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Net carbon emissions from African biosphere
dominate pan-tropical atmospheric CO2 signal
Paul I. Palmer 1,2, Liang Feng1,2, David Baker3, Frédéric Chevallier 4, Hartmut Bösch5,6 & Peter Somkuti5,6

Tropical ecosystems are large carbon stores that are vulnerable to climate change. The

sparseness of ground-based measurements has precluded verification of these ecosystems

being a net annual source (+ve) or sink (−ve) of atmospheric carbon. We show that two

independent satellite data sets of atmospheric carbon dioxide (CO2), interpreted using

independent models, are consistent with the land tropics being a net annual carbon emission

of ðmedianmaximum
minimum Þ 1:03þ1:73

�0:20 and 1:60þ2:11
þ1:39 petagrams (PgC) in 2015 and 2016, respectively.

These pan-tropical estimates reflect unexpectedly large net emissions from tropical Africa of

1:48þ1:95
þ0:80 PgC in 2015 and 1:65þ2:42

þ1:14 PgC in 2016. The largest carbon uptake is over the Congo

basin, and the two loci of carbon emissions are over western Ethiopia and western tropical

Africa, where there are large soil organic carbon stores and where there has been substantial

land use change. These signals are present in the space-borne CO2 record from 2009

onwards.
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Tropical terrestrial ecosystems store large amounts of carbon
in plants and soil, but are particularly vulnerable to
changes in climate1,2. They release CO2 via autotrophic

and heterotrophic respiration and via fire, and take up CO2 via
photosynthesis. The terrestrial tropics, defined between 23.44°S
and 23.44oN, include 30% of the global land surface and
approximately a third of all Earth’s three billion trees3 and their
stored carbon. Our knowledge of the tropical carbon budget has
improved significantly over the past few decades mainly due to
networks of sample plot measurements4, micro-meteorological
measurements of carbon fluxes of forest ecosystems5, remote
sensing of vegetation state or of land use change6, and sparsely-
distributed ground-based mole fraction measurements7,8 of
atmospheric CO2. Despite these efforts, carbon fluxes from tro-
pical ecosystems remain one of the largest uncertainties in the
global carbon cycle9,10 and impose a similar uncertainty on our
ability to predict future climate change.

We use a range of global satellite data (“Methods”) to study the
carbon cycle over the tropics from 2009 to 2017 with a focus on
2015/2016 when two independent satellites were observing
atmospheric CO2. We use total column CO2 dry air mole fraction
(XCO2) retrievals from the Japanese Greenhouse gases Observing
SATellite11 (GOSAT) from mid-2009 until 2017 and from the
NASA Orbiting Carbon Observatory12 (OCO-2) from late 2014
to 2017. For comparative purposes, we use an inter-calibrated
network of various mole fraction data7,8 (“Methods”). We
interpret these ground-based mole fraction and remotely-sensed
column mole fraction data using three independent atmospheric
transport models, driven by different a priori CO2 flux estimates,
and their counterpart inverse methods (“Methods”). The result is
a range of geographically-resolved a posteriori CO2 fluxes for the
globe. We report our results over land as net biosphere fluxes
(“Methods”), representing the net carbon flux exchange with the
atmosphere from above-ground biomass and soils across sub-
continental regions. To interpret these CO2 fluxes in terms of the
underlying land surface processes, we use correlative satellite data
products (Methods): vegetation indices that provide information
about leaf phenology13; changes in water storage14; a measure of
photosynthesis15; and formaldehyde columns that provide
information about the location and timing of fires16. We use dry
matter (DM) burned estimates17 inferred from remotely sensed
land surface properties, and analysed meteorological fields of
surface temperature and precipitation from the GEOS-5 (GEOS-
FP) model (“Methods”).

