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Glycosyl ortho-(1-phenylvinyl)benzoates versatile
glycosyl donors for highly efficient synthesis
of both O-glycosides and nucleosides
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Guozhi Xiao 1*

Both of O-glycosides and nucleosides are important biomolecules with crucial rules in

numerous biological processes. Chemical synthesis is an efficient and scalable method to

produce well-defined and pure carbohydrate-containing molecules for deciphering their

functions and developing therapeutic agents. However, the development of glycosylation

methods for efficient synthesis of both O-glycosides and nucleosides is one of the long-

standing challenges in chemistry. Here, we report a highly efficient and versatile glycosylation

method for efficient synthesis of both O-glycosides and nucleosides, which uses glycosyl

ortho-(1-phenylvinyl)benzoates as donors. This glycosylation protocol enjoys the various

features, including readily prepared and stable donors, cheap and readily available promoters,

mild reaction conditions, good to excellent yields, and broad substrate scopes. In particular,

the applications of the current glycosylation protocol are demonstrated by one-pot synthesis

of several bioactive oligosaccharides and highly efficient synthesis of nucleosides drugs

capecitabine, galocitabine and doxifluridine.
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Carbohydrates are essential molecules with important rules
in numerous biological processes such as cell growth and
proliferation, immune response, and viral and bacterial

infection1,2. Due to the highly heterogeneous character of car-
bohydrate structures, it is a formidable task to isolate homo-
geneous and pure glycans from nature. Chemical synthesis is an
efficient, reliable, and scalable means to produce well-defined
glycans for deciphering their functions and developing phar-
maceuticals3–7. During the past century, a variety of glycosyla-
tion methods have been developed to streamline the chemical
synthesis of glycans8–17. In comparison with synthesis of O-
glycosides, methods capable of efficient synthesis of nucleosides
(N-glycosides) are relatively limited. Nucleosides are also
important molecules, which played such crucial roles in many
cellular processes as enzyme metabolism and regulation, cell
signaling, and DNA and RNA synthesis18. Nucleosides natural
products and nucleosides analogs usually demonstrate potent
anticancer, antiviral, and antibacterial activities19. The develop-
ment of the efficient methods for the synthesis of nucleosides still
remains a high priority to develop therapeutic agents such as
anticancer and antiviral drugs, to explore DNA sequencing
technique, and to understand their mechanisms of action20–22.
Most of common O-glycosylation donors including glycosyl
trichloroacetimidates23, trifluoroacetimidates24, chlorides/bro-
mides25, phosphites26, thioglycosides27, sulfoxides28, sugar 1,2-
anhydrides29, and n-pentenyl glycosides30 have the only limited
success for nucleosides synthesis (Fig. 1a). The problems inher-
ent to nucleosides synthesis mainly include the poor solubility
and nucleophilicity of nucleobases, which results in the unfa-
vorable competition for glycosylation with other nucleophilic
species derived from the leaving group and promoters in the
coupling reaction. Therefore, the development of glycosylation
methods for highly efficient synthesis of both O-glycosides and
nucleosides is highly desirable and one of the long-standing
challenges in chemistry.

