Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Review Series - Basic Science in Hypertension Research
  • Published:

ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond

Abstract

Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dzau VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med. 1993;153:937–42.

    Article  CAS  PubMed  Google Scholar 

  2. Tamura K, Umemura S, Fukamizu A, Ishii M, Murakami K. Recent advances in the study of renin and angiotensinogen genes: from molecules to the whole body. Hypertens Res. 1995;18:7–18.

    Article  CAS  PubMed  Google Scholar 

  3. Azushima K, Morisawa N, Tamura K, Nishiyama A. Recent research advances in renin-angiotensin-aldosterone system receptors. Curr Hypertens Rep. 2020;22:22.

    Article  PubMed  Google Scholar 

  4. Kamo T, Akazawa H, Komuro I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J. 2015;56:249–54.

    Article  CAS  PubMed  Google Scholar 

  5. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto K, Rakugi H. Angiotensin receptor-neprilysin inhibitors: comprehensive review and implications in hypertension treatment. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00706-1.

  7. Mogi M, Iwai M, Horiuchi M. Emerging concepts of regulation of angiotensin II receptors: new players and targets for traditional receptors. Arterioscler Thromb Vasc Biol. 2007;27:2532–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal Renin-Angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharm Rev. 2007;59:251–87.

    Article  CAS  PubMed  Google Scholar 

  9. Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension. 2011;57:355–62.

    Article  CAS  PubMed  Google Scholar 

  10. Coffman TM. The inextricable role of the kidney in hypertension. J Clin Invest. 2014;124:2341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miura S, Saku K, Karnik SS. Molecular analysis of the structure and function of the angiotensin II type 1 receptor. Hypertens Res. 2003;26:937–43.

    Article  CAS  PubMed  Google Scholar 

  12. Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci. 2012;123:193–203.

    Article  CAS  Google Scholar 

  13. Nishida M, Ogushi M, Suda R, Toyotaka M, Saiki S, Kitajima N, et al. Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-kappaB. Proc Natl Acad Sci USA. 2011;108:6662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellot M, Galandrin S, Boularan C, Matthies HJ, Despas F, Denis C, et al. Dual agonist occupancy of AT1-R-alpha2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol. 2015;11:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal. 2014;26:2147–60.

    Article  CAS  PubMed  Google Scholar 

  16. Cabana J, Holleran B, Leduc R, Escher E, Guillemette G, Lavigne P. Identification of distinct conformations of the angiotensin-II type 1 receptor associated with the Gq/11 protein pathway and the beta-arrestin pathway using molecular dynamics simulations. J Biol Chem. 2015;290:15835–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayashi H, Hess DT, Zhang R, Sugi K, Gao H, Tan BL, et al. S-nitrosylation of beta-arrestins biases receptor signaling and confers ligand independence. Mol Cell. 2018;70:473–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Namkung Y, LeGouill C, Kumar S, Cao Y, Teixeira LB, Lukasheva V, et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci Signal. 2018;11:eaat1631.

    Article  CAS  PubMed  Google Scholar 

  19. Wisler JW, Rockman HA, Lefkowitz RJ, Biased G. Protein-coupled receptor signaling: changing the paradigm of drug discovery. Circulation. 2018;137:2315–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun. 2021;12:4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aplin M, Bonde MM, Hansen JL. Molecular determinants of angiotensin II type 1 receptor functional selectivity. J Mol Cell Cardiol. 2009;46:15–24.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi T, Huang Y, Yamamoto K, Hamano G, Kakino A, Kang F. et al. The endocytosis of oxidized LDL via the activation of the angiotensin II type 1 receptor. iScience. 2021;24:102076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miura S, Fujino M, Hanzawa H, Kiya Y, Imaizumi S, Matsuo Y, et al. Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor. J Biol Chem. 2006;281:19288–95.

