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Dispersal-induced instability in complex
ecosystems
Joseph W. Baron 1,2✉ & Tobias Galla 1,2

In his seminal work in the 1970s, Robert May suggested that there is an upper limit to the

number of species that can be sustained in stable equilibrium by an ecosystem. This

deduction was at odds with both intuition and the observed complexity of many natural

ecosystems. The so-called stability-diversity debate ensued, and the discussion about the

factors contributing to ecosystem stability or instability continues to this day. We show in

this work that dispersal can be a destabilising influence. To do this, we combine ideas from

Alan Turing’s work on pattern formation with May’s random-matrix approach. We demon-

strate how a stable equilibrium in a complex ecosystem with trophic structure can become

unstable with the introduction of dispersal in space, and we discuss the factors which con-

tribute to this effect. Our work highlights that adding more details to the model of May can

give rise to more ways for an ecosystem to become unstable. Making May’s simple model

more realistic is therefore unlikely to entirely remove the upper bound on complexity.
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Providing a firm counterpoint to the view that greater eco-
system complexity promoted stability1–6, Robert May used
a simple statistical model7,8 to argue that increasing the

number of species in an ecosystem could in fact reduce stability.
By analysing the eigenvalues of a randomly constructed com-
munity matrix, May deduced the following criterion for stability7

σ2NC < 1: ð1Þ
In this criterion σ2 is the variance in the inter-species inter-

actions, N is the number of species and C is the connectance (the
probability that any given pair of species interact with one
another). May’s result shows that stability is decided by the
product c= σ2NC. We will call this quantity the ‘complexity’ of
the ecosystem.

May’s model suggests that more complex ecosystems tend
toward instability. For a fixed variance of interactions, there is an
upper bound to the number of species and food web connections
that the ecosystem can sustain. This idea quickly became con-
troversial and May’s work sparked the so-called complexity-sta-
bility (or diversity-stability) debate, which continues to this
day5,6,9.

Since the 1970s, the discussion around stability has been made
more precise and subtle. It is now understood that there are a
number of senses in which an ecosystem can be unstable and,
indeed, there are a number of ways one can define diversity5,10.
An ecosystem can be unstable with respect to, for example, the
introduction of new species, the extinction of existing species, or
environmental changes. May’s work specifically addresses stabi-
lity with respect to fluctuations in species abundance.

In order to understand the influence of the many aspects of real
ecosystems on stability, May’s fairly austere model has since been
augmented and improved upon. Features not captured by May’s
initial model include food-web structure (e.g., trophic levels, mod-
ularity and nestedness)8,11–15, the feasibility of the equilibrium16,17,
nonlinearities and alternative interpretations of ‘interaction
strength’18–20 and variability of the environment and of species’
susceptibility to environmental change21–24. In many models of
complex ecosystems, however, only the total abundance of each
species is considered without appreciating how the members of that
species are distributed in space7,8,11–13,16,17,19–24. In such models,
there is no notion of space and hence no dispersal. In this work, we
explicitly include the effects of diffusive dispersal in space and study
the effects on stability.

Dispersal may intuitively be expected to be a homogenising
and stabilising influence. As demonstrated recently in ref. 25, it
can indeed stabilise equilibria in spatially heterogeneous

ecosystems. Perhaps counter-intuitively, the insight of Turing’s
seminal work26 was that dispersal can also destabilise a dynamical
system. Such instability has been studied in meta-population27,28

predator–prey models with small numbers of species29–31 and
numerically for food webs on networks32. We combine Turing’s
idea with May’s random-matrix approach to show that a similar
destabilising effect can be seen in models of complex ecosystems.

In order not to obscure the key effects at work, we opt to
modify May’s paradigmatic model sparingly. This allows us to
highlight the consequences of the inclusion of dispersal. We
suppose that the abundances of the species rest in a steady,
homogeneous equilibrium. In order to study stability, we examine
the Jacobian matrix governing perturbations in species abun-
dance about this equilibrium. Like May, we ask what statistical
properties are required of the Jacobian matrix in order for the
ecosystem to return to equilibrium when perturbed.

Unlike May, however, we allow for trophic structure in our
model. It is the combination of dispersal and trophic structure
which gives rise to the Turing-type instability. For the sake of
mathematical simplicity, we confine our model to only two broad
trophic classifications: predator and prey species. The two groups
of species are distinguished by statistical differences in their
interactions. Our approach can be generalised to more compli-
cated food web structures.

