Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Special issue: Renal denervation: Evidence and challenges in clinical practice
  • Published:

Renal denervation for hypertensive heart disease and atrial fibrillation

Abstract

Accumulating evidence supports the efficacy of renal denervation (RDN) as an antihypertensive treatment. Additionally, several RDN clinical studies, including meta-analyses, have suggested that RDN may potentially have beneficial effects on left ventricular hypertrophy, diastolic function, and new-onset/recurrence of atrial fibrillation (AF), although most studies were not randomized sham-controlled. In particular, the effects of RDN on left ventricular hypertrophy and AF recurrence appear to be relatively evident. Sympathetic activation plays a critical role in the development of hypertension, hypertensive heart disease, and AF. Notably, several studies suggest the cardioprotective effects of RDN even in the absence of significant blood pressure reduction, probably due to its sympathoinhibitory effects. It is imperative to establish the efficacy of RDN in patients with hypertensive heart disease and/or AF, focusing on parameters of sympathetic activity in the clinical setting, including randomized sham-controlled trials. Moreover, further basic research is essential to elucidate the therapeutic mechanisms of RDN beyond blood pressure lowering and the renal nerves-linked pathophysiologies of hypertensive heart disease and AF.

This review outlines the effects of renal denervation on hypertensive heart disease, particularly on left ventricular hypertrophy and diastolic function, and on atrial fibrillation. The sympathoinhibitory effect of renal denervation, an important potential mechanism of its beneficial effects on heart disease, is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Hirooka Y. Sympathetic activation in hypertension: importance of the central nervous system. Am J Hypertens. 2020;33:914–26.

    Article  CAS  PubMed  Google Scholar 

  2. Grassi G, Mancia G, Esler M. Central and peripheral sympathetic activation in heart failure. Cardiovasc Res. 2022;118:1857–71.

    Article  CAS  PubMed  Google Scholar 

  3. Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 2016;594:3911–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  5. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35:2224–31b.

    Article  PubMed  Google Scholar 

  6. Tahir E, Koops A, Warncke ML, Starekova J, Neumann JT, Waldeyer C, et al. Effect of renal denervation procedure on left ventricular mass, myocardial strain and diastolic function by CMR on a 12-month follow-up. Jpn J Radio. 2019;37:642–50.

    Article  CAS  Google Scholar 

  7. Heradien M, Mahfoud F, Greyling C, Lauder L, van der Bijl P, Hettrick DA, et al. Renal denervation prevents subclinical atrial fibrillation in patients with hypertensive heart disease: randomized, sham-controlled trial. Heart Rhythm. 2022. https://doi.org/10.1016/j.hrthm.2022.06.031.

  8. Watanabe H, Iwanaga Y, Miyaji Y, Yamamoto H, Miyazaki S. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with beta-receptor blockade. Hypertens Res. 2016;39:217–26.

    Article  CAS  PubMed  Google Scholar 

  9. Heradien M, Mahfoud F, Greyling C, Lauder L, van der Bijl P, Hettrick DA, et al. Renal denervation prevents subclinical atrial fibrillation in patients with hypertensive heart disease: randomized, sham-controlled trial. Heart Rhythm. 2022;19:1765–73.

    Article  PubMed  Google Scholar 

  10. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  11. Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23:876–81.

    Article  PubMed  Google Scholar 

  12. Kordalis A, Tsiachris D, Pietri P, Tsioufis C, Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018;36:1614–21.

    Article  CAS  PubMed  Google Scholar 

  13. Wang S, Yang S, Zhao X, Shi J. Effects of renal denervation on cardiac structural and functional abnormalities in patients with resistant hypertension or diastolic dysfunction. Sci Rep. 2018;8:1172.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xie L, Li Y, Luo S, Huang B Impact of renal denervation on cardiac remodeling in resistant hypertension: a meta‐analysis. Clin Cardiol. 2024;47:e24222.

  15. Bazoukis G, Thomopoulos C, Tse G, Vassiliou VS, Liu T, Dimitriadis K, et al. Impact of renal sympathetic denervation on cardiac magnetic resonance-derived cardiac indices in hypertensive patients—a meta-analysis. J Cardiol. 2021;78:314–21.

    Article  PubMed  Google Scholar 

  16. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560–5.

    Article  PubMed  Google Scholar 

  17. Tsoporis J, Leenen FH. Effects of arterial vasodilators on cardiac hypertrophy and sympathetic activity in rats. Hypertension. 1988;11:376–86.

    Article  CAS  PubMed  Google Scholar 

  18. Shinohara K, Kishi T, Hirooka Y, Sunagawa K. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep. 2015;3:e12514.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shibata R, Shinohara K, Ikeda S, Iyonaga T, Matsuura T, Kashihara S, et al. Transient receptor potential vanilloid 1-expressing cardiac afferent nerves may contribute to cardiac hypertrophy in accompany with an increased expression of brain-derived neurotrophic factor within nucleus tractus solitarius in a pressure overload model. Clin Exp Hypertens. 2022;44:249–57.

    Article  CAS  PubMed  Google Scholar 

  20. Wachtell K, Smith G, Gerdts E, Dahlöf B, Nieminen MS, Papademetriou V, et al. Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Am J Cardiol. 2000;85:466–72.

