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Observation of novel topological states in
hyperbolic lattices
Weixuan Zhang 1,3, Hao Yuan1,3, Na Sun1, Houjun Sun 2 & Xiangdong Zhang 1✉

The discovery of novel topological states has served as a major branch in physics and

material sciences. To date, most of the established topological states have been employed in

Euclidean systems. Recently, the experimental realization of the hyperbolic lattice, which is

the regular tessellation in non-Euclidean space with a constant negative curvature, has

attracted much attention. Here, we demonstrate both in theory and experiment that exotic

topological states can exist in engineered hyperbolic lattices with unique properties com-

pared to their Euclidean counterparts. Based on the extended Haldane model, the boundary-

dominated first-order Chern edge state with a nontrivial real-space Chern number is

achieved. Furthermore, we show that the fractal-like midgap higher-order zero modes appear

in deformed hyperbolic lattices, and the number of zero modes increases exponentially with

the lattice size. These novel topological states are observed in designed hyperbolic circuit

networks by measuring site-resolved impedance responses and dynamics of voltage packets.

Our findings suggest a useful platform to study topological phases beyond Euclidean space,

and may have potential applications in the field of high-efficient topological devices, such as

topological lasers, with enhanced edge responses.
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Exploring novel topological phases of matter is one of the
most fascinating research areas in physics1–6. Since the
pioneering discovery of the integer quantum Hall effect in

19807, a large number of fascinating quantum phases with dis-
tinct topological properties have been successively proposed.
These novel topological states have been revealed in various
systems possessing completely different characteristics, ranging
from lower dimensions to higher dimensions8–10, from Hermi-
tian systems to non-Hermitian systems11–13, from periodic
structures to disordered structures14, from single-particle systems
to many-particle systems15,16, from linear lattices to nonlinear
lattices17–19, from static systems to dynamic systems20,21, and so
on. To date, most of the established topological states of matter
have been principally employed in Euclidean geometry with a
zero curvature.

On the other hand, the non-Euclidean geometry exists widely
in nature and plays important roles in many different fields,
including mathematics, the holographic principle, the general
theory of relativity and so on. To experimentally explore the novel
physics of curved spaces, the controllable laboratory setups are
required to be constructed. Recently, using circuit quantum
electrodynamics, the experimental realization of discrete hyper-
bolic lattices22, which are regular tessellations in the curved space
with a constant negative curvature, has stimulated many advances
in non-Euclidean geometry and hyperbolic physics, including the
Bloch band theory of hyperbolic lattices23,24, the crystallography
of hyperbolic lattices25, quantum field theories in continuous
negatively curved spaces26, the hyperbolic drum in circuit
networks27 and so on28–33. Additionally, it is worthwhile to note
that boundary sites always occupy a finite portion of the total site
regardless of the size for the hyperbolic lattice due to the negative
curvature. This is completely contrary to the case of Euclidean
lattices, where the ratio between the number of boundary sites to
that of total sites approaches to zero in the thermodynamic limit.
Recently, the hyperbolic topological state has been theoretically
proposed based on a tree-like design of the Landau gauge in
periodic and open systems28,32. Inspired by these fascinating
phenomena revealed in hyperbolic lattices, it is important to ask
whether there are other undiscovered topological states in
hyperbolic lattices, and how to construct the hyperbolic topolo-
gical phases in experiments.

In this work, we report the experimental observation of two
kinds of topological states, that are boundary-dominated first-
order Chern edge states and fractal-like higher-order zero modes,
in engineered hyperbolic lattices. In particular, by extending the
original Haldane model in Euclidean space to hyperbolic lattices,
unidirectional edge states with nontrivial real-space Chern
numbers are proposed. We note that the Haldane model allows
for the more direct (or Euclidean-like) assignment of the gauge
field and Berry curvature compared to the tree-like design of the
Landau gauge32, but it is difficult to be realized in high-frequency
regimes (such as using photonics) due to the requirement of next
nearest neighbor couplings. Hence, in experiments, the suitably
designed circuit network, where the long-range site coupling is
easily to be realized, is used to construct the hyperbolic Haldane
model. The impedance and voltage measurements demonstrate
the key features expected of a Chern insulator, including localized
edge states within a bulk gap, the chiral edge propagation, and the
protection against backscattering. Moreover, based on the
deformed hyperbolic lattice with unequal coupling strengths in
different layers, the fractal-like midgap higher-order zero modes
are revealed, and observed in the designed hyperbolic circuit
network. Our finding unfolds the intriguing properties of
hyperbolic topological states, and suggests a route to design
highly compact topological devices with the efficient spatial
utilization.