We now postulate the form of the Jacobian matrix central to
our problem, Mq. The elements of this matrix describe how
spatial disturbances of wavelength λ= 2π/q in the abundance of
one species affect the abundances of the other species; q is known
as the wavenumber33.

Because of the trophic structure of the community, the matrix
Mq has a block structure where each block has different statistics.
Similarly structured random matrices have been used in previous
literature34,35. The matrix Mq is comprised of three terms: a
diffusion term, and an intra-species interaction term and an
inter-species interaction term. We write

Mq ¼ �q2D� dþ A: ð2Þ
The diffusion coefficients for prey and predator species are Du

and Dv respectively (Fig. 1). The interaction matrix A is modelled
as having elements drawn from a correlated Gaussian ensemble,
although other distributions may be used to obtain the same
results (see Section S7 in the Supplementary Information). Fur-
ther details on the structure of Mq and how one arrives at this
form are given in Fig. 1 and in the Methods section.

The problem of analysing stability reduces to finding the
eigenvalue spectrum of the matrix Mq. If the eigenvalues of this
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Fig. 1 The structure of the stability matrix Mq. The matrix is composed of three parts: a diffusion matrix D, a self-interaction matrix d, and an interaction
matrix A with entries drawn at random from a probability distribution. Each matrix is split into blocks due to the trophic structure of the community—we
use the subscript u to denote species which have mostly prey-like interactions and v for species with mostly predator-like interactions. The approach can be
generalised to more complicated block structures. The stability of the non-spatial ecosystem is described by the matrix for q= 0, or equivalently by setting
Du= Dv= 0 (see Methods and Section S1 in the Supplementary Information).
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matrix all have negative real parts, then the equilibrium is stable
with respect to disturbances of wavenumber q. Else, it is unstable.
In order for the equilibrium to be stable on the whole, all
eigenvalues of Mq must have negative real parts for all values of q.

If the number of species in the ecosystem is large, then the
eigenvalue spectrum is dependent only on the statistics of Mq and
not on its specific entries. Using random-matrix theory and ideas
from statistical physics, we are able to deduce a mathematical
expression for the support of the eigenvalue spectrum ofMq. That
is, we can find the region in the complex plane in which the
eigenvalues sit and, most importantly, whether or not they have
positive real parts. Examples are shown in Fig. 2.

With this analytical approach, we can calculate what properties
of Mq make the equilibrium unstable. Thus, we can deduce how
May’s upper bound on ecosystem complexity is modified by the
inclusion of dispersal and trophic structure. Most crucially, we
show that equilibria which would be stable without spatial effects
can be destabilised by dispersal. We find that this dispersal-
induced instability is possible not only in a linear model but also
in a non-linear system where the equilibrium is arrived at
dynamically and hence is feasible by construction.

Results
Eigenvalue spectra. We show some example eigenvalue spectra of
the matrix Mq in Fig. 2. The vast majority of the eigenvalues
group into a ‘bulk’ region, with the exception of a few outliers.
These outliers cannot be ignored – the excursion of even one

eigenvalue across the imaginary axis to the positive real side
makes the equilibrium unstable.

Using the statistical properties of Mq we are able to calculate
mathematically the bulk regions to which most of the eigenvalues
are confined and the locations of any outliers. In Fig. 2a–c, we
show that these calculations agree very well with the spectra of
computer-generated random matrices. We can therefore predict
what community properties lead to stability or instability.

As Fig. 2 demonstrates, it is possible to find circumstances
under which the model community is destabilised by the
inclusion of dispersal. Figure 2a shows the eigenvalue spectrum
for the model without spatial effects (q= 0, or equivalently Du=
Dv= 0, see Methods). All eigenvalues in Fig. 2a have negative real
parts so we conclude that the equilibrium is stable for the model
ecosystem without dispersal. In Fig. 2b we take into account
dispersal and show the eigenvalue spectrum for a non-zero
wavenumber. All other parameters are the same as in Fig. 2a.
Now, an outlier eigenvalue strays over the imaginary axis,
demonstrating that the equilibrium is unstable. For perturbations
with higher wavenumbers, the outlier returns to the negative half-
plane (Fig. 2c)—the equilibrium is stable with respect to
perturbations of higher wavenumber. Figure 2d shows the real
part of the rightmost eigenvalue ( Re ½ωmax�) as a function of the
wavenumber q, highlighting the set of wavenumbers against
which the equilibrium is unstable.