A Vorbrüggen type reaction31–33 is a famous method for the
synthesis of nucleosides, which involves the glycosylation of sugar
acetates with trimethylsilylated nucleobases under strong Lewis
acid activation (Fig. 1b). However, due to the stoichiometric use
of strong Lewis acids, e.g. trimethylsilyl triflate and SnCl4, the
limitations of this method are obvious, including: (1) the poor
functional group compatibility of the strong Lewis acid; (2) the
low coupling yields and moderate N9/N7 regioselectivity when
purines are used; and (3) the issues of work-up and disposal,
especially on preparative scale. To overcome these issues, Jami-
son’s group34 introduced pyridinium triflate salts as efficient
bronsted acid catalysts for nucleosides and nucleosides analogs
synthesis (Fig. 1b). Despite the success in nucleosides synthesis,
sugar acetates are relatively poor donors for synthesis of O-gly-
cosides. In 2008, Yu’s group35 introduced a glycosylation method
with glycosyl ortho-alkynylbenzoates (ABz) as donors and gold(I)
complexes as catalysts. This Yu glycosylation enjoys mild glyco-
sylation reaction conditions and has been successfully demon-
strated in the total synthesis for complex O-glycosides natural
products and nucleosides antibiotics10,36 (Fig. 1c). In 2019, the
group of Yu37 reported another highly effective and versatile
glycosylation method with 3,5-dimethyl-4-(2′-phenylethynyl-
phenyl)phenyl (EPP) glycosides as donors, which is suitable for
efficient synthesis both of O-glycosides and nucleosides (Fig. 1d).
Notwithstanding these breakthroughs, the challenges still remain
in this realm. For example, methods using readily prepared and
stable glycosyl donors, cheap and readily available promoters, and
mild reaction conditions are still limited. The number of leaving
groups that could be combined to achieve multi-steps one-pot
synthesiss of oligosaccharides is still rare13,14,38,39. Furthermore,
general glycosylation methods suitable for industrial appllications

with lower costs for efficient synthesis of both O-glycosides and
nucleosides remain extremely rare.

Herein, we report a highly efficient and versatile glycosylation
method with glycosyl ortho-(1-phenylvinyl)benzoates (PVB) as
donors for efficient synthesis of both O-glycosides and nucleo-
sides (Fig. 1e). Readily prepared and stable donors, cheap and
readily available promoters, mild reaction conditions, good to
excellent yields, and broad substrate scopes are highlighted in this
glycosylation protocol. Furthermore, the applications of the cur-
rent glycosylation protocol have been successfully demonstrated
in the one-pot synthesis of several bioactive oligosaccharides and
highly efficient synthesis of nucleosides drugs capecitabine,
galocitabine, and doxifluridine (Fig. 1f).

Results
Conditions optimization. We commenced with the preparation
of glycosyl PVB donors, which were readily prepared by con-
densation of sugar hemiacetals with the ortho-(1-phenylvinyl)
benzoic acid in the presence of EDCI, DMAP, and iPr2EtN
(Supplementary Methods). It was noteworthy that the ortho-(1-
phenylvinyl)benzoic acid was easily obtained by one-step Wittig
methenylation of the cheap 2-benzoylbenzoic acid (0.1$/g) in
excellent yield40. The resultant glycosyl PVB donors (1a–t) are
stable and stay inert on shelf for at least one month. Next, we
investigated glycosylation of glucosyl perbenzoyl PVB 1a and
1,2:3,4-di-O-isopropylidene-α-galactoside 2a under various con-
ditions (Table 1). A variety of promoters such as Ph3PAuOTf,
AgOTf, Cu(OTf)2, TMSOTf and HOTf, and MeOTf were
screened; however, glucosyl perbenzoyl PVB 1a stayed largely
intact and no glycosylation reaction occurred, except the pro-
moter HOTf affording the desired glycoside 3a in 9% yield.
Fortunately, glycosylation of disarmed PVB 1a (1.2 equiv.) and
galactoside 2a (1.0 equiv.) under the action of NIS (2.5 equiv.)
and TMSOTf (0.3 equiv.) proceeded smoothly in CH2Cl2 at 0 °C
to RT, providing the coupled (1→ 6)-disaccharide 3a in 97%
yield. Reducing the amount of NIS from 2.5 equiv. to 1.5 equiv.
still produced disaccharide 3a in an excellent yiled (94%). The
departing species, isobenzofuran-1-one derivative 4 was readily
isolated and confirmed unambiguously by X-ray diffraction
analysis (CCDC 1939909) (Fig. 2).

