onto 1.0 across
plant functional groups, ecosystem types, and latitudinal zones. The data also
indicate that leaf watermass is a better predictor of whole-leaf photosynthesis
and leaf area than whole-leaf nitrogen and phosphorus masses. Our findings
highlight a comprehensive theory that can quantitatively predict some global
patterns from the leaf economics spectrum.

Leaf functional traits are closely related to plant growth and ecosystem
dynamics1,2, and strongly influence carbon cycling and energy balance
at the ecosystem level3–6. Several studies have explored the scaling
relationships among leaf functional traits1,7–12. However, whether there
exists a general model that quantitatively predicts all of the pertinent
bivariate leaf trait relationships remains an open question. Among
these important traits, leaf photosynthesis, specific leaf area (SLA), and
leaf dry mass per area (LMA, the inverse of SLA) play critical roles
because they reflect the potential for plant growth and mirror plant
ecological strategies in response to environmental changes as well as

along natural environmental gradients3,13. Considerable variations in
leaf traits, such as SLA (and thus LMA), have been observed across
plant species, functional groups, and environmental conditions14. Yet,
the underlying mechanisms of these relationships remain elusive. In
addition, variations in SLA indicate the variability of the scaling of leaf
area (AL) with leaf dry mass (ML) which can be described by a gen-
eralised power law, i.e. AL =βML

α, whereα is the scaling exponent, and
β is the normalisation constant. The overall numerical value of α is
reported to be smaller than 1.0, indicating a phenomenon called
“diminishing return” because increasing investments in ML fail to
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produce proportional increases in AL. However, the numerical value of
α can vary from <1.0 to >1.0 among or within some groups of
species8,10. Nevertheless, theoretical attempts to explain the observed
variability of α are rare and thus incomplete.

Tissue water content is another important, yet relatively under-
investigated, plant functional trait. Water plays a fundamental role in
biochemical reactions and metabolism15, and its availability regulates
plant growth and metabolism, thereby influencing the productivity
and carbon cycling of ecosystems16–20. At the leaf level, water avail-
ability may also directly affect other leaf traits, such as leaf photo-
synthetic rates and SLA (and thus LMA)21. In fact, leaf dry matter
content (LDMC), which is functionally equivalent to leaf water content
(LWC), has been suggested to be a better predictor of ecosystem
above-ground net primary productivity (aNPP) than SLA22, although
aNPP is influenced by many other factors23, suggesting an important
role of LWC in the leaf economics spectrum, particularly since pre-
vious studies reveal that LWCplays a key role in leaf thermal regulation
and further affects leaf carbon assimilation24–26. Therefore, exploring
the quantitative links between LWC and other leaf traits could improve
our understanding of not only trait variation and scaling relationships
but also of trait shifts in response to climate change.

In order to improve our understanding of these lineages, we
derive a theoretical framework to explore the universal effects of
temperature and LWC on leaf photosynthesis and SLA. We then use a
comprehensive global leaf trait database compiled from 3427 species
across a variety of ecosystems (Fig. 1) to (i) test whether the theoretical
model successfully predicts the empirical relationships between leaf
traits (mass-specific light-saturated leaf photosynthetic rate and SLA)
and LWC and temperature and (ii) examine whether the exponent of
leaf trait scaling converges onto a canonical value of 1.0 after tem-
perature and LWC are corrected, as predicted by the model, across
different plant life forms, ecosystem types, and latitudinal zones. Apart
from LWC, leaf nitrogen (N) and phosphorus (P) are also considered

two important traits in the leaf economics spectrum due to their
essential roles in plant metabolism27 and also to their strong correla-
tions with other leaf traits1,10. Thus, we further test the critical role of
LWC by comparing the robustness of leaf water mass versus leaf
nitrogen (N) and phosphorus (P) mass in predicting leaf photosynth-
esis and leaf area.