To understand the role of trophic structure in dispersal-
induced instability, let us consider momentarily a model without
statistical distinction between predator and prey species (like
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Fig. 2 Eigenvalue spectra of the stability matrices in Fig. 1. In May’s original model, the eigenvalues all lay uniformly within a circle in the complex plane.
In our model, the circle is warped and split into more complicated shapes. Also, a small number of outlier eigenvalues now stray from the bulk. Eigenvalues
of computer-generated random matrices Mq are shown as blue crosses. They are compared to theoretical predictions for the boundary of the bulk region
(red solid line) and theoretical predictions for the outliers (open red circles). For q= 0, all of the eigenvalues have negative real part (panel a)—the
equilibrium is stable in the non-spatial ecosystem. For disturbances with larger wavenumber q, one of the eigenvalues crosses the real axis (panel b). The
equilibrium is unstable against such perturbations. If the wavenumber q is larger still, the rightmost eigenvalue returns to the negative half-plane (panel c).
This is characteristic of a Turing instability33—the equilibrium is unstable with respect to disturbances of a finite range of wavelengths. This is shown in
panel d, where we plot the real part of the rightmost eigenvalue as a function of q. The equilibrium is unstable against perturbations of wavenumber q
whenever Re ½ωmax�>0. The green triangles mark the wavenumbers from panels (a–c).
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May’s original model7), and with a common diffusion coefficient
D for all species. The rightmost eigenvalue would have the
following dependence on wavenumber: Re ½ωmax� ¼ ω0 �Dq2,
where ω0 is a rightmost eigenvalue of the community stability
matrix without dispersal (q= 0). In this simple case, Re ½ωmax� is
a purely decreasing function of q. If ω0 < 0 then Re ½ωmax�< 0 for
all values of q. There can be no dispersal-induced instability here.
The inclusion of trophic structure in our model leads to a
maximum in Re ½ωmax� at a non-zero value of q (Fig. 2d) and,
consequently, a finite band of non-zero wavenumbers against
which the equilibrium is unstable. This is the essence of why
dispersal in combination with tropic structure can promote
instability.

In Turing’s original work on chemical reaction systems26,
instability with respect to perturbations of a finite band of
wavenumbers [as in Fig. 2d] signalled the formation of stable
periodic patterns. The exact shape of these patterns is usually
determined by non-linearities in the differential equations
describing the reactions. Our model is valid only in the vicinity
of the supposed equilibrium and, similar to May7, we have not
specified the nature of any non-linearities. We, therefore, do not

speculate for now about what might happen after the system has
departed from the fixed point. We merely point out here the
dispersal-induced instability of the equilibrium about which we
have linearised.

Modifying May’s bound: stability with and without dispersal.
In order to further appreciate the effect that the inclusion of
dispersal has on stability, we first consider the conditions under
which the non-spatial ecosystem becomes unstable (see Meth-
ods). This enables us to study how May’s bound on the com-
plexity c changes for our model, which has distinct predator and
prey species. A stability plot is shown in Fig. 3a. The horizontal
axis shows the average degree of predation p= CNμvu (see
Methods). The vertical axis is the complexity parameter c. The
solid line indicates the upper bound on the complexity: below the
line the equilibrium is stable, above this line it is unstable.

We see from Fig. 3 that greater predation p increases the
amount of complexity c that can be sustained in stable
equilibrium by the ecosystem. Notably, in order to have stability
at all in the model with trophic structure, there is a lower bound
on the predation parameter p.

If we now include dispersal, the stability diagram changes
[Fig. 3b]. In particular, the upper bound on the complexity can
become lower than in the non-spatial system. This is because a
new type of instability is now possible—the Turing instability.
Thus, there are instances in which the model is stable without
dispersal but unstable when dispersal is introduced (yellow area
in Fig. 3b labelled ‘dispersal-induced instability’).

There are no situations in which an unstable equilibrium is
stabilised by the combination of dispersal and trophic structure
alone. However, previous work25 has shown how the combina-
tion of spatial heterogeneity (in inter-species interactions) with
dispersal can be stabilising. We comment on the effect of
including spatial heterogeneity in our model in the Discussion
and in the Supplementary Information (Section S14).

How does complexity affect the Turing instability? So far we
have concerned ourselves with the effects of dispersal on complex
ecosystems. We now ask the reverse question: spatial instability
and pattern formation have been found in ‘simple’ models of
ecosystems with a small number of species36–39. What are the
effects of complexity on this Turing instability?