We use three inverse methods (“Methods”) representing a
range of atmospheric transport models, driving meteorology, and
estimation methods. We focus on the GEOS-Chem atmospheric
transport model18 and discuss differences with the other models.
Our primary study period is 2014–2017 when there is overlap
between GOSAT and OCO-2 data, coinciding with the El Niño
event19–21. The a posteriori global atmospheric growth rate of
CO2, inferred from ground-based data (“Methods”) and con-
verted from satellite-based flux estimates, ranges from 4.5 to 6.1
PgC year−1 over our study, consistent with values inferred from
the CO2 mass inferred directly from the atmospheric mole frac-
tion data multiplied by the total mass of dry air in the
atmosphere.

Our analysis of the GOSAT and OCO-2 data reveals that the
land tropics are a net annual CO2 emission of ðmedianmaximum

minimum Þ
1:03þ1:73

�0:20 and 1:60þ2:11
þ1:39 petagrams (PgC) in 2015 and 2016,

respectively, and larger than estimates inferred from changes in
above-ground biomass22–24. The range of individual model esti-
mates can be relatively large, particularly for regions where the
net carbon budget is small, but nevertheless a coarse picture of the
changing carbon budget emerges from our analysis. We find a

robust signal over northern tropical Africa that is responsible for
the majority of the pan-tropical net carbon signal, which cannot
be explained by potential measurement or model biases. The
largest seasonal uptake is over the northern Congo basin, as
expected, and the largest emissions are found over western
Ethiopia and western tropical Africa during March and April
when it is hottest and driest. Although caution should be exer-
cised when interpreting regions smaller than 1000 km, these
emission focal points are a robust feature of the GOSAT record
that starts in 2009. While we do not provide a definitive expla-
nation for this seasonal signal, we argue that a comparatively
small constant CO2 flux, e.g., from soils due to sustained land
degradation25, could manifest as a seasonal net carbon source.

Results
Pan-tropical carbon flux estimates. Figures 1a and d demon-
strate that the sparse ground-based measurements provide
insufficient information to determine robust estimates of tropical
land carbon fluxes across the three groups, even on a pan-tropical
scale. Differences in atmospheric model transport, assumptions
about model errors, and differences between a priori land bio-
sphere fluxes result in sometimes-inconsistent a posteriori
estimates9,10. This has hampered the ability of the wider Earth
system science community to understand large-scale responses of
the carbon cycle to climate. On a broad scale, we can make two
observations. First, we find that using column observations of
XCO2 from GOSAT and OCO-2 results in more consistent a
posteriori CO2 flux estimates over the tropics (Fig. 1b–f), with a
smaller inter-model spread of estimates26, and a better agreement
on the phase of the seasonal cycle than using only in situ
observations of CO2 (Fig. 1a–d). Second, the amplitude of the
seasonal cycle of a posteriori CO2 fluxes over the northern and
southern tropical lands inferred by the satellite data is generally
much larger than that inferred from the in situ data (Fig. 1b–e),
with the exception of LSCE that is driven by a priori fluxes from
the ORCHIDEE model (“Methods”). Differences between the
amplitude of the seasonal cycle inferred by GEOS-Chem using
GOSAT and OCO-2 data (Fig. 1b–e) are smaller than those from
different models that use the same data (Fig. 1c–f). Assumptions
about data analysis therefore still play a role in the a posteriori
flux estimates, but these inter-model differences are generally
small compared to differences between the a posteriori and a
priori flux estimates. Together, these two observations suggest
that the satellite data contain substantial information about the
carbon cycle. For completeness, we refer the reader to Supple-
mentary Figs. 1–6 and Supplementary note 1 for analysis and
discussion of a posteriori CO2 fluxes from all other regions across
the world.

Table 1 shows that the land tropics are a net annual carbon
emission of 1:03þ1:73

�0:20 and 1:60þ2:11
þ1:39 PgC in 2015 and 2016,

respectively, and larger than estimates inferred from changes in
above-ground biomass22–24. We find that northern tropical fluxes
are 1:54þ1:58

�0:12PgC in 2015 that increase in 2016 to 1:72þ2:42
þ1:61PgC.