Scope of synthesis of O-glycosides. With the optimal condi-
tions for the model glycosylation reaction (1a+ 2a→ 3a) in
hand, we began to investigate the scope of this glycosylation
protocol for O-glycosides synthesis (Fig. 2). We were pleased to
discover that a wide range of carbohydrate alcoholic acceptors
including the sterically hindered C4 position of glucose and C2
position of mannose were coupled smoothly with 1a, providing
β-(1→ 6)-, (1→ 4)-, (1→ 3)-, and (1→ 2)-disaccharides 3b–h
in excellent yields (92–99%). It is worth noting that this glyco-
sylation protocol works well for both of higher and lower
nucleophilic carbohydrate alcoholic acceptors (e.g., 3c and 3d).
A mild anesthetic menthol and hindered nucleophiles such as 1-
adamantanol and benzyl oleanolate were also glycosylated
uneventfully with 1a, producing the coupled glycosides 3i–k in
87–95% yields. Glycosylation of the acid and base-sensitive and
electron-rich podophyllotoxin41 with 1a also proceeded
smoothly to furnish the desired podophyllotoxin 4-O-glucoside
3l in 94% yield, which is the analog of the first-line antitumoral
drugs etoposide and teniposide42,43. Furthermore, we investi-
gated different glycosyl donors. For pyranosyl donors, a wide
array of glycosyl PVB donors including D-galacto-, D-manno-, L-
rhamno-, L-arabino-, L-fuco-, and D-xylopyranosyl donors were
coupled successfully to provide the corresponding glycosides
3m–r in excellent yields (88–99%). Besides pyranosyl donors,
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furanosyl PVB donors including L-arabino-, D-ribo-, D-galacto-,
and even D-fructofuranosyl donors were also glycosylated effi-
ciently to furnish the corresponding glycosides 3s–3v in nearly
quantitative yields. It was noted that the famous Schmidt gly-
cosylation method44 using trichloroacetimidate (TCAI) as
donors was not suitable for fructosylation due to the unsuc-
cessful preparation of fructosyl trichloroacetimidate under var-
ious basic conditions45. The peracetyl gluco-, rhamno-, and
xylopyranosyl PVB donors (1b, 1f and 1h) reacted uneventfully
with secondary and primary sugar alcohols to give the corre-
sponding glycosides 3w–3y in 96–99% yield. It is noteworthy
that when the corresponding glucosyl ABz was used as a donor,
the complex mixture was obtained due to the production of
orthoester-derived byproducts46. For both superarmed and
armed glycosyl PVB donors47, while 3z–3ab were produced as
the only β-products in 87–99% yields, an anomeric mixture of
the glycoside 3ac was isolated expectedly (99%, α/β= 1:1). For
the formation of the challenging 2-deoxy glycosidic linkages,
glycosyl PVB donor 1s was also a viable substrate, and 3ad was
produced efficiently in 86% yield.