Results and discussion
The theoretical model
The model presented here builds on a recently developed
metabolic theory based on biochemical kinetics. It describes a non-
linear relationship between plant metabolic rate per unit of dry mass
(Bs, nmol g−1 s−1), such as light-saturated photosynthetic rates and dark
respiration rates, plant water content (S, g g−1), and temperature
(in degrees K)19,20, i.e.

Bs = g1e
k1S= K1 + Sð Þe�E=kT ð1Þ

where g1 is a normalisation constant, k1 represents the maximum
increase in specific metabolic rates due to changes in water content
(i.e. from dehydrated to fully hydrated), K1 represents the water con-
tent when the mean reaction rate of cellular metabolism reaches one-
half of its maximum, E is the activation energy, and k is Boltzmann’s
constant. In this model S is defined on a drymass basis (i.e. the ratio of
plant water mass to plant dry mass) to broaden its range and better
reflect the proportional changes in the amount of water in plant
tissues20. Full details of the model’s assumptions can be found in the
Methods andHuang et al.19,20. Themodel was tested and shown to hold
true for a broad range of species and for whole plants and above- and
belowgroundorgans20. Here, wefirst applied themodel to describe the
quantitative effects of dry mass-based LWC (the ratio of leaf water
mass to leaf dry mass) and temperature on the light-saturated leaf
photosynthetic rate per unit of dry mass or leaf photosynthetic
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Fig. 1 | The distribution of the sampling sites of the studied leaf functional
traits. a Global map showing the geographic locations of the field sites. b Two

dimensional climate space represented by mean annual temperature and mean
annual precipitation superimposed on Whittaker biomes.
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capacity (Ps, nmol CO2 g
−1 s−1), which can be expressed as

ln Ps
� �

= ln
PL

ML

� �
= ln g1

� �
+

k1 � LWC
K1 + LWC

� E
kT

, ð2Þ

where PL is the light-saturatedwhole-leaf photosynthetic rate (nmol s−1).
Equation 2 indicates that the log-transformed temperature-corrected Ps
(i.e. Pscor) should increase with LWC, following Michaelis-Menten type
hyperbolic response, i.e.

ln Pscor
� �

= ln Pse
E=kT

� �
= ln g1

� �
+

k1 � LWC
K1 + LWC

: ð3Þ

Rearranging Eq. (2) shows that the temperature- and LWC-
corrected whole-leaf photosynthetic rate (i.e. PLcor) should scale iso-
metrically with ML, i.e.

PLcor =PLe
�k1 �LWC= K1 + LWCð ÞeE=kT = g1ML: ð4Þ

In this study, we refer to the temperature or water content cor-
rection as moving the temperature term ( E

kT) or water content term
( k1 �LWC
K1 + LWC) to the left-hand side of the model, an approach that has been
commonly used in previous studies28.

Following previous studies29–31, we assume that PL is proportional
to AL, i.e. PL / ALbecause leaf area directly determines the light
interception capacity1. Therefore, the quantitative relationship
between SLA and LWC and temperature can be described as

ln SLAð Þ= ln AL

ML

� �
= ln g2

� �
+

k1 � LWC
K1 + LWC

� E
kT

, ð5Þ

where g2 is another normalisation constant. Given that leaf area is a
direct indicator of leaf photosynthetic capacity and that both traits
reflect the long-term adaptation of plants to environmental change3,13,
k1 in Eqs. (2) and (5) represent the maximum increase in mass-specific
leaf photosynthetic capacity due to changes in water content. Since
the temperature has a direct effect on the metabolic rates32 and
productivity of ecosystems33, it is reasonable to assume that
temperature can affect SLA globally34,35. Therefore, in this context T
denotes the mean growing-season temperature (in degrees K), as SLA
might be more responsive to long-term changes in temperature.
Equation (5) predicts that SLA should increase with both LWC and the
growing-season temperature. Rearranging Eq. (5) yields

ln SLAcor
� �

= ln SLAeE=kT
� �

= ln g2

� �
+

k1 � LWC
K1 + LWC

, ð6Þ

which predicts that the log-transformed temperature-corrected SLA
(i.e. SLAcor) should increase with LWC following Michaelis-Menten
dynamics. Likewise, by moving k1 �LWC

K1 + LWC and E
kT to the left-hand side and

ML to the right-hand side of Eq. (5), we observe that the temperature-
and LWC-corrected leaf area (i.e. ALcor) should scale isometrically with
leaf mass, i.e.