Southern tropical fluxes are �0:26þ0:23
�0:55PgC in 2015 and

�0:18�0:01
�0:41PgC in 2016. Even on a pan-tropical scale for 2015

and 2016, reaching a consensus on the sign of the land flux
(except for GOSAT ACOS data, Table 1) and on its seasonal
amplitude (1:39þ2:11

�0:20PgC) represents a significant step forward for
the carbon cycle community. For our analysis we have not
quantified anomalous fluxes during El Niño20,21.

Continental-scale tropical carbon flux estimates. During 2015
we find that net fluxes from tropical South America are
�0:26þ0:04

�0:58PgC, tropical African fluxes are1:48þ1:95
þ0:80PgC, and from
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Fig. 1 Northern and southern tropical CO2 fluxes. Monthly a priori and a posteriori CO2 fluxes (expressed as PgC year−1, mid-2014 to 2017) from the (a–c)
Northern and (d–f) Southern tropics inferred from (a, d) in situ mole fraction measurements and from (b–c, e–f) GOSAT and OCO-2 satellite
measurements of XCO2. Positive fluxes are from the land surface to the atmosphere. LN and LG denote XCO2 measurements taken using nadir and glint
observing modes, respectively. The geographical regions are shown inset of each upper panel
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tropical Asia and tropical Australia are �0:13þ0:40
�0:45PgC and

�0:10�0:06
�0:33PgC, respectively (Table 1). In comparison, during

2016 tropical South America fluxes are 0:20þ0:53
�0:21PgC, tropical

African fluxes are 1:65þ2:42
þ1:14PgC, and tropical Asia and tropical

Australia are �0:01þ0:29
�0:40PgC and �0:11�0:05

�0:51PgC, respectively.
The range of individual model estimates can be relatively large,
particularly for regions where the net carbon budget is small, but
nevertheless a coarse picture of the changing carbon budget
emerges from our analysis (Table 1).

Carbon flux estimates for northern tropical Africa and
southern tropical South America. Figures 2 and 3 shows carbon
budgets for two contrasting tropical regions: southern tropical
South America and northern tropical Africa. To explore the
ability of these satellite data to constrain fluxes on smaller spatial
scales, we present our results also as latitude-mean Hovmöller
plots, reflecting that physical climate variations over the tropics
are typically oriented E-W. In the absence of independent CO2

data to evaluate these distributions, we interpret the a posteriori
CO2 fluxes using correlative satellite observations (Fig. 4).

Over southern tropical South America (Fig. 2a), UoE a
posteriori fluxes are shifted from the a priori seasonal cycle,
resulting in a better agreement with fluxes inferred from the
same data using different models (Fig. 2a, bottom panel). A
posteriori flux estimates inferred from GOSAT lie between a
priori values and the fluxes inferred from OCO-2, reflecting the
superior data density of OCO-2; fluxes inferred from GOSAT
are insignificantly different from a priori values during early
2016 due to a very low density of measurements during this
period. Differences in the spatial and temporal CO2 flux
distributions (Fig. 3a) demonstrate current limitations in our
ability to infer spatial distributions of CO2 fluxes26,27. We find
that the a posteriori distributions of carbon flux over the El
Niño period resemble the E-W dipole pattern of water storage
(Fig. 4a), with larger positive (negative) anomalies towards the
east (west) corresponding to larger positive (negative) CO2

fluxes. The El Niño period also saw anomalous fire activity in
the 2015 dry season (Fig. 4a) that reflects anomalous high

temperatures and drought conditions, which increase the
susceptibility of vegetation to ignite.