In general, Turing instabilities in simple systems typically occur
when the diffusion coefficients of the ‘activator’ and ‘inhibitor’
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components are quite disparate—this is known as the ‘fine-tuning
issue’ with the Turing mechanism40,41. The activating compo-
nents in our system are the prey species, while predators play the
role of the inhibitors. We would like to know what the effects of
complexity are on the threshold ratio Dv/Du at which the Turing
instability occurs. To answer this question, we compute this
threshold for different values of the complexity parameter c.

The case c= 0 can be achieved by setting the width σ of the
distribution for the elements of the matrix A to zero. The matrix
elements within a block are then identical to each other. The
model thus reduces to a simple two-species predator–prey system.
Increasing c from zero introduces heterogeneity between the
species within the blocks.

We find that complexity can lower the ratio of diffusion
coefficients required for Turing instability (Fig. 4). For more
complex ecosystems the Turing instability, therefore, sets in more
easily. So, not only can complexity decrease the stability of non-
spatial model ecosystems, but it can also reduce stability in spatial
models. Conversely, increasing the ratio of diffusion coefficients
Dv/Du reduces the complexity that can be sustained in stable
equilibrium. As can be seen in Fig. 4, the upper bound on c is
lower when the disparity of dispersal rates is large.

Spatial instability in a non-linear model with complexity. The
linear analysis we have focused on so far, although informative,
has drawbacks. It only deals with the dynamics in the vicinity of a
homogeneous equilibrium and it tells us nothing about how the
ecosystem behaves in the long-run if the equilibrium is unstable.
Further, one could object that the linear model is somewhat
contrived and that it does not capture how a ‘real’ ecosystem
constructs itself in equilibrium.

We now present simulation data of a complex ecosystem
obeying non-linear Levin–Segel-type dynamics31 (see Methods).
In Fig. 5, we demonstrate that a dispersal-induced instability can
occur in this model as well. Figure 5a shows a realisation of the
dynamics without dispersal. The model ecosystem converges to
an equilibrium composed only of surviving species. By definition,
this is a feasible equilibrium34.

Figure 5b shows the same model (with the same interaction
matrix A) but now with dispersal. The abundances do not settle
in the long run. Instead, they display quite erratic behaviour. We
stress that this is different from the typical behaviour seen in two-
species systems with a Turing instability. In such simple systems,
the abundance of each species converges to a constant value
eventually. The fixed-point value varies across space, generating a
periodic pattern. The complex nature of the interactions in our
model leads to the more complicated dynamics in Fig. 5b known
as diffusion-induced chaos42,43.

With that being said, at any point in time, one can take a
snapshot of the spatial profile of the species abundances. An
example is shown in Fig. 6. One finds some spatial structure for
the abundances of prey species (blue lines) but this differs from
classic Turing patterns, which are typically more periodic and
regular. We note that the quickly diffusing predator species (red
lines) have more smoothly undulating spatial profiles than the
slowly diffusing prey species in this example.

Discussion
The random-matrix approach to modelling ecosystems has
developed substantially since May’s original work. We contribute
to this development with a model of a complex ecosystem which
includes trophic structure and dispersal in space. These additional
features change May’s bound on complexity. How the bound
changes tells us about the influence of the new model components
on stability. For example, we find that predation acts as a stabi-
lising influence (Fig. 3, and Sections S5 and S14 of the Supple-
mentary Information).

Inspired by Turing’s mechanism for pattern formation26, we
show how dispersal can be a destabilising factor in a complex
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Fig. 6 Distribution of species in space as a result of dispersal-induced
instability. The figure shows a snapshot of all N= 100 species abundances
in a complex Levin-Segel ecosystem. The model parameters are the same
as in Fig. 5b, which are given in full in the Supplementary Information.
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ecosystem. An equilibrium which would be stable in the non-
spatial model can become unstable through dispersal. Such
instability has been suggested as a mechanism for the observed
patterns in natural ecosystems with small numbers of species
involved44–49. Our work extends the consideration to a larger
number of species and suggests the possibility of dispersal-
induced instability in more complex communities.

Conversely, we observe that increased complexity can lower the
threshold for the diffusion coefficients required for a Turing
instability. So, not only does complexity reduce stability in a non-
spatial model as was May’s conclusion7, but it also destabilises
spatial models with dispersal. This is interesting especially in light
of the so-called ‘fine-tuning’ issue with the Turing mechanism.
The ratio of diffusion coefficients required for a Turing instability
is usually large, making it hard to find experimental examples of
Turing pattern formation33,41,50,51. Based on our findings, we
speculate that dispersal-induced instability may be easier to
observe in complex dynamical systems.