ALcor =ALe
�k1 �LWC= K1 + LWCð ÞeE=kT = g2ML: ð7Þ

We note that the scaling of PLcor and ALcor with respect to ML will
reveal how LWC mediates the scaling exponent of leaf trait
relationships.

Effects of LWC and temperature on leaf trait scaling
The numerical value of the exponent for the PL versus AL scaling
relationship calculated from the empirical data was 0.99 (Supple-
mentary Fig. 1; 95% CI = 0.95 and 1.02, r2 = 0.87), strongly supporting
the model assumption that PL scales isometrically with AL. We then

examined the effect of LWCon leaf trait scaling. The numerical valueof
the scaling exponent for the PL versusML relationshipwas0.95 (Fig. 2a;
95% CI = 0.92 and 0.99, r2 = 0.83). The non-linear relationship between
Pscor and LWCdescribedby Eq. (3)was supportedby the empirical data
(Fig. 2b; Supplementary Table 1). The non-linearmodel (Eq. 3) also had
a lower Akaike’s Information Criterion score than the simple linear
model between log-transformed Pscor and LWC (i.e. 793.5 versus
1988.8). After LWC and temperature were corrected (see Eq. 4), the
numerical value of the scaling exponent became 0.97 (Fig. 2c; 95%
CI = 0.94 and 1.01, r2 = 0.85), which was statistically indistinguishable
from 1.0 (P >0.05), as predicted by the model. Likewise, the numerical
value of the exponent (i.e. α) for the AL versusML scaling relationship
was 1.02 (Fig. 2d; 95% CI = 1.02 and 1.03, r2 = 0.92). Additional analyses
using the pooled dataset showed that log-transformed SLA increased
with LWC following Michaelis-Menten dynamics, as predicted by
Eq. (6) (Fig. 2e; Supplementary Table 1). After the effects of LWC and
temperaturewere accounted for (using Eq. 7), the numerical value ofα
became 1.01 (Fig. 2f; 95% CI = 1.00 and 1.01, r2 = 0.95). Thus, both of the
scaling exponents numerically converged onto 1.0 once LWC and
temperature were corrected. In addition, an inspection of the locally
weighted smoothing (LOWESS) curves showed that the curvature in
both scaling relationships was reduced after the effects of LWC and
temperature were corrected, as predicted by the model (Fig. 2).

The results presented here show that temperature and LWC
quantitatively correlate with other leaf traits, such as Ps and SLA (or
LMA), as predicted by themodel. The increases in Ps and SLA attenuate
with increasing LWC (Fig. 2b, e), indicating that leaf water availability
sets a constraint on the maximum Ps and SLA that leaves can reach. It
has long been recognised that SLA is closely correlated with leaf
growth rate and metabolic activity14,36,37. Therefore, it is reasonable to
also expect that SLA, as well as Ps, will be quantitatively affected by
LWC, which can change as a function of developmental status (such as
leaf maturation and the accumulation of lignified tissues) and tran-
siently as a function of evapotranspiration. LWC is also a reflection of
species-specific adaptation to environmental conditions in different
biomes. Nevertheless, our model, as well as the empirical data used to
test it, reveal a broad and statistically robust correlation between cri-
tical leaf functional traits and leaf tissue water content. However, the
observed variations in Pscor (Fig. 2b) suggest that in addition to tem-
perature and LWC, other factors (e.g. plant phylogeny and soil fertility)
may also affect leaf photosynthetic capacity, which is not accounted
for in our model and should be critically examined in future research.