    Article  CAS  PubMed  Google Scholar 

  21. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. Jama. 1994;271:840–4.

    Article  CAS  PubMed  Google Scholar 

  22. de Vos CB, Pisters R, Nieuwlaat R, Prins MH, Tieleman RG, Coelen RJ, et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J Am Coll Cardiol. 2010;55:725–31.

    Article  PubMed  Google Scholar 

  23. Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, et al. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res. 2021;117:1732–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nawar K, Mohammad A, Johns EJ, Abdulla MH. Renal denervation for atrial fibrillation: a comprehensive updated systematic review and meta-analysis. J Hum Hypertens. 2023;37:89–90.

    Article  PubMed  Google Scholar 

  25. Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: The ERADICATE-AF randomized clinical trial. JAMA. 2020;323:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kagawa Y, Fujii E, Fujita S, Ito M. Association between left atrial reverse remodeling and maintenance of sinus rhythm after catheter ablation of persistent atrial fibrillation. Heart Vessels. 2020;35:239–45.

    Article  PubMed  Google Scholar 

  27. Rettmann ME, Holmes DR 3rd, Monahan KH, Breen JF, Bahnson TD, Mark DB, et al. Treatment-related changes in left atrial structure in atrial fibrillation: findings from the CABANA imaging substudy. Circ Arrhythm Electrophysiol. 2021;14:e008540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osborn JW, Tyshynsky R, Vulchanova L. Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol. 2021;83:429–50.

    Article  CAS  PubMed  Google Scholar 

  29. Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertens Res. 2022;45:198–209.

    Article  PubMed  Google Scholar 

  30. Katsuki M, Shinohara K, Kinugawa S, Hirooka Y. The effects of renal denervation on blood pressure, cardiac hypertrophy, and sympathetic activity during the established phase of hypertension in spontaneously hypertensive rats. Hypertens Res. 2024. https://doi.org/10.1038/s41440-024-01596-9.

  31. Lauar MR, Evans LC, Van Helden D, Fink GD, Banek CT, Menani JV, et al. Renal and hypothalamic inflammation in renovascular hypertension: role of afferent renal nerves. Am J Physiol Regul Integr Comp Physiol. 2023;325:R411–22.

    Article  CAS  PubMed  Google Scholar 

  32. Wu L-L, Zhang Y, Li X-Z, Du X-L, Gao Y, Wang J-X, et al. Impact of selective renal afferent denervation on oxidative stress and vascular remodeling in spontaneously hypertensive rats. Antioxidants. 2022;11:1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Asirvatham-Jeyaraj N, Gauthier MM, Banek CT, Ramesh A, Garver H, Fink GD, et al. Renal denervation and celiac ganglionectomy decrease mean arterial pressure similarly in genetically hypertensive schlager (BPH/2J) mice. Hypertension. 2021;77:519–28.

    Article  CAS  PubMed  Google Scholar 

  34. Veiga AC, Milanez MIO, Ferreira GR, Lopes NR, Santos CP, De Angelis K, et al. Selective afferent renal denervation mitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J Hypertens. 2020;38:765–73.

    Article  CAS  PubMed  Google Scholar 

  35. Ikeda S, Shinohara K, Kashihara S, Matsumoto S, Yoshida D, Nakashima R, et al. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2023;46:268–79.

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Hildreth CM, Rahman AA, Barton SA, Wyse BF, Lim CK, et al. Renal denervation does not affect hypertension or the renin-angiotensin system in a rodent model of juvenile-onset polycystic kidney disease: clinical implications. Sci Rep. 2021;11:14286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kandlikar SS, Fink GD. Mild DOCA-salt hypertension: sympathetic system and role of renal nerves. Am J Physiol Heart Circ Physiol. 2011;300:H1781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biffi A, Dell’Oro R, Quarti-Trevano F, Cuspidi C, Corrao G, Mancia G, et al. Effects of renal denervation on sympathetic nerve traffic and correlates in drug-resistant and uncontrolled hypertension: a systematic review and meta-analysis. Hypertension. 2023;80:659–67.

    Article  CAS  PubMed  Google Scholar 

  39. Donazzan L, Mahfoud F, Ewen S, Ukena C, Cremers B, Kirsch CM, et al. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol. 2016;105:364–71.

    Article  PubMed  Google Scholar 

  40. Feyz L, van den Berg S, Zietse R, Kardys I, Versmissen J, Daemen J. Effect of renal denervation on catecholamines and the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2020;21:1470320320943095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kusayama T, Wong J, Liu X, He W, Doytchinova A, Robinson EA, et al. Simultaneous noninvasive recording of electrocardiogram and skin sympathetic nerve activity (neuECG). Nat Protoc. 2020;15:1853–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to the Japanese Society of Hypertension and all its members for providing me with the opportunity to participate as a member of the RDN Working Group. I also appreciate the editors of Hypertension Research for giving me the opportunity to contribute to this mini-review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Shinohara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinohara, K. Renal denervation for hypertensive heart disease and atrial fibrillation. Hypertens Res 47, 2665–2670 (2024). https://doi.org/10.1038/s41440-024-01755-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01755-y

Keywords

Search

Quick links