To demonstrate that dispersal-induced instability can also be
seen in model ecosystems where the equilibrium is arrived at
more naturally, we performed simulations of a complex ecosys-
tem with Levin-Segel dynamics (Fig. 5). We found that this model
also exhibits a dispersal-induced instability. Because of the
complex nature of the interactions, the system does not reach a
stable patterned state, which is normally characteristic of Turing
instabilities in models with fewer species. Instead, one sees per-
sistently volatile dynamics known as diffusion-induced chaos42,43.

So as to highlight the destabilising effect of the combination of
dispersal and trophic structure as clearly as possible, we were
parsimonious with the inclusion of additional detail in the model.
It is possible to relax some of the restrictions that we imposed
without sacrificing the ability to perform the mathematical ana-
lysis. For example, variation in the autoregulation coefficients dα
and the dispersal coefficients Dα between species can be taken
into account (in a similar way to ref. 52). In Section S9 of the
Supplementary Information, we show that the possibility of
dispersal-induced instability remains despite this additional
complication.

Provided that relatively mild conditions are met, we also
demonstrate that our results still apply when the random matrix
elements are drawn from a non-Gaussian distribution (see Sec-
tion S7 in the Supplementary Information). More precisely, we
show that the eigenvalue support only depends on the first and
second moments of the distribution of the random matrix ele-
ments Aαβ

ij . This feature of the random matrix model is known as
universality53,54. This is interesting from a theoretical point of
view and also allows one to constrain the signs of the interaction
coefficients within the different blocks in the interaction matrix
(see Section S8 in the Supplementary Information). This means
that it is possible to enforce strict loss-gain interactions between
prey and predator species and to eliminate effects such as intra-
guild predation. Again, the possibility of dispersal-induced
instability remains.

In spatial models of ecosystems, dispersal is often implemented
as migration between discrete patches rather than by diffusion in
a continuous domain27,28. The set of interspecies interactions in
the different patches can then be conceptualised as the edges of a
multi-layer network14,15. Our results, which were derived using
diffusive dispersal in continuous space, also continue to hold in
such meta-ecosystems (see Sections S1C and S13 of the Supple-
mentary Information).

A patched landscape is also a particularly convenient way to
include spatial heterogeneity in the model. A recent study by
Gravel et al.25 demonstrated that dispersal can stabilise equilibria
in complex ecosystems with spatial heterogeneity (we replicate

these findings with our method in Section S11 of the Supple-
mentary Information). This study did not include trophic struc-
ture, which is a key aspect of our model. If spatial heterogeneity is
combined with trophic structure, both the stabilising mechanism
reported in25 and the dispersal-induced instability at the focus of
our work can be seen in the same model (see Section and S14 in
the Supplementary Information and in particular Fig. S13).

The stabilising effect in ref. 25 and the destabilising mechanism
we present can be viewed as somewhat separate. Dispersal-
induced instability is associated with the outliers in the eigenvalue
spectrum. The basis for the stabilising mechanism in ref. 25 is a
reduction in the bulk eigenvalue spectrum (see Supplementary
Information Sections S11 and S12). Which one of the effects takes
precedence depends on the circumstances. A community with
trophic structure and a significant predator-to-prey ratio of dis-
persal rates will be more likely to exhibit dispersal-induced
instability. A community with significant spatial variation in
interactions and consistently high dispersal rates across all species
will be more likely to be subject to the stabilising effects of dis-
persal (for further discussion see Section S14 of the Supplement
and Fig. S14 in particular).

One criticism levelled at May’s model is that it is too simple
and that perhaps through the inclusion of further aspects of
natural ecosystems, the upper bound on the complexity could be
eliminated. Our results do not support this hypothesis. Like May,
we also find that there is always an upper limit on the complexity
c= σ2NC that an ecosystem can stably sustain, even when sta-
bilising factors such as predation and spatial heterogeneity are
taken into account. Other recent studies using random-matrix
approaches arrive at similar conclusions. For example, Allesina
and Tang12 take into account more realistic food-web structures
and still find upper limits on the number of interconnected
species13. May’s result, therefore, generalises to models capturing
more aspects of ‘real’ communities in ecology. This prediction is
supported by the observation of ‘diversity regulation’ in some
ecosystems55–59.