Leaf area-mass scaling among different groups
The numerical value of α varied across different plant growth forms,
ecosystems, and latitudinal zones (Fig. 3 and Supplementary Table 2).
In particular, the leaf area versus mass scaling relationship showed a
clear pattern along a latitudinal gradient (Fig. 3c and Supplementary
Table 2). The numerical value of α decreased from 1.10 in boreal
regions (95% CI = 1.08 and 1.12, r2 = 0.91) to 1.00 in temperate regions
(95% CI = 0.99 and 1.01, r2 = 0.91), and to 0.94 in tropical regions (95%
CI = 0.92 and 0.95, r2 = 0.91). However, after correcting for the effects
of LWC and temperature, as predicted, α converged onto 1.0 across all
different groupings, and the r2 values of the scaling relationships also
increased (Fig. 3 and Supplementary Table 2).

Our analyses show that LWC also affects the numerical values of
the exponents of leaf trait scaling relationships, which helps to explain
why different works sometimes report significant differences in the
exponents governing these relationships8,10. In particular, the numer-
ical values of the scaling exponent governing the leaf area versusmass
scaling relationship differ among different plant growth forms, eco-
systems, and latitudinal zones (Fig. 3 and Supplementary Table 2),
indicating that no invariant “scaling exponent” (i.e. α) holds true for
the leaf area-mass scaling relationship. For example, in our dataset,α is
significantly smaller than 1.0 in tropical regions (i.e. in keeping with a
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“diminishing returns” relationship in leaf area with respect to
increasing leaf mass), close to 1.0 in temperate regions (i.e. a break-
even relationship), and significantly larger than 1.0 in boreal regions
(i.e. an “increasing returns” relationship). This shift in α along a

latitudinal gradient may be associated with the different strategies to
cope with variations in water availability, e.g. the high evapo-
transpiration rates in tropical regions may constrain increases in leaf
area with increasing leaf mass, therefore resulting in diminishing

Fig. 2 | The quantitative effects of dry mass-based leaf water content (LWC) on
leaf photosynthesis and SLA. a Scaling of leaf photosynthetic rate (PL, nmol s−1)
with leaf drymass (ML, g). bNon-linear fit to the relationship between temperature-
correctedmass-specific leaf photosynthetic rate (Pscor, nmol g−1 s−1) and LWC (g g−1)
based on Eq. (3). c Scaling of temperature- and LWC-corrected leaf photosynthetic
rate (PLcor, nmol s−1) with ML (g). d Scaling of leaf area (AL, cm

2) with leaf dry mass

(ML, g). e Non-linear fit to the relationship between temperature-corrected specific
leaf area (SLAcor, cm

2 g−1) and LWC based on Eq. (6). f Scaling of temperature- and
LWC-corrected leaf area (ALcor, cm

2) with leaf dry mass (ML, g). Data with LWC
greater than 25were not shown in panel e for a better visualisation. LOWESS curves
(blue lines) and 95% confidence intervals are shown.

Fig. 3 | The exponents of leaf area-mass scaling with and without temperature
and LWC corrections among different groups. a Comparison of scaling expo-
nents among plant growth forms (n = 1688, 491, 1097, and 832 for forbs, grami-
noids, shrubs, and trees, respectively). b Comparison of scaling exponents among