Results
Boundary-dominated first-order topological states in hyper-
bolic Chern insulators. We start by briefly introducing the
projection scheme of a hyperbolic plane with a uniform negative
curvature in the (2+ 1)-dimensional Minkowski space onto a
complex unit disk. As illustrated in Fig. 1a, under the stereo-
graphic projection with the reference point located at (x= 0,
y= 0, t=−1), a hyperboloid defined by t2− x2− y2= 1 could be
mapped to a unit disk at t= 0, where the geodesics on the
hyperboloid (green lines) are projected to circular arcs perpen-
dicular to boundaries of the disk. Such a unit disk is called the
Poincaré disk equipped with the hyperbolic metric. Based on this
projection scheme, the hyperbolic lattice, which is a discrete
tessellation of the two-dimensional hyperbolic space, could be
mapped to the Poincaré disk.

To illustrate the hyperbolic lattice in the Poincaré disk, we
introduce the Schläfli notation {p, q}, which represents a
tessellation of the plane by p-sided regular polygons with the
coordination number q, to label the lattice pattern. We note that
only the triangular lattice {3, 6}, square lattice {4, 4}, and
honeycomb lattice {6, 3} could exist in the two-dimensional (2D)
Euclidean space, where the relationship of (p−2)(q−2)= 4 must
be satisfied. In contrast, the hyperbolic tessellation is ensured by
(p−2)(q−2) > 4 so that there are infinite kinds of lattice models in
the hyperbolic space7. Here, we focus on the hexagonal
hyperbolic lattice {6, 4} embedded into the Poincaré disk, as
presented in Fig. 1b, where all neighboring lattice sites possess
equal hyperbolic distances. More details about the geometrical
properties and mathematical representations of the hyperbolic
lattice are provided in Supplementary Note 1.

To construct topological states in the hyperbolic lattice, we
extend the Haldane model34 originally defined in Euclidean space
to the hyperbolic lattice {6, 4}. It is noted that the property of
hyperbolic tight-binding lattice model depends on the connection
of all vertices, and is regardless of the configuration of vertices.
Hence, the hyperbolic lattice could also be illustrated by arranging
the vertices in the form of quasi-concentric rings, and maintain-
ing the connection of all vertices unchanged. In this case, the
finite hyperbolic lattice {6, 4} with a sixfold rotation invariance in
Poincaré disk (shown in Fig. 1b) is equivalent to the successive
quasi-concentric rings with L= 4 layers, as shown in Fig. 1c. For
clarity, we mark lattice sites in the first, second, third and fourth
layers by cyan, blue, green and red dots, respectively. By
introducing nearest-neighbor (NN) hoppings (γ) and direction-
dependent next-nearest-neighbor (NNN) hoppings (λeiφ) in each
hexagon, the hyperbolic Haldane model is achieved. Detailed
coupling patterns in hexagons composed of lattice sites from
different layers are illustrated in right insets of Fig. 1c, where solid
lines and dashed arrow lines correspond to NN hoppings and
NNN hoppings, respectively. In this case, the hyperbolic Haldane
model can be effectively described by a tight-binding Hamilto-
nian as:

H ¼ ∑
<i;j>

γayi aj þ ∑
<<i;j>>

λeiφayi aj þ h:c: ð1Þ

with ai†(ai) being the creation (annihilation) operator at site i.
The bracket <…> (<<…>>) indicates that the summation is
restricted within NN (NNN) sites. φ is the geometrical phase of
NNN couplings. Compared with the Haldane model defined in
Euclidean space, where each bulk site possesses three NN
couplings and six NNN couplings, there are four NN couplings
and eight NNN couplings for each bulk site of the hyperbolic
Haldane model.

Firstly, we perform a direct diagonalization of the Hamiltonian
for the finite hyperbolic Haldane lattice with γ= 1, λ= 0.2,
φ= 2π=3 and L= 4. Figure 1d shows the calculated
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energy-spectrum with the corresponding eigenmode being
marked by n. To quantify the localization degree of each
eigenmode on the boundary (the outermost layer), a quantity
VðεÞ ¼ ∑

i2 L¼4
jϕiðεÞj2= ∑

i2 L¼1;2;3;4
jϕiðεÞj2 of each eigenmode is

calculated, where ϕiðεÞ is the complex amplitude at site i with
the eigen-energy being ε. The colormap in Fig. 1d represents the
quantity VðεÞ. It is noted that the value of VðεÞ approaches to 1
for the edge-concentrated eigenstate, while bulk-localized eigen-
modes have a near-zero value of VðεÞ. We find that edge states
mainly locate around the zero-energy region, and bulk modes
exist at the low- and high-energy ranges. To further illustrate the
distribution of associated eigenmodes, in Fig. 1e, we plot spatial
profiles of bulk and edge eigenmodes with energies being
ε=−3.445 (n= 5) and ε= 0.1406 (n= 230). It is clearly shown
that the eigenmode at ε= 0.1406 possesses the feature with a
significant edge localization, which is a key property of the
nontrivial topological state.