A final observation that we wish to convey is that making
models for complex ecosystems more detailed introduces the
opportunity for new types of instability. In May’s original model,
for example, the mean of the community matrix elements was
zero. As a consequence, any one species is equally likely to benefit
or suffer from the presence of another species. Mathematically, all
eigenvalues then reside within one bulk region, and it is this bulk
region that determines stability. Mutualism can be introduced
through interaction coefficients which are positive on average,
and competition through a negative average interaction12. This
leads to additional outlier eigenvalues, which can make an equi-
librium unstable even though it would otherwise be stable.
Introducing the trophic structure can generate complex-conjugate
pairs of outliers (Fig. 2a), allowing further opportunity for
instability (Section S5 of the Supplementary Information). Dis-
persal, finally, leads to the possibility of a Turing-type instability.
Overall, adding more details to the model of May tends to give
rise to more ways in which equilibrium can become unstable.

Methods
Linear model. We imagine that we find the ecosystem at a homogeneous equili-
brium. Our model is concerned with the dynamics of small perturbations of the
species abundances about this fixed point. The stability of the homogeneous fixed
point is determined by whether or not these perturbations decay or increase with
time. We write ui(x, t) and vj(x, t) for the perturbations of the prey and predator
species abundances respectively at position x and time t. These are the deviations
away from the fixed point. There are Nu prey species and Nv predator species with
N=Nu+Nv species in total. We define the constants γu=Nu/N and γv=Nv/N.

We assume that prey species diffuse at rate Du and predator species at rate Dv in
a spatially homogeneous environment. Similar to May7, we also imagine that all
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species in each group have equal and negative self-interaction. However, it is
possible to relax the simplifying constraints of uniform self-interaction and
diffusion coefficients (see Section 9 in the Supplementary Information and ref. 52).
The probability that a particular pair of species interact with one another is C. This
parameter is known as the ‘connectance’7. The effect of a change in the abundance

of species j on species i, where j belongs to trophic block β and i belongs to α, is Aαβ
ij

[α, β ∈ {u, v}]. The linearised reaction-diffusion equations thus take the following
form

∂ui
∂t

¼ Du
∂2ui
∂x2

� duui þ
XNu

k¼1

Auu
ik uk þ

XNv

j¼1

Auv
ij vj;

∂vj
∂t

¼ Dv

∂2vj
∂x2

� dvvj þ
XNu

i¼1

Avu
ji ui þ

XNv

k¼1

Avv
jk vk:

ð3Þ

If species i and j are non-interacting, Aαβ
ij ¼ Aβα

ji ¼ 0. If the two species interact,

then Aαβ
ij and Aβα

ji are drawn from a joint Gaussian distribution with means Aαβ
ij ¼

μαβ and Aβα
ji ¼ μβα . The elements in the random matrix have variance σ2

ðAαβ
ij � μαβÞ

2 ¼ σ2; ð4Þ

and they are correlated according to

ðAαβ
ij � μαβÞðAα0β0

ji � μα0β0 Þ ¼ Γαβα0β0σ
2: ð5Þ

All other correlations are set to zero. Each of the model parameters can be
interpreted ecologically. We define and interpret the complexity c= CNσ2 in the
main text. The interaction means μuu indicates the degree to which different prey
species cooperate (if μuu > 0) or complete (if μuu < 0). The coefficient μvv has a
similar interpretation for predators. The means of the off-diagonal blocks μuv < 0
and μvu > 0 indicate the degree to which (on average) prey species suffer and
predator species gain from predator–prey interactions. The parameters Γαβα0β0
describe the correlations between interaction coefficients. The only non-zero
entries are taken to be Γu≡ Γuuuu, Γv≡ Γvvvv and Γuv≡ Γuvvu. That is, only elements
which are diagonally opposite one another in A are correlated. A positive value of
Γαβα0β0 indicates that if one species benefits more than average from interaction, the
other species involved does so as well. The opposite is true if Γαβα0β0 is negative.

Taking the Fourier to transform with respect to the spatial coordinate x of Eq. (3),
we arrive at dynamical equations (see Supplementary Information Section S1) for
disturbances of wavenumber q in the abundances of the various species (the
wavenumber is related by q= 2π/λ to the wavelength λ). We denote the combined
vector of the Fourier transforms of species abundances by
~Xq ¼ ð� � � ; ~uiðq; tÞ; � � � ;~vjðq; tÞ; � � � Þ, and arrive at the more compact matrix
equation

_~Xq ¼ Mq
~Xq: ð6Þ

The matrix entry Mq

� �αβ

ij
tells us what the effect of a disturbance of wavenumber

q in species j (belonging to trophic block β) is on species i (belonging to trophic block
α).