N-glycosylation of pyrimidine nucleobases. After the glycosyl
PVB glycosylation protocol for efficient synthesis of O-glycosides
was successfully set up, the N-glycosylation of pyrimidine
nucleobases with glycosyl PVB was then investigated (Fig. 3).
Treatment of the poorly soluble uridine 5a (2.0 equiv.) with N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) in acetonitrile
produced the soluble silylated uridine. We found that it was
necessary to heat the nucleobases to 50 °C in 30 min to insure the
full solubility of nucleobases. The resulting soluble silylated uri-
dine was coupled with the perbenzoyl ribofuranosyl PVB 1l in the
activation of NIS (1.5 equiv.) and TMSOTf (0.5 equiv.) at 0 °C to
room temperature. To our good fortune, the reaction proceeded
smoothly, providing the desired nucleoside 6a cleanly in an
excellent yield (93%). With the optimal condition for the N-
glycosylation of pyrimidine nucleobases in hand, we began to
investigate the scope of this glycosylation protocol. We were
pleased to discover that a wide range of nucleobases including
uridine 5a, thymine 5b, N4-benzoylcytosine 5c, 5-fluorouridine
5d, and trifluorothymine 5e were glycosylated smoothly with
ribofuranosyl donors 1l and 1t, affording the desired nucleosides
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6a–e in excellent yields (85–96%). In comparison, using Yu gly-
cosylation with glycosyl ABz, nucleosides 6a, 6b, and 6c were
obtained in 85%, 88%, and 95% yields, respectively36. Using EPP
glycosides, 6a and 6c were produced in 90% and 91% yields,
respectively37. The other furanosyl donors 1k and 1m–n
including L-arabino, D-galacto-, and even D-fructofuranosyl
donors were also coupled efficiently with nucleobases 5a, 5c, and
5e, providing the corresponding nucleosides 6f–h in excellent
yields (91–96%). Besides the furanosyl donors, the pyranosyl PVB
donors 1a, 1e, 1g, and 1i including D-gluco-, L-rhamno-, L-ara-
bino-, and D-xylopyranosyl donors were also glycosylated
smoothly with 5-fluorouridine 5d and trifluorothymine 5e, fur-
nishing the corresponding nucleosides 6i–n in excellent yields
(89–99%). Interestingly, the big value (9.4 Hz) of the J1,2 of
nucleoside 6j suggests a α-L-rhamnopyranose in 4C1 conforma-
tion with the diaxial orientation of H1 and H2. It is noted that the
fluoro and trifluoromethyl groups are intriguing structural motifs
and frequently found in many pharmaceuticals. Thus, the
incorporation of fluoro and trifluoromethyl groups into nucleo-
sides may have great potential for the development of therapeutic
agents48,49.

N-glycosylation of purines nucleobases. We then examined the
N-glycosylation of purines nucleobases with glycosyl PVB, which
was a challenging task due to the N9/N7 regioselectivity issues of
purines in the glycosylation reactions50,51. We chose two purine
nucleobases, namely, N6-bis(tert-butoxycarbonyl)adenine 5f and
N2-tert-butoxycarbonyl-2-amino-6-iodopurine 5g, which have
already been efficiently utilized in Yu glycosylation of purines36

and Mitsunobu-type N-alkylation reactions52 with high N9/N7
regioselectivity. Tert-butoxycarbonyl (Boc) group installed in
purines 5f and 5g solved the solubility issues of purine nucleo-
bases and enabled the glycosylation to be conducted in dichlor-
omethane. Boc-protected purine 5f (1.0 equiv.) was glycosylated
with the perbenzoyl ribofuranosyl PVB 1l (1.2 equiv.) in the
promotion of NIS (1.5 equiv.) and TMSOTf (0.3 equiv.) in
dichloromethane at −20 °C. To our delight, the reaction pro-
ceeded efficiently, furnishing the desired N9 nucleoside 6o in an
excellent yield (84%). Coupling of N2-Boc-2-amino-6-iodopurine
5g with PVB 1l also led to the corresponding N9 6-iodopurine
nucleoside 6p in 85% yield, which is a useful precursor to the
corresponding guanine nucleosides or 6-substituted analogs52,53.

With the optimal condition for N-glycosylation of purines in
hand, we went on to investigate the scope of this glycosylation
protocol (Fig. 3). We were delighted to find that a wide array of
furanosyl donors, including L-arabino-, D-5-deoxyribo-, D-
galacto-, and even D-fructofuranosyl donors, were coupled
smoothly, providing the desired N9 nucleosides 6q–t in excellent
yields (82–85%). Besides furanosyl donors, the pyranosyl donors
including D-gluco-, D-galacto-, D-manno-, L-arabino-, D-xylo-, and
L-rhamnopyranosyl donors also led to the coupled N9 nucleoside
products 6u–z in satisfactory yields (66–76%). Interestingly,
nucleoside product 6w bears a α-D-mannopyranose in 1C4 con-
formation54–56. It was noted that N-glycosylation of purines
using Yu glycosylation with glycosyl ortho-alkynylbenzoates
afforded N9 nucleosides 6o, 6p, 6q, and 6u in 77%, 84%, 80%,
and 48% yield, respectively36. Using EPP glycosides, the corre-
sponding 6o, 6q, and 6u were prepared in 74%, 73%, and 69%
yields, respectively37.