To further verify that the edge state is indeed topological, the
Chern number should be calculated. However, since our
proposed hyperbolic Haldane model is nonperiodic, the Chern
number is undefined in the Brillouin zone torus. In this case, as
shown in Fig. 1f, we calculate the real-space Chern number35,36

C ¼ 12πi∑
j2I

∑
k2II

∑
l2III

ðPjkPklPlj � PjlPlkPkjÞ ð2Þ

at each eigenenergy. Here, j, k, and l are site indices in three anti-
clockwise regions I, II and III, as shown in the inset of Fig. 1f. The
square of projection operator element |Pij|2 measures the
correlation of the state density at two sites (i and j) with all
eigenstates below the target energy being fully occupied. It is
clearly shown that the real-space Chern number around the zero
energy possesses a nontrivial value. While, due the finite size
effect, the absolute value of calculated real-space Chern number is
smaller than 1. The detailed method for the calculation of the
real-space Chern number and numerical results for different
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Fig. 1 Hyperbolic Haldane model and boundary-dominated first-order topological edge states. a The left chart illustrates the stereographic projection
scheme of a hyperbolic plane (t2 − x2 − y2= 1) onto the Poincaré disk at t= 0. Green lines represent the geodesics on the hyperboloid, which are
projected to circular arcs perpendicular to boundaries of the Poincaré disk. b The hyperbolic lattice {6, 4} embedded into the Poincaré disk. c The finite
hyperbolic lattice {6, 4} in the form of successive quasi-concentric rings with L= 4 layers. The left-bottom inset displays the enlarged view of the
outermost layer. Right insets plot coupling patterns in hexagons composed of lattice sites from different layers. d The calculated eigen-spectrum of the
system with L= 4. The colormap corresponds to the quantity VðεÞ for the localization degree at the boundary. e Profiles of bulk and edge states with eigen-
energies of −3.445 and 0.1406. f The calculated real-space Chern number of each eigenmode. The inset plots three different regions I, II and III used in the
calculation. g Four charts present the spatial distributions of jφi tð Þj at different times with t= 18, 78, 131, and 184, respectively.
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lattice sizes are provided in Supplementary Note 2. We note that
the nontrivial real-space Chern number clearly manifests the
topological property of edge-localized eigenmodes around the
zero energy.

In addition, it is widely known that one-way edge states, which
are robust against defects, should exist in the energy region with
nontrivial real-space Chern numbers. Thus, by solving coupled
model equations (see Supplementary Note 3), we numerically
study the robust evolution of edge states by launching a wave
packet ψin tð Þ ¼ expð�ðt� t0Þ2=64ÞsinðεctÞ into an edge site as
illustrated by the pink arrow in Fig. 1g. Several defects (marked by
black triangles) exist at the outermost ring, where the onsite
potential is Pd= 5 on the defect and it equals to zero on other
sites. Other parameters are set as t0= 20 and εc = 0.1. Figure 1g
shows the spatial distributions of jψ i tð Þj at different times with
t= 18, 78, 131 and 184, respectively. It is clearly shown that the
wave packet unidirectionally moves along the edge of hyperbolic
Chern insulators, and passes through defects without back-
scattering. Additionally, during the propagation, the wave packet
is confined to the boundary and does not penetrate into the bulk.
These numerical results further prove the existence of unidirec-
tional edge states in the hyperbolic Haldane model. In
Supplementary Note 4, numerical results of hyperbolic Chern
insulators with different lattice sizes are provided. And, the
results of trivial hyperbolic lattice models are also provided in
Supplementary Note 5 to further illustrate the difference between
topological edge states and trivial edge states. It is worthwhile to
note that the ratio of the one-way topological channel (boundary
sites) to bulk sites in the {6, 4} hyperbolic Chern insulator is about
0.9 (even with L being infinite), which is much larger than the
Euclidean counterpart (approaching to zero in the thermody-
namic limit). Hence, such an enhanced topological edge response
may improve the efficiency of some topological devices.