We find that GOSAT and OCO-2 XCO2
28 data consistently

assign the largest seasonal cycle of carbon fluxes over the tropics
to northern tropical Africa (Fig. 2b and 3b) with that region being
responsible for the unexpectedly large pan-tropical net source of
carbon (Table 1, Fig. 1). Over this region, we find close agreement
between the a posteriori flux estimates on small spatial and
temporal scales (Fig. 3b). The largest seasonal uptake is over the
northern Congo basin, as expected, and the largest emissions are
found over western Ethiopia and western tropical Africa during
March and April when it is hottest and driest (Supplementary
Figs. 7–11; Supplementary note 2). Although caution should be
exercised when interpreting regions smaller than 1000 km, these
emission focal points are a robust feature of our analysis that
extends back through the GOSAT record to 2009. We do not rule
out a role for regional systematic retrieval errors29, but
comparison to sparse independent data (Supplementary Fig. 12;
Supplementary note 2) and the results from extensive sensitivity
experiments (Supplementary Figs. 13–16; Supplementary note 3)
support our results. The magnitude and approximate timing of
the inferred seasonal cycle of net fluxes is consistent with the
ORCHIDEE land surface model (Fig. 2b; Supplementary Discus-
sion), although the model has larger uptake later in the year.

Discussion
Compared to tropical South America there is a lower baseline for
precipitation, water storage, leaf phenology, and SIF over tropical
North Africa (Fig. 4b), but there is a large seasonal cycle in
temperature. We find a comparatively muted seasonal cycle of
HCHO columns, but a much larger seasonal cycle of DM burned
(Fig. 4b), which is due to predominant grassland fuel not pro-
ducing sufficient energy to be directly lofted above the boundary
layer where it can be observed as HCHO. For completeness,
Supplementary Figs. 17–22 show similar Hovmöller plots but for
all studied land regions for the GOSAT record from 2009 to 2017.
Supplementary Fig. 23 shows regionally-mean values of SIF from
2009 to 2017.

Table 1 A priori and a posteriori net biosphere CO2 flux estimates (PgC year−1, positive values are to the atmosphere) for 2015
and 2015 for individual geographical regions over the tropics inferred from GOSAT and OCO-2 XCO2 retrievals

– denotes absence of data. UoL and ACOS denote independent retrieval data products from the University of Leicester and the NASA Atmospheric CO2 Observation from Space, respectively. UoE, LSCE,
and CSU denote the modelling groups from the University of Edinburgh, Laboratoire des Sciences du Climat et de l’Environnement, and Colorado State University, respectively. Colours are used to
distinguish column/row groups
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Fig. 2 CO2 fluxes from tropical South America and tropical northern Africa. Monthly a priori and a posteriori CO2 fluxes (expressed as PgC year−1, mid-
2014 to 2017) from a southern tropical South America and b northern tropical Africa, inferred from in situ mole fraction measurements and from GOSAT
and OCO-2 satellite measurements of XCO2. Positive fluxes are from the land surface to the atmosphere. LN and LG denote XCO2 measurements taken
from nadir and glint observing modes, respectively. The geographical regions are shown inset of each upper panel.
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Water storage records that start in 2002 reveal successive years
of drought over this region (from 2009 in Supplementary Fig. 19)
that could have impacted photosynthesis15, land-use change22,23,
burning extent, and possibly soil carbon stocks24. Fire cannot
explain these emissions (Supplementary Discussion), although it
has a consistent seasonal cycle (Fig. 4b). Seasonally low soil water
content will limit the source from soil microbial respiration, but
even a small diffuse CO2 flux from soils due to sustained land
degradation25 could manifest as a seasonal net carbon source
(Supplementary Discussion).

We anticipate that our findings will help re-prioritise decadal
science challenges for the carbon cycle community, particularly in
the context of the Paris Agreement that implicitly relies on the
continued operation of natural carbon sinks. Ultimately, deeper
insights into the tropical carbon cycle will only be achieved by
improved integration of in situ and remote-sensed data, for the
short timescales, and pan-tropical sample plot data for the longer
timescales.