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Nafria J, Nehme R, Edwards PC, Tate CG. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature. 2018;558:620–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu C, Li X, Fu J, Chen K, Liao Q, Wang J, et al. Increased AT1 receptor expression mediates vasoconstriction leading to hypertension in Snx1(-/-) mice. Hypertens Res. 2021;44:906–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu N, Olechwier AM, Brunner C, Edwards PC, Tsai CJ, Tate CG, et al. High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs. Proc Natl Acad Sci USA. 2021;118:e2024146118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Violin JD, Crombie AL, Soergel DG, Lark MW. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharm Sci. 2014;35:308–16.

    Article  CAS  PubMed  Google Scholar 

  28. De Groof TWM, Bergkamp ND, Heukers R, Giap T, Bebelman MP, Goeij-de Haas R, et al. Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies. Nat Commun. 2021;12:4357.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guo DF, Tardif V, Ghelima K, Chan JS, Ingelfinger JR, Chen X, et al. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells. J Biol Chem. 2004;279:21109–20.

    Article  CAS  PubMed  Google Scholar 

  30. Guo S, Lopez-Ilasaca M, Dzau VJ. Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin II-mediated nuclear factor of activated T cells (NFAT) activation. J Biol Chem. 2005;280:12536–41.

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Tanaka Y, Tsurumi Y, Azuma K, Shigenaga A, Wakui H, et al. The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function. Curr Hypertens Rep. 2007;9:121–7.

    Article  CAS  PubMed  Google Scholar 

  32. Cook JL, Re RN, deHaro DL, Abadie JM, Peters M, Alam J. The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res. 2008;102:1539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garner K, Li M, Ugwuanya N, Cockcroft S. The phosphatidylinositol transfer protein RdgBbeta binds 14-3-3 via its unstructured C-terminus, whereas its lipid-binding domain interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein). Biochem J. 2011;439:97–111.

    Article  CAS  PubMed  Google Scholar 

  34. Doblinger E, Hocherl K, Mederle K, Kattler V, Walter S, Hansen PB, et al. Angiotensin AT1 receptor-associated protein Arap1 in the kidney vasculature is suppressed by angiotensin II. Am J Physiol Ren Physiol. 2012;302:F1313–24.

    Article  CAS  Google Scholar 

  35. Tamura K, Wakui H, Azushima K, Uneda K, Haku S, Kobayashi R, et al. Angiotensin II type 1 receptor binding molecule ATRAP as a possible modulator of renal sodium handling and blood pressure in pathophysiology. Curr Med Chem. 2015;22:3210–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hein L, Meinel L, Pratt RE, Dzau VJ, Kobilka BK. Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol Endocrinol. 1997;11:1266–77.

    Article  CAS  PubMed  Google Scholar 

  37. Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ. Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem. 1999;274:17058–62.

    Article  CAS  PubMed  Google Scholar 

  38. Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Tamura K, et al. ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun. 2000;279:938–41.

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Ilasaca M, Liu X, Tamura K, Dzau VJ. The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell. 2003;14:5038–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Huang Y, Zhou Z, Tang R, Zhao W, Zeng L, et al. Identification and characterization of AGTRAP, a human homolog of murine Angiotensin II Receptor-Associated Protein (Agtrap). Int J Biochem Cell Biol. 2002;34:93–102.

    Article  CAS  PubMed  Google Scholar 

  41. Tsurumi Y, Tamura K, Tanaka Y, Koide Y, Sakai M, Yabana M, et al. Interacting molecule of AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal tubules. Kidney Int. 2006;69:488–94.

    Article  CAS  PubMed  Google Scholar 

  42. Masuda S, Tamura K, Wakui H, Maeda A, Dejima T, Hirose T, et al. Expression of angiotensin II type 1 receptor-interacting molecule in normal human kidney and IgA nephropathy. Am J Physiol Ren Physiol. 2010;299:F720–31.

    Article  CAS  Google Scholar 

  43. Dejima T, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, et al. Prepubertal angiotensin blockade exerts long-term therapeutic effect through sustained ATRAP activation in salt-sensitive hypertensive rats. J Hypertens. 2011;29:1919–29.