Motivated by recent experimental breakthroughs in realizing
various quantum phases by circuit networks36–43, in the
following, we design hyperbolic Chern circuits to observe the
above proposed novel topological states. Figure 2a illustrates the
photograph image of the fabricated circuit sample with L= 3. The
front and back sides of enlarged views (enclosed the pink dashed
block) and the schematic diagram of NN and NNN couplings are
plotted in right insets. Specifically, three circuit nodes connected
by capacitors C (enclosed by the green block) are considered to
form an effective lattice site of the hyperbolic Chern insulator.
Voltages at these three nodes are defined by Vi;1, Vi;2 and Vi;3,
which could be suitably formulated to construct a pair of
pseudospins (V"i;#i ¼ Vi;1 þ Vi;2e

± i2π=3 þ Vi;3e
�i2π=3) for realiz-

ing required site couplings. To simulate the real-valued NN
hopping rate, three capacitors (Cγ) framed by the red frame are
used to directly link adjacent nodes without a cross. For the
realization of NNN hopping rate with a direction-dependent
phase (e± i2π=3), three pairs of adjacent nodes are connected
crossly via three capacitors Cλ (enclosed by the blue block). Each
node is grounded by an inductor Lg framed by the white block in
the back side. The defect in the outermost ring is achieved by
adding an extra grounding capacitor CP. Additionally, boundary
nodes should be additionally grounded by suitable capacitors to
ensure the same resonance frequency as bulk nodes.

Through the appropriate setting of grounding and connecting,
the circuit eigenequation is identical with that of the hyperbolic
Chern insulator. Details for the derivation of circuit eigenequa-
tions are provided in Supplementary Note 6. In particular, the
probability amplitude at the lattice site i is mapped to the voltage
of pseudospin V#;i. Amplitudes of the effective NN and NNN
couplings equal to γ ¼ Cγ=C and λ ¼ Cλ=C. The eigenenergy of

the hyperbolic Haldane model is directly related to the
eigenfrequency of the circuit network as ε ¼ f 0

2=f 2 � 3�
4Cγ=C � 8Cλ=C with f 0 ¼ ð2π ffiffiffiffiffiffiffiffi

CLg
p Þ�1. It is noted that the

tolerance of circuit elements is only 1% to avoid the detuning of
circuit responses, and circuit parameters are set as C= 1 nF,
Cγ = 1 nF, Cλ = 0.2 nF, Lg = 1 uH and CP = 5 nF. Details of the
sample fabrication are provided in Methods.

To analyze topological properties of the hyperbolic Chern
circuit, we firstly measure the impedance responses of a bulk node
(the black line) and an edge node (the red line) using the Wayne
Kerr precision impedance analyzer, as plotted in Fig. 2b. We note
that the impedance responses are related to the local density of
states of the corresponding quantum tight-binding model38. It is
shown that there are significant impedance peaks of the edge
node but neglectable impedances of the bulk node in the
frequency range from 1.67MHz to 1.75MHz (the red region),
which matches to the eigenenergy possessing nontrivial edge
states. Figure 2c presents simulation results of frequency-
dependent impedance responses using the LTSPICE software. A
good consistence between simulations and experiments is
obtained, and the larger width of measured impedance peaks
results from the lossy effect in the fabricated circuit (see
Supplementary Note 7 for details). In addition, the spatial
impedance distribution of the circuit at 1.708MHz is further
measured, as shown in Fig. 2d. We can see that the edge-
concentrated impedance profile (similar to Fig. 1e with n= 230)
clearly proves the excitation of hyperbolic edge states.