ecosystem types (n = 97, 1367, 1285, 1271, and 114 for deserts, forests, grasslands,
tundra, and wetlands, respectively). c Comparison of scaling exponents among
different latitudinal zones (n = 1111, 2113, and910 for tropical, temperate, andboreal
zones, respectively). Error bars indicate 95% confidence intervals.
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returns, whereas, in boreal regions, the reduced water stress may
enable plants to maximise leaf area to achieve relatively high photo-
synthetic capacities. Despite the variability in the numerical values of
scaling exponents across different groups, the degree of curvature in
these scaling relationships is reduced, and exponents converge onto
unity after the effects of LWC and temperature are accounted for
(Fig. 3), as predicted by the model (Eq. 7). This finding indicates
that the variations in the exponent can, at least partially, be ascribed
to the effects of LWC on SLA and the relative rate of increase in
leaf area versus leaf mass. It is noteworthy that the numerical value of
the scaling exponent for the PL versus ML relationship is also very
close to 1.0, indicating the relatively weak effects of temperature and
LWC on leaf photosynthesis-mass scaling. This may be partially
attributed to the relatively limited number of data with concurrent
LWC measurements and the adaptation of leaf traits to long-term
temperature changes (see below for detailed discussion). Never-
theless,moremeasurements on LWC and leaf photosynthetic rates are
needed to further test how LWC mediates leaf photosynthesis-mass
scaling.

Given that LWC was weakly correlated with ML (Supplementary
Fig. 2, log-log slope = −0.01, 95% CI = −0.02 and 0, r2 < 0.01, P = 0.17), it
is reasonable to assume that LWC is independent of ML in order
to derive the change in temperature-corrected PL and AL with respect
to differences in ML i.e. ∂ PLe

E=kT
� �

=∂ML = g1e
k1 �LWC= K1 + LWCð Þ and

∂ ALe
E=kT

� �
=∂ML = g2e

k1 �LWC= K1 + LWCð Þ. These equations predict that
increases in temperature-corrected PL andALwith respect toML should
become faster with increasing LWC when LWC is relatively low, and
achieve a relatively constant rate (plateau) when LWC is saturated,
such that k1 � LWC= K1 + LWC

� �
≈1 (Supplementary Fig. 3). Therefore,

LWC plays an essential role in regulating the dynamics of whole-leaf
photosynthesis and area.

Leaf water mass is a robust predictor of leaf photosynthesis
and area
We used the China Plant Trait Database38 (see Methods) to explore
whether whole-leaf N and P mass (g) or water mass (MW, g) show
stronger scaling relationships with PL and AL. This dataset was speci-
fically used for this purpose because it includes paired data required
for this comparison. The numerical values of the scaling exponents of
the relationships of PL versus leaf N and P were 0.94 (Fig. 4a; 95%
CI = 0.90 and 0.98, r2 = 0.80) and 0.76 (Fig. 4b; 95% CI = 0.72 and 0.82,
r2 = 0.71), respectively. Likewise, the exponents for the scaling of AL

versus leafN and Pwere0.95 (Fig. 4d; 95%CI = 0.92 and 0.99, r2 = 0.86)
and 0.81 (Fig. 4e; 95% CI = 0.77 and 0.86, r2 = 0.78), respectively.
However, PL and AL scaled as the 0.95 power (Fig. 4c; 95%CI = 0.91 and
0.99, r2 = 0.81) and as the 0.97 power ofMW (Fig. 4f; 95% CI = 0.94 and
0.99, r2 = 0.91), respectively. Thus, MW provided a higher explanatory
power inpredictingPL andALwith anexponent closer to 1.0 thaneither
leaf N or P. Moreover, an inspection of the LOWESS curves (blue lines
in the graphsof Fig. 4) showed that the scalingofPL andALwith respect
to both leafN andPhada stronger degreeof curvature than the scaling
of PL and AL with respect to MW. Thus, water appears to have a higher
hierarchical status than nutrients in terrestrial ecosystems where
almost all biological activities, including nutrient uptake, depend on
water availability15.