Methods
In situ CO2 mole fraction observations. We use discrete (weekly) air samples
from 105 sites and continuous (hourly) observations from 52 sites that are part of
the global atmospheric surface CO2 observations network. These were taken from
the Observation Package (ObsPack) obspack_co2_1_GLOBALVIEW-
plus_v2.1_2016_09_02 data product7 for 2015, and from
obspack_co2_1_NRT_v3.3_2017–04–19 for 2016–20178; both datasets are pro-
duced by the National Oceanic and Atmospheric Administration (NOAA) Earth
System Research Laboratory (ESRL).

Satellite observations of column CO2. We use XCO2 data retrieved from the
Japanese Greenhouse gases Observing SATellite (GOSAT) and the NASA Orbiting
Carbon Observatory-2 (OCO-2). GOSAT11 was launched in January 2009 in a sun-
synchronous orbit with an equatorial crossing time of 1300. We use two inde-
pendent GOSAT XCO2 data products: v7.1 full-physics retrievals from the Uni-
versity of Leicester30 (UoL), and B7.3 of the NASA Atmospheric CO2 Observations
from Space (ACOS31) activity. We use 10-s averages of the bias-corrected XCO2

B7.1r data product32 over land from OCO-2 that is the current version used by the
OCO-2 science team.33,34

Enhanced Vegetation Index. The Enhanced Vegetation Index (EVI) is a com-
posite property of leaf area, chlorophyll and canopy structure35. We use MOD13C2
(MODIS/Terra Vegetation Indices Monthly L3 Global 0.05° CMG V006)36 to get
EVI information. The data are only retained with pixel reliability values masked as
good data (0) or marginal data (1).

Gravity recovery and climate experiment. The Gravity Recovery and Climate
Experiment (GRACE) provides information about changes in the water
column37–39. Rooting depths of tropical terrestrial ecosystems will likely be suffi-
ciently deep that we cannot establish a direct and immediate relationship between
vegetation and changes in precipitation. Changes in gravity, due to changes in
water column depth, provide a much stronger relationship with vegetation access
to water. We use the surface mass change data based on the RL05 spherical har-
monics from CSR (Center for Space Research at University of Texas, Austin), JPL
(Jet Propulsion Laboratory) and GFZ (GeoforschungsZentrum Potsdam). The
three different processing groups chose different parameters and solution strategies
when deriving month-to-month gravity field variations from GRACE observations.
We use the ensemble mean of the three data fields and multiply the data by the
provided scaling grid. Data are available from http://grace.jpl.nasa.gov.

Formaldehyde columns. Formaldehyde (HCHO) columns are from the Ozone
Monitoring Instrument40 (OMI) aboard the NASA Aura satellite, which was
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Fig. 3 CO2 fluxes from tropical South America and tropical northern Africa. Hovmöller plots of monthly a priori and a posteriori CO2 fluxes (expressed as
gC m−2 d−1, mid 2014 to 2017), averaged over the latitude domain, from a southern tropical South America and b northern tropical Africa, inferred from
GOSAT and OCO-2 satellite measurements of XCO2 taken from the nadir observing mode. Positive fluxes are from the land surface to the atmosphere.
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launched in a sun-synchronous orbit in 2009. We use the NASA OMHCHOv003
data product16 from the NASA Data and Information Services Center, which fits
HCHO slant columns in the 328.5–356.5 nm window and accounts for competing
absorbers, the Ring effect, and undersampling. HCHO is a high-yield product of
hydrocarbon oxidation41,42. It is also emitted as a direct emission from incomplete
combustion43,44. We use the active fire data product45 from the NASA Moderate
Resolution Imaging Spectrometer (MODIS), derived from surface thermal IR
anomalies, to isolate the pyrogenic HCHO signal.