The vector Xq has dimension N=Nu+Nv and is arranged such that the first Nu

elements are the Fourier-transformed abundances ~uiðq; tÞ and the last Nv elements
are the ~vjðq; tÞ. The matrix Mq is depicted in Fig. 1. It is divided into blocks due to
the trophic structure of the community. Its three contributions are a diagonal
diffusion matrix, a diagonal self-interaction matrix and a random interaction
matrix, whose variance and correlations are given in Eqs. (4) and (5). The indices α
and β correspond to the different blocks and i and j correspond to the position
within the block. If the matrix Mq has eigenvalues with positive real parts for any
value of q ≥ 0, the disturbances ui and vi will grow with time, indicating an unstable
equilibrium.

By setting q= 0 in Eq. (6), one recovers Eq. (3) with the diffusion term
removed. Focusing on q= 0 in our model (or equivalently setting Du=Dv= 0)
thus allows one to study the stability of a non-spatial model ecosystem with trophic
structure. Further details can be found in Sections S1 and S5 in the Supplementary
Information.

We note that a similar form for the matrix Mq can be found for a model of a
meta-ecosystem with dispersal between discrete patches (similar to ref. 27,28)
instead of in continuous space (see Sections S1 C and S13 of the Supplementary
Information).

The values of the model parameters used in the figures are given in full in
Section S6 of the Supplementary Information.

Calculation of the boundary surrounding the bulk of the eigenvalues. The vast
majority of the eigenvalues of the random matrices Mq reside within one or two
‘bulk’ regions of the complex plane. To determine stability we need to know if there
are bulk eigenvalues with positive real parts. Identifying the boundaries of the
regions containing the eigenvalues is sufficient for this purpose. Our calculation
uses methods originally developed in statistical physics and follows lines similar to

those of refs. 60,61. This approach converts the problem into the evaluation of a
‘potential’ related to the eigenvalue density. This potential, in turn, can be
expressed as a high-dimensional integral, which is carried out using the saddle-
point method. A brief summary of the context of this approach in the wider
literature is given Section S2 A of the Supplementary Information. Full details of
the calculation are given in Sections S2 B and S2 C.

We write ω= ωx+ iωy for the eigenvalues ofMq. The general expression for the
boundary surrounding the bulk of the eigenvalues (ωy as a function of ωx) is given
by the simultaneous solution of the following equations (see Supplementary
Information Eq. (S81))

X

α

γα χα
�� ��2 � 1

c
¼ 0;

�ðωx þ iωy þ dα þ q2DαÞχα þ c
X

β

Γαβγβχαχβ þ 1 ¼ 0:
ð7Þ

We note the free index α in the second of these equations (α ∈ {u, v}). This is
therefore a system of three coupled equations. One first eliminates the auxiliary
variables χα, and then expresses ωy in terms of ωx. This results in the red curves in
Fig. 2.

The solution simplifies in several special cases, which we exploit to provide
explicit stability criteria analogous to May’s bound (Section S5 of the
Supplementary Information).

Calculation of the outlier eigenvalues. In addition to the bulk eigenvalues, the
stability matrix can have isolated outlier eigenvalues. If any of these outliers have a
positive real part, the equilibrium is unstable. Their position in the complex plane
is calculated along the lines of ref. 62. Details can be found in the Supplementary
Information Section S3. The outlier eigenvalues are given by the complex values ω
satisfying the following equation (see Supplementary Information Eq. (S82))

γuNCμuu �
1

χuðωÞ
� �

γvNCμvv �
1

χvðωÞ
� �

� ðNCÞ2γuγvμuvμvu ¼ 0; ð8Þ
The auxiliary quantities χα(ω) in this relation satisfy

�1 ¼ �ðωþ du þ q2DuÞχu þ cΓuγuχ
2
u þ cΓuvγvχvχu;

�1 ¼ �ðωþ dv þ q2DvÞχv þ cΓuvγuχuχv þ cΓvγvχ
2
v ;

ð9Þ

subject to the condition
X

α

γαjχαðωÞj2 <
1
c
: ð10Þ

Eqs. (8) and (9) need to be solved simultaneously, subject to Eq. (10). If there
are no solutions then there are no outliers. In special cases, the above expressions
can be simplified, and explicit stability criteria can be found (Section S5 in the
Supplementary Information).