Comparison of the donor reactivities. Of note, the present
glycosyl PVB activation conditions (NIS/TMSOTf) have been
extensively utilized in thioglycosides and 4-n-pentenyl glycosides
glycosylation reactions57,58. Therefore, the donor reactivities of
glycosyl PVB with thioglycosides and 4-n-pentenyl glycosides
were compared (Fig. 4). NIS (1.0 equiv.) and TMSOTf (0.3 equiv.)
were added to a mixture of p-tolylthio perbenzoyl glucopyrano-
side (7a, 1.0 equiv.), perbenzoyl glucopyranosyl PVB (1a, 1.0
equiv.), and sugar alcohol (2a, 1.0 equiv.) in CH2Cl2 at −15 °C.
Interestingly, after 2 h, p-tolylthio perbenzoyl glucopyranoside 7a
was fully recovered (98%), while perbenzoyl glucopyranosyl PVB
1a was completely glycosylated with 2a, providing the coupled
disaccharide 3a and isobenzofuran-1-one derivative 4 in 94% and
99% isolated yield, respectively. Furthermore, we compared the
donor reactivity of disarmed PVB donor 1a with armed perbenzyl
glucothioglycoside, which shows about 2000 times reactivity of its
perbenzoyl counterpart 7a59. To our surprise, disarmed PVB
donor 1a was still more reactive and about three times reactivity
of perbenzyl glucothioglycoside 7b (Supplementary Fig. 7). In a
similar competition reaction, while 1a was fully coupled with 2a,
producing 3a and 4 in a nearly quantitatively yield, perbenzoyl
glucosyl n-Pen 7c was recovered completely (99%). Furthermore,
1a was about seven times more reactive than perbenzyl glucosyl
n-Pen 7d (Supplementary Fig. 9).

Table 1 Conditions optimization for glycosylation with perbenzoyl glucosyl PVB 1a.
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8 NIS (1.5), TMSOTf (0.3) 3a 94%
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One-pot synthesis of oligosaccharides 13–16. We envisioned
that large enough donor reactivity differences of glycosyl PVB
donors with thioglycosides and 4-n-pentenyl glycosides could
lead to one-pot synthesis of oligosaccharides. Indeed, for glycosyl
PVB and thioglycoside pair, glycosylation of disarmed PVB donor
1a (1.0 equiv.) with disarmed thioglycoside 8 (1.0 equiv.) under
the activation of NIS (1.0 equiv.), and TMSOTf (0.3 equiv.)
produced the coupled disaccharide intermediate, which was fur-
ther coupled with the acceptor 2e (1.0 equiv.) under the pro-
motion of NIS (1.5 equiv.) and TMSOTf (0.3 equiv.), providing
the trisaccharide 13 in 89% yield in the same pot (Fig. 4). For
glycosyl PVB and n-Pen glycoside pair, PVB 1a (1.0 equiv.) was
coupled with n-Pen 9 (1.2 equiv.) under the promotion of NIS
and TMSOTf to generate the coupled disaccharide intermediate,
which was further glycosylated with the acceptor 2c (1.1 equiv.)
under the action of NIS and TMSOTf, providing trisaccharide 14
in 73% yield in a one-pot manner. Orthogonal one-pot synthesis
of oligosaccharides is one of the most popular one-pot