Then, we measure the temporal dynamics of an effective voltage
packet propagating in the hyperbolic Chern circuit. To ensure the
excitation of voltage pseudospin, three voltage packets, which are
expressed as ½Vi;1;Vi;2;Vi;3� ¼ V tð Þ½1; expði 2π3 Þ; expð�i 2π3 Þ� with
VðtÞ ¼ V0expð�ðt� t0Þ2=td2Þsinð2πf ctÞ, are used. Details of the
experimental technologies are provided in Methods. Here, the time
delay, packet width and central frequency of the voltage packet are
set as t0= 70 µs, td= 28 µs and fc= 1.708MHz, respectively. The
voltage packet and the associated frequency spectrum are shown in
Fig. 2e, f. The gaussian bandwidth of the input signal is 0.02MHz.
The main components of the frequency spectrum are located
in the range sustaining topological edge states, making only
nontrivial edge states be excited. Figure 2g, h present time tracks of
the voltage packet in the defect-free circuit at two nodes, which are
counterclockwise (the red dot) and clockwise (the cyan dot) to
the excitation point (the pink arrow) with equal distances. It
is clearly shown that only the counterclockwise circuit node
possesses a significant response in the time-domain, indicating
that the voltage packet propagates counterclockwise along the
edge of hyperbolic Chern circuit. Then, we measure the voltage
signal at these two nodes with the existence of a defect (the
black triangle between the excitation node and the counter-
clockwise node), as shown in Fig. 2i, j. We can see that the
magnitude of voltage packet at the counterclockwise node is nearly
unchanged, indicating no significant backscattering appears with
the voltage signal passing through the defect. Such a defect-
immune voltage propagation clearly manifests the robustness of
edge states. The above measurements are also consistent with
simulations (see Supplementary Note 8), manifesting the observa-
tion of boundary-dominated topological states in hyperbolic
Chern circuits.

Fractal-like higher-order zero modes in deformed hyperbolic
lattices. In addition to the boundary-dominated first-order
topological states induced by the interplay between the Chern-
class topology and the hyperbolic geometry, in the following,
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we prove that exotic higher-order zero modes can also be con-
structed in the deformed hyperbolic lattice.

Different from hyperbolic Chen lattices, which possess the
complex NNN couplings to break the time-reversal symmetry,
here we introduce a pair of distinct coupling strengths (γ1 and γ2)
in the deformed hyperbolic lattice to realize the higher-order zero
modes. The general protocol of hyperbolic lattices for achieving
higher-order zero modes is presented in Fig. 3a. Six insets present
the detailed coupling patterns in different hexagons, which are
composed of lattice sites from different layers. In particular, the
intralayer coupling strength of the outermost and 2nd (1st and
3rd) layers equals to γ1 (γ2), as marked by black (pink) lines.

Moreover, the interlayer coupling strength between the nth and
(n−1)th layers (n= 4, 3, 2) is identical to the intralayer coupling
strength of the nth layer.

At first, we numerically calculate the eigen-spectrum of the
deformed hyperbolic lattice with coupling strengths being γ1 ¼ 1
and γ2 ¼ 10, as shown in Fig. 3b. The inset presents the enlarged
eigen-spectrum ranging from −1.5 to 0. To quantify the
localization degree of the associated eigenstate, the normalized
participation ratio (PR) of each eigenmode PR ¼ ∑

i
jϕiðεÞj�4=N is

calculated (N is the total number of eigenmodes), as presented by
the color bar in Fig. 3b. It is noted that six zero-energy modes
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Fig. 2 Observation of boundary-dominated topological states in the hyperbolic Chern circuit. a The photograph image of the fabricated hyperbolic
circuit. The part of enlarged views and the equivalent schematic diagram are presented in right insets. Three circuit nodes connected by the capacitor C are
considered to form an effective lattice site, as enclosed by the green block. The real-valued NN hopping rate is achieved by directly linking adjacent nodes
without a cross with three capacitors Cγ (framed by the red frame). For the realization of NNN hopping rate with a direction-dependent phase, three pairs
of adjacent nodes are connected crossly via three capacitors Cλ enclosed by the blue block. Each node is grounded by an inductor Lg framed by the white
block in the back side. b, c Measured and simulated impedance responses of bulk (black lines) and edge (red lines) nodes. The red region corresponds to
the energy range with nontrivial edge states. d The measured impedance distributions at 1.708MHz. e, f The voltage packet and the associated frequency
spectrum of the injected voltage packet. g, h The measured time tracks of the voltage pseudospin at nodes in the defect-free circuit along the
counterclockwise and clockwise directions with respect to the excitation node. i, j The measured time tracks of the voltage pseudospin at nodes in the
circuit with a defect along the counterclockwise and clockwise directions with respect to the excitation node. Red and blue dots in insets mark the position
of two detection nodes and the pink arrow presents the input node. The black triangle corresponds to the defect. The circuit parameters used in
experiments are set as C= 1 nF, Cγ = 1 nF, Cλ = 0.2 nF, Lg = 1 uH and CP = 5 nF.
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(marked by the number 1 in the inset) show the significant field-
localization, which is manifested by the near-zero PR. The PRs of
two other kinds of midgap eigenmodes around ε ¼ �0:1192 and
ε ¼ �1:41 (marked by numbers 2 and 4) also approach to zero,
indicating the strong spatial localizations. In contrast, eigenmodes
marked by the number 3 exhibit spatially extended features with
larger values of PR. To further illustrate the distribution of each
eigenstate, spatial profiles of density of state for these four types of
eigenmodes are calculated, as plotted in Fig. 3c. It is clearly shown
that the mode distribution of zero-energy eigenstates (labeled by
the number 1 and called as the zero mode) is strongly localized
around six 0D effective corners, which are different from the real
geometric corners in the form of intersections between 1D
boundaries. In addition, spatial profiles of eigenmodes with
energies being ε � ½�0:1348;�0:1021� (labeled by the number 2