Leaf N and P are considered important leaf traits in the leaf eco-
nomics spectrum because of their close correlations with other leaf
traits, such as PL and AL

1,9,10. However, the numerical values of scaling
exponents are known to vary significantly across different plant
groups9, and no mechanistic model has been proposed to explain this
variation. In this study, we found that the scaling relationships of PL
andAL, with respect to leafN andP, exhibited curvature, whereas using
MW resulted in much more robust and linear scaling relationships

Fig. 4 | Leaf water is a robust predictor of leaf photosynthesis and area. The
scaling of whole-leaf photosynthesis (PL, nmol s−1, a–c) and leaf area (AL, cm

2, d–f)
with leaf nitrogen (N, g), phosphorus (P, g), and water mass (MW, g). The SMA

regression lines (black lines), the LOWESS curves (blue lines) and 95% confidence
intervals (grey areas) are shown.
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(Fig. 4). These analyses indicate that leaf water availability may be a
better indicator of PL and AL compared to leaf N and P, probably
because (i) water serves as an essential biochemical reactant, solvent,
and nutrient carrier in plants15,20, which indicates that leaf water
availability plays a more fundamental role in determining leaf growth
and metabolism than leaf N and P; and (ii) LWC is more sensitive to
changes in endogenous (e.g. developmental age) and exogenous fac-
tors (e.g. drought stress) thereby providing a better reflection of plant
growth status and changes in other leaf traits15,39. Leaf N shows a more
robust scaling relationship with PL than P (Fig. 4a, b), which is rea-
sonable because N is a major component of key enzymes involved in
photosynthesis, such as Rubisco.

The important role of LWC in the leaf economics spectrum
Although LWC is a relatively understudied leaf trait, its important role
in the leaf economics spectrum is indicated by the strong correlations
between LDMC, a trait that is functionally related to LWC, and other
traits, such as SLA40. Recent work reveals that LDMC also affects the
ability of leaves to store and exchange heat in response to changes in
surface energy fluxes, which further influences leaf carbon
assimilation26. In addition, LDMC is predicted to be an effective indi-
cator of plant resource use41 and ecosystem net primary production22,
which corroborates the crucial role of LWC in regulating leaf growth
and metabolism and, therefore, influencing productivity at the whole-
plant and at the ecosystem levels. Although leaf functional traits have
been extensively explored in ecological studies1,7–12, leaf trait variation
across species or ecosystems, as well as the quantitative relationships
among leaf traits, are not well understood due to the lack of a general
model that captures the fundamental mechanism governing leaf trait
variation. Our findings indicate that LWC is an important leaf trait that
shows non-linear quantitative relationships with other important leaf
traits, i.e. Ps and SLA (or LMA), and directly regulates the leaf trait
scaling relationships. Although temporal variations in LWCmight exist
in response to instantaneous changes in microclimate conditions,
previous work indicates that variation in LDMC (and thus LWC) is
relatively conserved across seasons42. Further investigations should be
conducted to better understand the temporal (e.g. seasonal and
yearly) dynamicsof LWCand its link to the dynamicsof other leaf traits
across different species and ecosystems.

Relatively weak effects of temperature and precipitation
It isworth noting that the energy activation E in the Boltzmann factor is
observed to be very close to 0 for both the leaf photosynthesis-mass
scaling (−0.13, 95% CI = −0.40 and 0.15) and leaf area-mass scaling
relationships (0.03, 95% CI = 0.01 and 0.05), which is consistent
with previous work showing that both individual tree growth and

ecosystem productivity are weakly correlated with growing-season air
temperature33,43. This observed weak effect of temperature may be
probably attributed to species-specific short-term phenotypic accli-
mation and long-term adaptation of plant photosynthetic traits to
changes in ambient temperature43,44. However, as discussed
elsewhere33,43, we used long-term mean air temperature for the SLA
analyses, which may not effectively reflect the leaf temperature at
which leaf traits were measured. Future investigations are needed to
critically examine the effect of leaf temperature on leaf trait variations
and trait scaling relationships.