glycosylation strategies13,14. However, the number of leaving
groups that could be utilized in multistep orthogonal one-pot
synthesis is still limited. Recently, the group of Xiao38 developed
orthogonal one-pot synthesis of oligosaccharides based on gly-
cosyl ABz, which solved the shortcomings including aglycon
transfer, high electrophilic character of departing species, and
unpleasant odor inherent to thioglycosides based orthogonal one-
pot glycosylation. We envisioned that orthogonal one-pot
synthesis of oligosaccharides based on glycosyl PVB could also
be explored to streamline chemical synthesis of oligosaccharides.
Indeed, for glycosyl TCAI, ABz, and PVB triple, coupling of
glucosyl TCAI 10 (1.2 equiv.) with ABz 11 (1.1 equiv.) under the
catalysis of TMSOTf afforded disaccharide intermediate, which
was further glycosylated with PVB 12 (1.0 equiv.) under the
catalytic amount of Ph3PAuOTf, providing the trisaccharide
intermediate. The above trisaccharide intermediate was further
glycosylated with the acceptor 2c (0.9 equiv.) under the promo-
tion of NIS and TMSOTf to give tetrasaccharide 15 in 74% yield
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in one-pot, whose sulfated derivatives exhibit significant proan-
giogenic activity60. It was noted that stepwise orthogonal glyco-
sylation approach afforded tetrasaccharide 15 in only 39% overall
yield61. Replacing the above acceptor 2c with the poor 4-OH
acceptor 2b, tetrasacchaide 16 was still obtained in satisfactory
59% overall yield in one pot by successive coupling of TACI 10,
ABz 11, PVB 12, and acceptor 2b (Fig. 4).

Synthesis of nucleosides drugs. Finally, the utilities of this gly-
cosylation protocol have been successfully demonstrated in the
application to the efficient synthesis of nucleoside antibiotics
capectibine, galocitabine, and doxifluridine (Fig. 5). In particular,
capecitabine 17 is an important drug against breast and colorectal
cancers62–65 and is commercially available in the market under
the brand name XELODA®. Using the above standard conditions
for N-glycosylation with pyrimidines, pyrimidine 5h was coupled
efficiently with perbenzoyl 5-deoxyribofuranosyl PVB 1t, pro-
viding the pyrimidine nucleoside in excellent yield (91%), which
was treated with NaOH in MeOH/H2O to produce nucleoside
capecitabine 17 in 96% yield. It was noted that N-glycosylation of
sugar acetate with pyrimidine 7 h under the action of pyridinium
triflate salts at 140 °C developed by the group of Jamison34

resulted in significant decomposition of carbamate functionality
and moderate glycosylation yield66. This problem rendered them

to first couple more electron rich and less reactive pyrimidine,
then install the carbamate functionality, finally deprotect the acyl
groups to achieve the synthesis of capectitabine 17 in 72% overall
yield over three steps66. In comparsion, the current two-step
synthesis of anticancer drug capecitabine 17 in 87% overall yield
is clearly more efficient and less steps than any other previously
reported processes67–73. The current glycosylation protocol
highlighted the mild reaction condition, which is compatible with
the carbamate functionality. In the similar glycosylation protocol,
coupling of pyrimidines 5d and 5i with PVB 1t afforded the
corresponding pyrimidine nucleosides in excellent yields
(83–98%), which was deprotected with NaOH in MeOH/H2O to
give doxifluridine 18 and galocitabine 19 in 91% and 95% yields,
respectively.

A plausible mechanism. After the glycosyl PVB glycosylation
protocols for highly efficient synthesis both of O-glycosides and
nucleosides were successfully established and the synthetic
applications toward one-pot synthesis of bioactive oligosacchar-
ides and efficient synthesis of nucleosides antibiotics were suc-
cessfully demonstrated, a plausible mechanism of the NIS/
TMSOTf mediated glycosylation with glycosyl PVB as donors was
outlined in Fig. 6. Activation of NIS with TMSOTf leads to the
formation of iodonium species, which can attack a C–C double
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bond within the aglycone of glycosyl PVB 1, resulting in the
generation of diphenylmethyl cation species A. We envisioned
that this cation species A can be stabilized by two adjacent phenyl
groups, facilitating the ready cleavage of the anomeric C–O bond
to generate the glycosyl oxocarbenium species B and the
departing species of the leaving group, isobenzofuran-1-one
derivative 4. The oxocarbenium B can be attacked by alcoholic
nucleophiles 2 or nucleobases 5 to produce O-glycosides products
3 or nucleosides 6 and H+. Protonation of silylated succinimide
regenerates TMSOTf, which can undergo the next catalytic cycle.