and called as the corner mode 2) and ε � ½�1:415;�1:407�
(labeled by the number 4 and called as the corner mode 3) also
present the mode localization at twenty-four effective corners in
the outermost ring. In contrast, the averaged spatial profile with
ε � ½�0:6154;�0:2025� (labeled by the number 3) exhibits the
1D edge localization, where the eigen-fields at corners are nearly
zero. These numerical results clearly indicate that the 0D corner-
like eigenstates always appear in the gapped edge states.

It is worthwhile to note that these midgap higher-order zero
modes in hyperbolic lattices possess similar characteristics to the
filling anomaly induced 0D corner states in higher-order
topological crystalline insulators44,45. In particular, the identical
symmetries, including the C6 rotation, the time reversal, and
chiral symmetries, are preserved in the deformed hyperbolic
lattice as in C6-symmetric higher-order topological crystalline
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spectrum of the system with L= 4. The colormap corresponds to the PR of each eigenmode. The inset presents the enlarged spectrum with eigenenergies
ranging from −1.5 to 0. c Profiles of the normalized density of states of eigenmodes in four different energy regions. d, f The eigen-spectra of the hyperbolic
lattice with L= 5 and L= 6, respectively. e, g Density of states of zero modes with L= 5 and L= 6, respectively. h The relationship between the number of
midgap zero modes and the layer number (L) of deformed hyperbolic lattices. i Schematic diagram illustrating the effective corners in the outermost ring in
the deformed hyperbolic lattice.
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insulators. In this case, we infer that the nontrivial higher-order
zero modes in the gapped edge states should result from
obstructed atomic limits in deformed hyperbolic lattices.

While, the required translational symmetry for defining the
topological index related to the higher-order topological insulator
in Euclidean space44 is absent in the hyperbolic lattice, making
the definition of such a topological invariant become difficult. In
Supplementary Note 9, we further illustrate the topological
properties of our proposed hyperbolic zero-energy corner states
from three aspects. Firstly, we find that the topological phase
transition manifested by the closing and reopening of the zero-
energy bandgap could be induced by the unbalanced site coupling
in the deformed hyperbolic lattice. And, the midgap corner states
also appear associated with such a topological phase transition.
Moreover, we also show that the topological phase transition
appearing in the deformed hyperbolic lattice is similar to the
Euclidean counterpart of the C6-symmetric higher-order topolo-
gical insulator44,45. Finally, the robustness of the midgap zero
modes in the deformed hyperbolic lattice is also proved, which
cannot exist in the interference-induced trivial edge and corner
states in hyperbolic lattices sustaining flat bands22,32. These
features further demonstrate the topological properties of
hyperbolic zero modes.

To illustrate the influence of size-dependent boundary
geometries of hyperbolic lattices on the formation of higher-
order zero modes, we further consider two larger systems. Here,
the intralayer coupling strength of the outermost ring (γ1 = 1) is
always smaller than that of the secondary outer ring (γ2 = 10). In
Fig. 3d, f, the eigen-spectra of deformed hyperbolic lattices with
L= 5 and L= 6 are calculated. Interestingly, it is clearly shown
that there are 24 and 90 midgap zero modes in hyperbolic lattices
with L=5 and L=6. Furthermore, the associated spatial profiles of
these zero modes are displayed in Fig. 3e, g. Similar to the case
with L= 4, we note that these zero modes are strongly localized
around 24 (for L= 5) and 90 (for L= 6) corners in the outermost
ring, exhibiting the same feature of 0D corner states in higher-
order topological insulators. By further calculating the eigenspec-
tra of deformed hyperbolic lattices with different numbers of
layers, we plot the relationship between the number of midgap
zero modes (N) and the total layer number (L) in Fig. 3h. It is
shown that the number of zero modes increases exponentially
with the layer number L. The size-dependent mode number is
also satisfied for the corner mode 2 and the corner mode 3. It is
worthwhile to note that such a phenomenon is similar to the
higher-order topological corner states existing in quantum
fractals46, where the number of zero-energy modes depends on
the generation number of fractal lattices.