    Article  CAS  PubMed  Google Scholar 

  44. Oshita A, Iwai M, Chen R, Ide A, Okumura M, Fukunaga S. et al. Attenuation of inflammatory vascular remodeling by angiotensin II type 1 receptor-associated protein. Hypertension. 2006;48:671–6.

    Article  CAS  PubMed  Google Scholar 

  45. Wakui H, Tamura K, Matsuda M, Bai Y, Dejima T, Shigenaga A, et al. Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice. Am J Physiol Ren Physiol. 2010;299:F991–F1003.

    Article  CAS  Google Scholar 

  46. Wakui H, Tamura K, Tanaka Y, Matsuda M, Bai Y, Dejima T. et al. Cardiac-specific activation of angiotensin II type 1 receptor-associated protein completely suppresses cardiac hypertrophy in chronic angiotensin II-infused mice. Hypertension. 2010;55:1157–64.

    Article  CAS  PubMed  Google Scholar 

  47. Tamura K, Wakui H, Maeda A, Dejima T, Ohsawa M, Azushima K, et al. The physiology and pathophysiology of a novel angiotensin receptor-binding protein ATRAP/Agtrap. Curr Pharm Des. 2013;19:3043–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T, et al. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int. 2014;86:570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wakui H, Uneda K, Tamura K, Ohsawa M, Azushima K, Kobayashi R, et al. Renal tubule angiotensin II type 1 receptor-associated protein promotes natriuresis and inhibits salt-sensitive blood pressure elevation. J Am Heart Assoc. 2015;4:e001594.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kobayashi R, Wakui H, Azushima K, Uneda K, Haku S, Ohki K, et al. An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int. 2017;91:1115–25.

    Article  CAS  PubMed  Google Scholar 

  51. Oppermann M, Gess B, Schweda F, Castrop H. Atrap deficiency increases arterial blood pressure and plasma volume. J Am Soc Nephrol. 2010;21:468–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wakui H, Tamura K, Masuda S, Tsurumi-Ikeya Y, Fujita M, Maeda A. et al. Enhanced angiotensin receptor-associated protein in renal tubule suppresses angiotensin-dependent hypertension. Hypertension. 2013;61:1203–10.

    Article  CAS  PubMed  Google Scholar 

  53. Giani JF, Fuchs S, Gonzalez-Villalobos RA. Angiotensin II type 1 receptor-associated protein: a novel modulator of angiotensin II actions in the nephron. Hypertension. 2013;61:1150–2.

    Article  CAS  PubMed  Google Scholar 

  54. Maeda A, Tamura K, Wakui H, Dejima T, Ohsawa M, Azushima K, et al. Angiotensin receptor-binding protein ATRAP/Agtrap inhibits metabolic dysfunction with visceral obesity. J Am Heart Assoc. 2013;2:e000312.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wakui H, Dejima T, Tamura K, Uneda K, Azuma K, Maeda A, et al. Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension. Cardiovasc Res. 2013;100:511–9.

    Article  CAS  PubMed  Google Scholar 

  56. Azushima K, Ohki K, Wakui H, Uneda K, Haku S, Kobayashi R, et al. Adipocyte-specific enhancement of angiotensin II type 1 receptor-associated protein ameliorates diet-induced visceral obesity and insulin resistance. J Am Heart Assoc. 2017;6:e004488.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ohki K, Wakui H, Azushima K, Uneda K, Haku S, Kobayashi R, et al. ATRAP expression in brown adipose tissue does not influence the development of diet-induced metabolic disorders in mice. Int J Mol Sci. 2017;18:676.

