Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysine-specific demethylase 1 as a corepressor of mineralocorticoid receptor

Abstract

Mineralocorticoid receptor (MR) and its ligand aldosterone play a central role in controlling blood pressure by promoting sodium reabsorption in the kidney. Coregulators are recruited to regulate the activation of steroid hormone receptors. In our previous study, we identified several new candidates for MR coregulators through liquid chromatography-tandem mass spectrometry analysis using a biochemical approach. Lysine-specific demethylase 1 (LSD1) was identified as a candidate. The relationship between LSD1 and salt-sensitive hypertension has been reported; however, the role of MR in this condition is largely unknown. Here, we investigated the functions of LSD1 as a coregulator of MR. First, a coimmunoprecipitation assay using HEK293F cells showed specific interactions between MR and LSD1. A chromatin immunoprecipitation study demonstrated LSD1 recruitment to the gene promoter of epithelial Na+ channel (ENaC), a target gene of MR. Reduced LSD1 expression by treatment with shRNA potentiated the hormonal activation of ENaC and serum/glucocorticoid-regulated kinase 1, another target gene of MR, indicating that LSD1 is a corepressor of MR. In an animal study, mice with kidney-specific LSD1 knockout (LSD1flox/floxKSP-Cre mice) developed hypertension after a high-salt diet without elevation of aldosterone levels, which was counteracted by cotreatment with spironolactone, an MR antagonist. In conclusion, our in vitro and in vivo studies demonstrated that LSD1 is a newly identified corepressor of MR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25:514–23.

    Article  CAS  PubMed  Google Scholar 

  2. Morimoto S, Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens Res. 2020;43:744–53.

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi T, Shibata H, Kurihara I, Yokota K, Mitsuishi Y, Ohashi K, et al. High glucose stimulates mineralocorticoid receptor transcriptional activity through the protein kinase C β signaling. Int Heart J. 2017;58:794–802.

    Article  CAS  PubMed  Google Scholar 

  4. Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, et al. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol. 2018;473:89–99.

    Article  CAS  PubMed  Google Scholar 

  5. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  6. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N. Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  7. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl J Med. 2003;348:1309–21.

    Article  CAS  PubMed  Google Scholar 

  8. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl J Med. 2011;364:11–21.

    Article  CAS  PubMed  Google Scholar 

  9. Nishimoto M, Ohtsu H, Marumo T, Kawarazaki W, Ayuzawa N, Ueda K, et al. Mineralocorticoid receptor blockade suppresses dietary salt-induced ACEI/ARB-resistant albuminuria in non-diabetic hypertension: a sub-analysis of evaluate study. Hypertens Res. 2019;42:514–21.

    Article  CAS  PubMed  Google Scholar 

  10. Yokota K, Shibata H, Kurihara I, Kobayashi S, Murai-Takeda A, Itoh H. CASZ1b is a novel transcriptional corepressor of mineralocorticoid receptor. Hypertens Res. 2021;44:407–16.

    Article  CAS  PubMed  Google Scholar 

  11. Pojoga LH, Williams JS, Yao TM, Kumar A, Raffetto JD, do Nascimento GR, et al. Histone demethylase LSD1 deficiency during high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP relaxation pathway, and hypertension. Am J Physiol Heart Circ Physiol. 2011;301:H1862–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams JS, Chamarthi B, Goodarzi MO, Pojoga LH, Sun B, Garza AE, et al. Lysine-specific demethylase 1: an epigenetic regulator of salt-sensitive hypertension. Am J Hypertens. 2012;25:812–7.

    Article  CAS  PubMed  Google Scholar 

  13. Krug AW, Tille E, Sun B, Pojoga L, Williams J, Chamarthi B, et al. Lysine-specific demethylase-1 modifies the age effect on blood pressure sensitivity to dietary salt intake. Age. 2013;35:1809–20.

    Article  CAS  PubMed  Google Scholar 

  14. Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, et al. Lysine-specific demethylase-1 deficiency increases agonist signaling via the mineralocorticoid receptor. Hypertension. 2020;75:1045–53.