To clarify the fractal-like higher-order zero modes in deformed
hyperbolic lattices, the formation mechanism of effective corners
in the outermost (the Nth) ring should be illustrated. As shown in
Fig. 3i, lattice sites in the (N-1)th ring (green dots) can be divided
into two groups. The first (second) group is in the form of the
linked chain with four (three) sites. It is noted that the lattice sites
in the Nth layer, which form hexagons combined with lattice sites
of the second group in the (N-1)th layer, could act as effective
corners of zero modes, as enclosed by circles in earth-yellow. In
addition, we note that the number of the second group in the (N-
1)th layer equals to the total number of lattice sites in the (N-3)th
layer, which increases exponentially with the layer number L. In
this case, the number of effective corners in the outermost layer of
zero modes can also exhibit an exponentially growing tendency
with L, leading to the appearance of fractal-like higher-order zero
modes in the deformed hyperbolic lattice.

Similar to the hyperbolic Chern insulator, we can also design
circuit networks to observe hyperbolic higher-order zero modes.

Figure 4a illustrates the photograph image of the fabricated
circuit with L= 4, and the enlarged views of front and back sides
of the sample (marked by the red dash block) are plotted in right
insets. In particular, the coupling strength of γ1 (γ2) in the
hyperbolic lattice model is realized by linking circuit nodes
through the capacitor C1 (C2), as framed by the blue (green)
circle. And, each circuit node is grounded by an inductor Lgc
enclosed by the white block. Moreover, boundary sites should be
additionally grounded by two capacitors C2 to ensure the same
resonance frequency as bulk nodes. In this case, the circuit
eigenequation is identical with that of the deformed hyperbolic
lattice (see Supplementary Note 10 for details), and the
eigenenergy of the hyperbolic lattice is directly related to the
eigenfrequency of the circuit as ε ¼ f c

2=f 2 � 2� 2C1=C2 with
f c ¼ 1=2π

ffiffiffiffiffiffiffiffiffiffiffi

C2Lgc
p

. Here, circuit parameters are set as C1 = 1 nF,
C2 = 10 nF and Lgc = 3.3 uH, and the tolerance of those circuit
elements is limited by 1%.

To observe higher-order corner modes, we measure site-
resolved impedance responses of selected bulk, edge and corner
nodes, as shown in Fig. 4b. The corresponding numerical results
are presented in Fig. 4c, where measured results are consistent
with simulations and wider peaks in experiments result from
lossy effects in the sample. It is clearly shown that the corner node
possesses significant impedance peaks in three frequency ranges
marked by red regions. In particular, the frequency of the
impedance peak in the central red region (around 0.591MHz)
matches to the zero-energy, indicating the excitation of higher-
order zero modes. It is worthy to note that due to the extremely
small spectral distance between zero modes and ‘corner mode 2’,
the impedance peaks induced by these two kinds of corner states
are merged together. Additionally, other two peaks of the corner
node are originated from the resonance of ‘corner mode 3’ with
positive and negative energies. Additionally, measured impe-
dances of bulk and edge nodes are relatively small in frequency
regions sustaining corner impedance peaks. This phenomenon
clearly shows that the corner modes always exist in bandgaps of
bulk and edge states. The edge node shows large impedance peaks
in four frequency regions marked by blue regions, which are
consistent with the calculated eigen-energies of edge states in
Fig. 3b (and the chiral symmetric counterpart with positive
energies). The bulk node possesses many little impedance peaks
in low-frequency and high-frequency regions, as shown in black
regions, corresponding to the resonance peaks associated to
bulk modes.

To obtain the spatial distribution of hyperbolic higher-order
corner modes, we further recover the circuit admittance spectrum
(see Methods for details), and illustrate the spatial distributions of
three different higher-order 0D corner modes of the recovered
circuit Laplacian, as shown in Fig. 4d–f. We can see that the
recovered mode distributions are consistent with spatial profiles
of higher-order corner modes in Fig. 3c. These experimental
results clearly prove that the hyperbolic higher-order corner
modes have been fulfilled in our designed circuit network.