    Article  CAS  PubMed Central  Google Scholar 

  58. Ohki K, Wakui H, Kishio N, Azushima K, Uneda K, Haku S, et al. Angiotensin II type 1 receptor-associated protein inhibits angiotensin II-induced insulin resistance with suppression of oxidative stress in skeletal muscle tissue. Sci Rep. 2018;8:2846.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kinguchi S, Wakui H, Azushima K, Haruhara K, Koguchi T, Ohki K, et al. Effects of ATRAP in renal proximal tubules on angiotensin-dependent hypertension. J Am Heart Assoc. 2019;8:e012395.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci. 2013;124:153–64.

    Article  CAS  Google Scholar 

  61. Li J, Liu H, Takagi S, Nitta K, Kitada M, Srivastava SP, et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5:e129034.

    Article  PubMed Central  Google Scholar 

  62. Zhang C, Li N, Suo M, Zhang C, Liu J, Liu L, et al. Sirtuin 3 deficiency aggravates angiotensin II-induced hypertensive cardiac injury by the impairment of lymphangiogenesis. J Cell Mol Med. 2021;25:7760–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Jiang D, Huang W, Teng P, Zhang H, Wei C, et al. Sirtuin 6 attenuates angiotensin II-induced vascular adventitial aging in rat aortae by suppressing the NF-kappaB pathway. Hypertens Res. 2021;44:770–80.

    Article  CAS  PubMed  Google Scholar 

  64. Corssac GB, Bonetto JP, Campos-Carraro C, Cechinel LR, Zimmer A, Parmeggiani B, et al. Pulmonary arterial hypertension induces the release of circulating extracellular vesicles with oxidative content and alters redox and mitochondrial homeostasis in the brains of rats. Hypertens Res. 2021;44:918–31.

    Article  CAS  PubMed  Google Scholar 

  65. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. 2009;119:524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Uneda K, Wakui H, Maeda A, Azushima K, Kobayashi R, Haku S, et al. Angiotensin II type 1 receptor-associated protein regulates kidney aging and lifespan independent of angiotensin. J Am Heart Assoc. 2017;6:e006120.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yamaji T, Yamashita A, Wakui H, Azushima K, Uneda K, Fujikawa Y, et al. Angiotensin II type 1 receptor-associated protein deficiency attenuates sirtuin1 expression in an immortalised human renal proximal tubule cell line. Sci Rep. 2019;9:16550.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Miura S, Kiya Y, Hanzawa H, Nakao N, Fujino M, Imaizumi S, et al. Small molecules with similar structures exhibit agonist, neutral antagonist or inverse agonist activity toward angiotensin II type 1 receptor. PLoS ONE. 2012;7:e37974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pang PS, Butler J, Collins SP, Cotter G, Davison BA, Ezekowitz JA, et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur Heart J. 2017;38:2364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wingler LM, Elgeti M, Hilger D, Latorraca NR, Lerch MT, Staus DP. et al. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell. 2019;176:468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC. Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell. 2019;176:479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suomivuori CM, Latorraca NR, Wingler LM, Eismann S, King MC, Kleinhenz ALW. et al. Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor. Science. 2020;367:881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM. et al. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science. 2020;367:888–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferraino KE, Cora N, Pollard CM, Sizova A, Maning J, Lymperopoulos A. Adrenal angiotensin II type 1 receptor biased signaling: the case for “biased” inverse agonism for effective aldosterone suppression. Cell Signal. 2021;82:109967.

    Article  CAS  PubMed  Google Scholar 

  75. Jóźwiak K, Płazińska A. Structural insights into ligand-receptor interactions involved in biased agonism of G-protein coupled receptors. Molecules. 2021;26:851.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by grants from Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Uehara Memorial Foundation, and Salt Science Research Foundation (18C4, 19C4, 20C4). The authors were also supported by the Yokohama City University research grant “KAMOME Project”, Japan Agency for Medical Research and Development (AMED), and by the Translational Research program Strategic PRomotion for practical application of INnovative medical Technology (TR-SPRINT) from AMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Tamura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, K., Azushima, K., Kinguchi, S. et al. ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 45, 32–39 (2022). https://doi.org/10.1038/s41440-021-00776-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00776-1

Keywords

This article is cited by

Search

Quick links