Finding the threshold for instability. Instability can occur in one of several
different ways: (1) The bulk region of eigenvalues for q= 0 can cross into the
positive half-plane; (2) one of the outlier eigenvalues for q= 0 can cross the
imaginary axis; (3) an outlier eigenvalue for q ≠ 0 can stray into the positive half-
plane. We have not observed any circumstances under which the bulk crosses the
imaginary axis for non-zero q where it does not for q= 0. The eigenvalues must
have negative real parts for all q in order for the equilibrium to be stable in the
spatial system. This includes q= 0. Cases (1) and (2) therefore indicate instabilities
occurring both in the non-spatial and the spatial ecosystem. In case (3) the spatial
system is unstable, but the non-spatial system remains stable. In each of these cases,
the threshold for instability is found by identifying sets of parameters for which
either the boundary for the bulk eigenvalues touches the imaginary axis (case 1) or
where the outlier eigenvalues touch the imaginary axis (cases 2 and 3).

This can be done using the analytical results for the spectrum of eigenvalues
(Section S5 of the Supplementary Information), leading to the results shown in
Figs. 3 and 4.

Simulating the non-linear model. Results in Figs. 5 and 6 are from numerical
integration of the Levin–Segel-type model31,

∂ui
∂t

¼ Du
∂2ui
∂x2

þ ui a� ui þ
X

k2u
Auu
ik uk þ

X

j2v
Auv
ij vj

" #
;

∂vj
∂t

¼ Dv

∂2vj
∂x2

þ vj �vj þ
X

i2x
Avu
ji ui þ

X

k2v
Avv
jk vj

" #
:

ð11Þ

where a > 0 is a constant. To integrate these equations numerically, the diffusion
terms are discretised. The integration is then carried out using the Runge–Kutta
(RK4) method63.

Further variations on the model. The flexibility of our analytical approach allows
us to include additional features to our fairly austere model. For example, in Sections
S7 and S8 of the Supplementary Information, we demonstrate the universality of our
theoretical results. That is, we show that the matrix elements need not be drawn from
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a Gaussian distribution for our results to apply. Similar to ref. 52, variation in the self-
interaction and diffusions coefficients (dα and Dα respectively) can also be taken into
account (Section S9 in the Supplementary Information). In Section S13 of the Sup-
plementary Information, we show that the dispersal-induced instability persists on a
landscape of discrete patches (as opposed to diffusion in a continuous space) and
when dispersal is non-local. These extensions highlight the robustness of the
dispersal-induced instability in complex ecosystems and the versatility of the analy-
tical formalism.

Inclusion of spatial heterogeneity in the interaction coefficients. In analysing
Eqs. (3) and the stability matrix in Eq. (2) we have assumed that the interaction

coefficients Aαβ
ij are the same at every point in space. In order to model spatial

heterogeneity, we extend the set up along the lines of ref. 25 and imagine that
dispersal takes place on a set of discrete patches indexed by their position x, similar
to meta-population models28 (see Section S10 in the Supplementary Information).

The interaction matrix Aαβ
ij;xx0 then has two layers of block structure: one indicating

the trophic structure as before and the second representing a location in space.
Multilayer networks have previously been used to encapsulate similar structures in
ecological communities14,15.

Adapting the prior calculation, the regions in the complex plane containing the
bulk and outlier eigenvalues can also be computed for the model with spatial
heterogeneity (Section S11 in the Supplementary Information). The model in the
main text and that of ref. 25 are special cases of this setup. In particular, we can also
recover the eigenvalue support and stability criteria of ref. 25. In Section 14 of the
Supplementary Information, we show that the mechanism leading to dispersal-
induced instability and the stabilising mechanism of ref. 25 can coexist in the same
model. We also discuss the factors that determine whether dispersal acts to stabilise
or destabilise equilibria of complex ecosystems.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data in Figs. 2–6 is generated using the codes in the code availability statement. The
data are also available upon reasonable request to the corresponding author.

Code availability
Codes for Figs. 2–664 are available from the following link https://doi.org/10.5281/
zenodo.4068257. They are written using Mathematica 12 and Python v3.8. Python
packages matplotlib, numpy and scipy were used. The codes for producing the figures in
Supplementary Information are available upon reasonable request to the corresponding
author.
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