Although the effect of precipitation was not directly quantified in
our model, it might be partially accounted for by the effect of LWC
because the plant water content is closely correlated with a variety of
hydrological processes such as precipitation and evapotranspiration,
soil water status, and plant growth16,20. Our analyses show that both
LWC and SLAcor are overall weakly correlated with mean annual pre-
cipitation (Supplementary Fig. 4), indicating that precipitation alone
might not be able to fully explain leaf trait variation. In contrast, LWC
shows a strongnon-linear correlationwith other leaf traits as predicted
by our model and as shown by using a global dataset, demonstrating
that LWC is an integrative trait thatplays a critical role inmediating leaf
trait variability.

In this study, we combined a theoretical model and a global leaf
trait dataset to quantify the effects of LWC and temperature on leaf
trait scaling relationships (Fig. 5). The theoretical frameworkpresented
here provides a mechanistically deeper insight into the integrated
functional traits of leaves and into how future changes in global cli-
mate may affect leaf traits such as Ps and SLA (and LMA). Empirical
observations and global climate simulations predict an overall rise in
temperature and especially an intensification of drought stress in
many regions of the world45,46. These climatic changes will undoubt-
edly influence leaf traits, including Ps and SLA, directly through the
effect of temperature or indirectly through the drought-induced
changes in leaf structure and leafwater status.Our study highlights the
importance of LWC as a simple but powerful trait that can be easily
measured, and that quantitatively correlates with other important leaf
traits. Consequently, LWC should be included in the leaf economics
spectrum to better understand the trait variations and scaling
relationships.

Methods
The model assumptions
In this study, we extended a previously published model19,20 to derive
the model for leaf trait relationships. The previously validated model
was developed to quantify the effects of body mass and temperature
on plant metabolic rates based on the following assumptions.

Fig. 5 | The three-dimensional leaf trait relationships. The relationships of log-
transformed Ps (nmol g−1 s−1, a) and SLA (cm2 g−1, b) with temperature (°C) and LWC

(g g−1). The dots projected on the floor andwalls indicate bivariate correlations. The
planes represent the theoretical predicted relationships based on Eqs. (2) and (5).
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First, cellular metabolism is limited by the water availability of plant
tissues, given the fundamental role of water in metabolism (e.g. as a
biochemical reactant and nutrient carrier)15. In addition, the effect of
tissue water content on themean rate of metabolic chemical reactions
follows the Michaelis-Menten type hyperbolic response. Finally, the
rate of change in cellular metabolism is proportional to the rate of
change in the critical metabolic chemical reaction. More details on the
model derivation are provided in Huang et al.19,20.

Data synthesis
To test the predictions of our model, we merged the TRY plant trait
database47, the Tundra Trait Team (TTT) database48, the BROT plant
functional trait database49, and theGLOPNETdatabase1, and adatabase
compiled from 12 additional peer-reviewed papers (see Supplemen-
tary Data sources). We focused on the six key traits most commonly
reported across the dataset: leaf area, leaf fresh and drymass, SLA, and
LWC or LDMC. Data were included using two stringent criteria: (1) the
data for leaf dry mass, leaf area, LWC or LDMC was concurrently
measured and reported simultaneously; (2) only data from natural
ecosystems at non-polluted sites were used (this excluded data from
fertilised plants or plants grown in greenhouses). We also excluded
data for which the identification of species was lacking. In total, the
resulting dataset containedmore than 17,000 traitmeasurements for a
total of 3427 species distributed globally across different ecosys-
tems (Fig. 1).

Given the relatively limited data available for instantaneous leaf
photosynthetic rates with paired measurements of LWC, we used a
specific dataset from the TRY plant trait database (i.e. the China Plant
Trait Database38), which consists of paired leaf trait measurements
(including leaf light-saturated photosynthesis rate, leaf area, LDMC,
and leaf N and P) from 1215 plant species across a variety of ecosys-
tems, to test the effect of leaf N and P mass versus leaf water mass on
leaf photosynthesis and leaf area. We removed records with missing
values of the selected leaf traits, resulting in a total of 404 measure-
ments. Leaf mass-specific photosynthetic rate (nmol g−1 s−1) was con-
verted from area-specific photosynthetic rate (umol m−2 s−1) by
multiplying SLA (m2 kg−1). In this study, we used dry mass-based LWC
(i.e. the ratio of leaf water mass to leaf dry mass, g g−1), which was
calculated from the fresh mass-based leaf water content or LDMC
reported in the global leaf trait dataset.