Discussion. We report the experimental observation of
boundary-dominated first-order Chern edge states and fractal-
like higher-order zero modes in hyperbolic circuit networks. By
extending the definition of the Haldane model to hyperbolic
spaces, a unidirectional edge state with the nontrivial real-space
Chern number is proposed. Besides the first-order topological
state, the fractal-like midgap higher-order zero modes are also
revealed based on the deformed hyperbolic lattice with unequal
coupling strengths in different layers. The physical origin for the
appearance of these exotic topological states results from the
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negative curvature induced boundary effect, where boundary sites
always occupy a finite portion of the total site regardless of the
system size. These fascinating topological states are observed in
experiments by hyperbolic circuit networks. Compared with
topological states in Euclidean space, one significant feature of
the hyperbolic counterpart is that the edge lattice sites acting
as the topological channel always occupy a large ratio of total
lattice sites even at the thermodynamic limit. Hence, by incor-
porating the proposed hyperbolic topological states into the
design of robust functional devices in other classical wave sys-
tems, such as topological lasers, the operational efficiency and
spatial utilization may be remarkably improved. Our proposal
provides a flexible platform to further investigate and visualize

more interesting phenomena related to topological physics in
hyperbolic lattices.

With the flexibility that the connection and grounding of
circuit nodes are allowed in any desired way free from constraints
of locality and dimensionality, the high-dimensional topological
hyperbolic lattice with non-local site couplings could also be
achieved. Moreover, including nonreciprocal, non-Hermitian and
non-linear elements into the hyperbolic circuit network, the novel
behavior induced by the interplay between the non-Hermitian,
the non-linearly, topologies and the curvature can be investigated
in experiments. Finally, the designed circuit simulator could also
give a new way to manipulate the electronic signal with exotic
behaviors.
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Fig. 4 Observation of higher-order zero modes in the hyperbolic circuit. a Photograph image of the fabricated hyperbolic circuit. Right insets display the
enlarged view of the sample as well as the associated schematic diagram. The coupling strength of γ1 (γ2) in the hyperbolic lattice model is realized by
linking circuit nodes through the capacitor C1 (C2), as framed by the blue (green) circle. And, each circuit node is grounded by an inductor Lgc enclosed by
the white block. b, c Measured and simulated impedance responses of selected bulk (black lines), edge (blue lines) and corner (red lines) nodes. d–f The
profiles of higher-order zero modes and other two 0D corner states of the recovered circuit Laplacian. Circuit parameters used in experiments are set as
C1 = 1 nF, C2 = 10 nF, and Lgc = 3.3 uH.
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Methods
Sample fabrications and circuit measurements. We exploit electric circuits by
using LCEDA program software, where the PCB composition, stack-up layout,
internal layer and grounding design are suitably engineered. Here, the PCBs pos-
sessing the Chern edge states and higher-order zero modes have six and four layers,
respectively, where two layers are used for the inner electric layer and the node
couplings are arranged in the remaining layers. It is worth noting that the all
grounded components are grounded through blind buried holes. Moreover, all PCB
traces have a relatively large width (0.75 mm) to reduce the parasitic inductance,
and the spacing between electronic devices is also large enough to avert spurious
inductive coupling. The SMP connectors are welded on the PCB nodes for the
signal input. To ensure the tolerance of circuit elements and series resistance of
inductors to be as low as possible, we use a WK6500B impedance analyzer to select
circuit elements with high accuracy (the disorder strength is only 1%) and low
losses.

For the time-domain measurement, we use two signal generators (DG5072) to
inject three designed wave packets with required initial phases for exciting the
voltage pseudospin. One output of the signal generator (the initial phase is set to 0)
is directly connected to one end of the oscilloscope (Agilent Technologies
Infiniivision DSO7104B) to ensure an accurate start time. The scanning speed of
oscilloscope is set as 10 ms/s. The measured voltage signals are in the range from
0 µs to 200 µs in the time domain, where 0 µs is defined as the time for the
simultaneous signal injection and measurement.

Recovering the circuit admittance spectrum involves a series of operations,
where a current is injected at each circuit node individually and the voltages at all
circuit nodes are measured at the same time. Based on the measured voltages and
input currents, we can obtain Green’s function of the hyperbolic circuit, which is
the inverse of the circuit Laplacian. Calculating the eigenvalues and eigenvectors of
the recovered circuit Laplacian, the admittance eigen-spectrum and the associated
mode profiles are obtained.

Data availability
All data are displayed in the main text and Supplementary Information. The data that
support the findings of this study are available from the corresponding author upon
reasonable request.

Code availability
The code that supports the plots within this paper is available from the corresponding
author upon reasonable request.
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