    Article  CAS  PubMed  Google Scholar 

  15. Yokota K, Shibata H, Kurihara I, Kobayashi S, Suda N, Murai-Takeda A, et al. Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem. 2007;282:1998–2010.

    Article  CAS  PubMed  Google Scholar 

  16. Murai-Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, et al. NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J Biol Chem. 2010;285:8084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation. 2010;121:2302–9.

    Article  PubMed  Google Scholar 

  19. Ho JE, Levy D, Rose L, Johnson AD, Ridker PM, Chasman DI. Discovery and replication of novel blood pressure genetic loci in the Women’s Genome Health Study. J Hypertens. 2011;29:62–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forneris F, Battaglioli E, Mattevi A, Binda C. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. FEBS J. 2009;276:4304–12.

    Article  CAS  PubMed  Google Scholar 

  22. Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13:297–311.

    Article  CAS  PubMed  Google Scholar 

  23. Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437:436–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 2009;138:660–72.

    Article  CAS  PubMed  Google Scholar 

  26. Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 2007;9:347–53.

    Article  CAS  PubMed  Google Scholar 

  27. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, et al. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature. 2010;464:792–6.

    Article  CAS  PubMed  Google Scholar 

  28. Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20:457–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai C, He HH, Gao S, Chen S, Yu Z, Gao Y, et al. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 2014;9:1618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate. 2015;75:936–46.

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell. 2007;128:505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319:202–6.

    Article  CAS  PubMed  Google Scholar 

  33. Nair SS, Nair BC, Cortez V, Chakravarty D, Metzger E, Schüle R, et al. PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep. 2010;11:438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bennesch MA, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res. 2016;44:8655–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark EA, Wu F, Chen Y, Kang P, Kaiser UB, Fang R, et al. GR and LSD1/KDM1A-targeted gene activation requires selective H3K4me2 demethylation at enhancers. Cell Rep. 2019;27:3522–32.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao X, Somlo S, Igarashi P. Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J Am Soc Nephrol. 2002;13:1837–46.

    Article  CAS  PubMed  Google Scholar 

  38. Guan Y, Liu H, Ma Z, Li SY, Park J, Sheng X, et al. Dnmt3a and Dnmt3b-decommissioned fetal enhancers are linked to kidney disease. J Am Soc Nephrol. 2020;31:765–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sato T, Courbebaisse M, Ide N, Fan Y, Hanai JI, Kaludjerovic J, et al. Parathyroid hormone controls paracellular Ca2+ transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proc Natl Acad Sci USA. 2017;114:E3344–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakamura T, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Mitsuishi Y, et al. Intestinal mineralocorticoid receptor contributes to epithelial sodium channel-mediated intestinal sodium absorption and blood pressure regulation. J Am Heart Assoc. 2018;7:e008259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang Y, Ting PY, Yao TM, Homma T, Brooks D, Katayama Rangel I, et al. Histone demethylase LSD1 deficiency and biological sex: impact on blood pressure and aldosterone production. J Endocrinol. 2019;240:111–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This research was supported by JSPS KAKENHI (grant number: 18K08250) (to S.K.) and the Smoking Research Foundation (to H.I.) and partly supported by JSPS KAKENHI (Grant number: 19K08713) (to I.K.), JSPS KAKENHI (Grant number: 18K16007) (to A.M.), JSPS KAKENHI (Grant number: 19K17992) (to Y.M.), JSPS KAKENHI (Grant number: 21K08236) (to K.Y.), JSPS KAKENHI (Grant number: 20K17256) (to M.K.), and the Research Committee on Disorders of Adrenal Hormones, a Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan (Nanjiseisikkanseisakukenkyujigyo [20FC1020]) (to I.K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Kurihara.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

All animal procedures were approved by the institutional review board of the Animal Care and Use Committee and were conducted in compliance with the animal experimentation guidelines of the Keio University School of Medicine.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohata, N., Kurihara, I., Yokota, K. et al. Lysine-specific demethylase 1 as a corepressor of mineralocorticoid receptor. Hypertens Res 45, 641–649 (2022). https://doi.org/10.1038/s41440-022-00859-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-00859-7

Keywords

This article is cited by

Search

Quick links