Discussion
We have developed a highly efficient and versatile glycosylation
method for the highly efficient synthesis of both O-glycosides and
nucleosides, which uses glycosyl PVB as donors and NIS/TMSOTf
as promoters. This glycosylation protocol highlighted the various
advantages, including (1) readily prepared and stable glycosyl PVB

donors; (2) cheap and readily available promoters, and mild
reaction conditions; (3) good to excellent glycosylation yields; and
(4) broad substrate scopes. Furthermore, one-pot synthesis of
oligosaccharides based on glycosyl PVB highly streamlined che-
mical synthesis of oligosaccharides, which avoided three major
issues including aglycon transfer, undesired interference of
departing species, and unpleasant odor inherent to thioglycosides
based one-pot glycosylation. Highly efficient synthesis of nucleo-
sides drugs capecitabine, galocitabine, and doxifluridine using the
current glycosylaton protocol has also been successfully demon-
strated. With these exciting features, we believe this glycosylation
protocol will find broad applications in chemical synthesis and
inspire the development of other glycosylation methods for effi-
cient synthesis of both O-glycosides and nucleosides.

Methods
General. The complete experimental details, compound characterization data, and
NMR spectra of compounds synthesized in this study see Supplementary information.
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General procedure for glycosylation with alcoholic acceptors. A solution of
glycosyl PVB donor 1 (1.2 equiv.) and alcoholic acceptors 2 (1.0 equiv.) in dry
CH2Cl2 (0.033M) was stirred at room temperature for 30 min in the presence of
activated 3 Å MS (3.0 g/mmol) under argon atmosphere. Then the vessel was
chilled to 0 °C, to which NIS (1.5 equiv.) and TMSOTf (0.3 equiv.) were added. The
reaction mixture was stirred for 2 h after the temperature gradually rose to room
temperature. Then Et3N was added to quench the reaction and the solvent was
removed under reduced pressure. The resulting residue was purified by silica gel
column chromatography to afford the glycosylated product.

General procedure for glycosylation with pyrimidines. BSTFA (4.0 eq) was
added to a stirred suspension of pyrimidine acceptors 5a–e and 5h–i (2.0 equiv.) in
dry CH3CN (0.1 M) under argon atmosphere. After the mixture was stirred at
50 °C for 30 min, this solution was added to a solution of glycosyl PVB donor 1
(1.0 eq) and activated 3 Å MS (4.0 g/mmol) in dry CH3CN (0.05 M), which has
been stirred at room temperature for 30 min under argon atmosphere. The stirring
was continued for 10 min, then the vessel was chilled to 0 °C, to which NIS (1.5
equiv.) and TMSOTf (0.5 equiv.) were added. The reaction mixture was stirred for

3 h after the temperature gradually rose to room temperature. Et3N was added to
quench the reaction and the solvent was removed under reduced pressure. The
resulting residue was purified by silica gel column chromatography to afford the
glycosylated product.

General procedure for glycosylation with purines. A solution of glycosyl PVB
donor 1 (1.2 equiv.) and purines acceptors 5f–g (1.0 equiv.) in dry CH2Cl2 (0.033M)
was stirred at room temperature for 30 min in the presence of activated 3 Å MS
(3.0 g/mmol) under argon atmosphere. Then the vessel was chilled to −20 °C, to
which NIS (1.5 equiv.) and TMSOTf (0.3 equiv.) were added. The reaction mixture
was stirred for 2 h after the temperature gradually rose to room temperature. Then
Et3N was added to quench the reaction and the solvent was removed under
reduced pressure. The resulting residue was purified by silica gel column chro-
matography to afford the glycosylated product.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information Files. The X-ray crystallographic
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coordinates for compound 4 reported in this study have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1939909.
These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
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