Data analysis
For leaf photosynthetic rates, the in situ temperature atwhich the rates
were measured was used for model fitting. For SLA, the monthly
average temperature data (with a spatial resolution of ~1 km2) at each
site were retrieved from the WorldClim 2.1 database (http://www.
worldclim.org/). Following the previous work1, we defined “growing
season months” as months with a mean temperature >4.99 °C. The
growing-season temperature at each site was calculated as the average
temperature across growing-season months. To reduce errors intro-
duced by transient temperature changes, we used long-term tem-
perature data to calculate growing-season temperatures. This
“averaging” approach should be appropriate because of the great
number of field sites included in this study. The mean annual pre-
cipitation (mm) at each site was also retrieved from the WorldClim 2.1
database to explore its correlations with LWC and SLA.

Given the differences in leaf sample sizes across sites, leaf trait
values were averaged for each species at each sampling site to obtain
species mean trait values. We note that we did not average the trait
values for the same species across sites because some species exist in
different ecosystems and latitudinal zones, which adds difficulty to the
comparison analyses among ecosystem types and latitudinal gra-
dients. Species were categorised into one of the four plant growth
forms (trees, shrubs, graminoids, and forbs) and into one of the five
ecosystem types (forest, grassland, desert, tundra, and wetland) to

compare differences in the numerical values of scaling exponents
among groups. Species belonging to geophytes, pteridophytes, and
vines were only used for pooled data analysis due to their limited
number of measurements. To investigate whether the numerical
values of scaling exponents exhibited a latitudinal pattern, the data
were segregated into three latitudinal zones (tropical 0–25°, tempe-
rate 25–50°, and boreal >50°). The bivariate scaling relationships
among leaf traits for the pooled data and for each species group were
fitted using standard major axis (SMA) regression, except for the
scaling relationshipbetweenLWCand leafmass, whichwasfitted using
ordinary least squares (OLS) regression because of the expectation
that the slope should be small and close to zero. These regression
analyses were performed using the lmodel2 function in the R package
lmodel250. The leaf trait scaling relationships were also fitted by locally
weighted sums of squares (LOWESS) smoothing lines to reveal the
curvature across leaf size. The non-linear relationships of specific leaf
photosynthetic rate and SLAwith LWC and/or temperature T (Eqs. 2, 3,
5 and6)werefitted to data by applying non-linear regressionprotocols
using the nls function from the R package car (ver. 2.0–25). In the non-
linear regression analysis, we treated 1/kT as a whole to estimate the
activation energy E in Boltzmann’s factor. To obtain more robust
estimates of model parameters, we applied the bootstrapping resam-
pling approach for non-linear regression analysis with 1000 re-
samplings using the function nlsBoot in the R package nlstools51. The
three-dimensional plot was created using the scatter3D function in the
R package plot3D52. All analyses were conducted using the statistical
software R53.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TheTRYplant trait database is publicly available at https://www.try-db.
org. The TTT database is publicly available at https://github.com/
TundraTraitTeam/TraitHub. The BROT plant functional trait database
is publicly available at https://www.uv.es/jgpausas/brot.htm. The
GLOPNET database is publicly available at https://www.nature.com/
articles/nature02403 and also available from I.J.W. (ian.-
wright@mq.edu.au) upon request. The China Plant Trait Database is
publicly available at https://doi.org/10.1002/ecy.2091. The WorldClim
2.1 database is publicly available at https://www.worldclim.org/.

Code availability
The analysis was conducted using existing R packages, which are
described in the “Methods”. The R codes for the data analysis are
available from the corresponding author upon request.
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