Satellite observations of solar induced fluorescence. Satellite observations of
solar induced fluorescence (SIF) are retrieved by the UoL from the GOSAT
instrument46. SIF is a by-product of plant pigments absorbing incoming sunlight as
part of photosynthesis. Of the solar radiation absorbed, ~20% is eventually dis-
sipated as heat and typically <1–2% is emitted by SIF in the range 650–800 nm,
peaking at 685–690 nm and 730–740 nm. GOSAT fits estimates of SIF at 755 nm47.
We use the GOSAT SIF data product as a crude measure of photosynthetic capacity
of regional ecosystems. We use a physically based retrieval scheme47 with a focus
on the bias correction procedure. We use a two-stage method. First, we isolate
GOSAT measurements over non-vegetated areas using the ESA CCI Land Cover
product V2.0.748 at 300 m resolution. Second, we apply a bias correction as an
explicit function of time to ensure that instrumental effects are accounted for the
entire date range of the SIF product.

DM burned estimates. DM burned estimates are taken from the Global Fire
Emission Database49 (GFED4). These estimates were derived by combined by
satellite remote sensing observation of burned area and active fire data
from MODIS.

Atmospheric transport models and inverse methods. To describe the rela-
tionship between surface fluxes of CO2 and atmospheric CO2 we use three
atmospheric transport models: (1) GEOS-Chem global 3-D chemistry transport
model50,51 v9.02; (2) GSFC parameterised chemistry and transport model52

(PCTM), and (3) Laboratoire de Météorologie Dynamique (LMDZ), version
LMDZ353.

We run GEOS-Chem with a horizontal resolution of 4° (latitude) × 5°
(longitude), driven by the GEOS-5 meteorological analyses (GEOS-FP from 2013)
from the Global Modeling and Assimilation Office (GMAO) Global Circulation
Model based at NASA Goddard Space Flight Center. We run the model using 47
vertical terrain-following sigma-levels that describe the atmosphere from the
surface to 0.01 hPa, of which about 30 are typically below the dynamic tropopause.

We use well-established emission inventories as our a priori flux estimates: (1)
weekly biomass burning emissions49; (2) monthly fossil fuel emissions54,55; (3)
monthly climatological ocean fluxes56; and (4) three-hourly terrestrial biosphere
fluxes57.

The GEOS-Chem model uses an ensemble Kalman Filter (EnKF)
framework18,58 to infer CO2 fluxes from the ground-based or space-based
measurements of atmospheric CO2. We use a total of 792 basis functions per
month, split between 317 oceanic regions and 475 land regions. These regions are
subdivisions of the 22 regions used in TransCom-39. We assume a 50% uncertainty
for monthly land terrestrial fluxes, and 40% for monthly ocean fluxes49. We assume
land (ocean) a priori fluxes are correlated with a correlation length of 500 (800)
km. We assume no observation error correlations, but include an additional 1.5
ppm uncertainty to the reported observation errors to account for model transport
errors. We determine the terrestrial biosphere flux by subtracting the fossil fuel and
cement production emission estimate (FF). This is a common approach10,18,59,
based on the assumption knowledge of FF flux is much better than that of the
natural fluxes from the land and ocean.

The LMDZ model is run using a regular horizontal resolution of 3.75°
(longitude) and 1.875° (latitude), with 39 hybrid layers in the vertical. Winds are
nudged towards the 6-hourly ECMWF reanalysis60 with a relaxation time of three
hours. Fossil fuel burning emissions from the ODIAC model54,55, including diurnal
and day-of-week variability61. We also use monthly ocean fluxes56, three-hourly
biomass burning emissions (GFED 4.1 s until 2015 and GFAS afterwards), and
climatological three-hourly biosphere-atmosphere fluxes taken as the 1989–2010 of
a simulation of the ORganizing Carbon and Hydrology In Dynamic EcosystEms
model (ORCHIDEE62), version 1.9.5.2.

The LMDZ CAMS inversion tool currently generates the global CO2

atmospheric inversion product of the Copernicus Atmosphere Monitoring
Service63,64. The minimum of the Bayesian cost function of the inversion problem
is found by an iterative process using the Lanczos version of the conjugate gradient
algorithm65. The inferred fluxes are estimated at each horizontal grid point of the
transport model with a temporal resolution of eight days, separately for day-time
and night-time. The state vector of the inversion system is therefore made of a
succession of global maps with 9200 grid points. Per month it gathers 73,700
variables (four day-time maps and four night-time maps). It also includes a map of
the total CO2 columns at the initial time step of the inversion window in order to
account for the uncertainty in the initial state of CO2. Over land, the errors of the
prior biosphere-atmosphere fluxes are assumed to dominate the error budget and
the covariances are constrained by an analysis of mismatches with in situ flux
measurements: temporal correlations on daily mean net carbon exchange (NEE)
errors decay exponentially with a length of one month but night-time errors are
assumed to be uncorrelated with daytime errors; spatial correlations decay
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exponentially with a length of 500 km; standard deviations are set to 0.8 times the
climatological daily-varying heterotrophic respiration flux simulated by
ORCHIDEE with a ceiling of 4 gC/m2/day. Over a full year, the total 1-sigma
uncertainty for the prior land fluxes amounts to about 3.0 GtC/yr. The error
statistics for the open ocean correspond to a global air-sea flux uncertainty about
0.5 GtC/yr and are defined as follows: temporal correlations decay exponentially
with a length of one month; unlike land, daytime and night-time flux errors are
fully correlated; spatial correlations follow an e-folding length of 1000 km; standard
deviations are set to 0.1 gC/m2/day. Land and ocean flux errors are not correlated.

PCTM is run at a horizontal resolution of 2.0° (latitude) × 2.5° (longitude) with
40 hybrid sigma levels in the vertical, driven by winds, surface pressure, and vertical
mixing parameters from NASA MERRA2 reanalyses66. A priori fluxes for gross
primary productivity, gross respiration, wildfires and biofuel emissions are taken
from CASA-GFED3 land biosphere model49,67,68. Fossil fuel burning emissions
from the ODIAC model54,55, including diurnal and day-of-week variability61, and
air-sea CO2 fluxes from three different sources: the NASA Ocean and Biosphere
Model (NOBM69), and two CO2 climatological flux products56,70.

The CSU inversion scheme uses a variational data assimilation approach71,72. A
priori CO2 fluxes are run forward through PCTM at a 2.0° × 2.5° (lat/lon)
resolution, with the resulting model-measurement residuals used in a 6.7° × 6.7°
version of PCTM to estimate weekly flux corrections (no day/night split); no
correlations in space or time are assumed. This configuration results in 54 × 27 ×
4.33 ≈ 6300 monthly flux corrections being solved. The adjoint of PCTM, forced
with the measurement mismatches, generates the gradient to the Bayesian cost
function; this is used in a BFGS approach (pre-conditioned with the a priori flux
uncertainties) to descend to the minimum, giving the optimal fluxes.

Data availability
GOSAT V7.1 and SIF data are available from University of Leicester. OCO-2 retrievals
were produced by the OCO-2 project at the Jet Propulsion Laboratory, California
Institute of Technology, and obtained from the OCO-2 data archive maintained at the
NASA Goddard Earth Science Data and Information Services Center. All correlative data
are also freely available from NASA data repositories. The NOAA in situ data are freely
available from the ESRL website (https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html).

Code availability
The community-led GEOS-Chem model of atmospheric chemistry and model is
maintained centrally by Harvard University (http://acmg.seas.harvard.edu/geos/), and is
available on request. The ensemble Kalman filter code is publicly available as PyOSSE
(https://www.nceo.ac.uk/data-tools/atmospheric-tools/). The CAMS inversion system is
available on simple request from FC. For access to PCTM, please contact DB.
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