Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-hypertensive effect of hydrogen peroxide acting centrally

Abstract

Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2) or the increase of endogenous H2O2 centrally produced by catalase inhibition with 3-amino-1,2,4-triazole (ATZ) injected icv reduces the pressor responses to central angiotensin II (ANG II) in normotensive rats. In the present study, we investigated the changes in the arterial pressure and in the pressor responses to ANG II icv in spontaneously hypertensive rats (SHRs) and 2-kidney, 1-clip (2K1C) hypertensive rats treated with H2O2 injected icv or ATZ injected icv or intravenously (iv). Adult male SHRs or Holtzman rats (n = 5–10/group) with stainless steel cannulas implanted in the lateral ventricle were used. In freely moving rats, H2O2 (5 μmol/1 μl) or ATZ (5 nmol/1 μl) icv reduced the pressor responses to ANG II (50 ng/1 µl) icv in SHRs (11 ± 3 and 17 ± 4 mmHg, respectively, vs. 35 ± 6 mmHg) and 2K1C hypertensive rats (3 ± 1 and 16 ± 3 mmHg, respectively, vs. 26 ± 2 mmHg). ATZ (3.6 mmol/kg of body weight) iv alone or combined with H2O2 icv also reduced icv ANG II-induced pressor response in SHRs and 2K1C hypertensive rats. Baseline arterial pressure was also reduced (−10 to −15 mmHg) in 2K1C hypertensive rats treated with H2O2 icv and ATZ iv alone or combined and in SHRs treated with H2O2 icv alone or combined with ATZ iv. The results suggest that exogenous or endogenous H2O2 acting centrally produces anti-hypertensive effects impairing central pressor mechanisms activated by ANG II in SHRs or 2K1C hypertensive rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rahimi K, Emdin CA, MacMahon S. The epidemiology of blood pressure and its worldwide management. Circ Res. 2015;116:925–36.

    CAS  PubMed  Google Scholar 

  2. Doris PA. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genom. 2017;49:601–17.

    CAS  Google Scholar 

  3. Goldblatt H. Experimental renal hypertension; mechanism of production and maintenance. Circulation. 1958;17:642–7.

    CAS  PubMed  Google Scholar 

  4. Goldblatt H. Experimental Hypertension Induced by Renal Ischemia: Harvey Lecture, May 19, 1938. Bull NY Acad Med. 1938;14:523–53.

    CAS  Google Scholar 

  5. Petersson MJ, Rundqvist B, Johansson M, Eisenhofer G, Lambert G, Herlitz H, et al. Increased cardiac sympathetic drive in renovascular hypertension. J Hypertens. 2002;20:1181–7.

    CAS  PubMed  Google Scholar 

  6. Johansson M, Elam M, Rundqvist B, Eisenhofer G, Herlitz H, Lambert G, et al. Increased sympathetic nerve activity in renovascular hypertension. Circulation. 1999;99:2537–42.

    CAS  PubMed  Google Scholar 

  7. NystrOm HC, Jia J, Johansson M, Lambert G, BergstrOm G. Neurohormonal influences on maintenance and reversal of two-kidney one-clip renal hypertension. Acta Physiol Scand. 2002;175:245–51.

    CAS  PubMed  Google Scholar 

  8. Roncari CF, Barbosa RM, Vendramini RC, De Luca LA Jr., Menani JV, Colombari E, et al. Enhanced angiotensin II induced sodium appetite in renovascular hypertensive rats. Peptides. 2018;101:82–88.

    CAS  PubMed  Google Scholar 

  9. Oliveira-Sales EB, Toward MA, Campos RR, Paton JFR. Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats. Auton Neurosci. 2014;183:23–29.

    PubMed  PubMed Central  Google Scholar 

  10. de Champlain J, Wu R, Girouard H, Karas M, EL Midaoui A, Laplante M-A, et al. Oxidative stress in hypertension. Clin Exp Hypertens. 2004;26:593–601.

    CAS  PubMed  Google Scholar 

  11. Nishikawa Y, Tatsumi K, Matsuura T, Yamamoto A, Nadamoto T, Urabe K. Effects of vitamin C on high blood pressure induced by salt in spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2003;49:301–9.

    CAS  PubMed  Google Scholar 

  12. Heitzer T, Wenzel U, Hink U, Krollner D, Skatchkov M, Stahl RA, et al. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999;55:252–60.

    CAS  PubMed  Google Scholar 

  13. Oliveira-Sales EB, Nishi EE, Carillo BA, Boim MA, Dolnikoff MS, Bergamaschi CT, et al. Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension. Am J Hypertens. 2009;22:484–92.

    CAS  PubMed  Google Scholar 

  14. Oliveira-Sales EB, Dugaich AP, Carillo BA, Abreu NP, Boim MA, Martins PJ, et al. Oxidative stress contributes to renovascular hypertension. Am J Hypertens. 2008;21:98–104.

    CAS  PubMed  Google Scholar 

  15. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med. 2002;346:1954–62.

    CAS  PubMed  Google Scholar 

  16. Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JF, et al. Treatment of hypertension with ascorbic acid. Lancet. 1999;354:2048–9.

    CAS  PubMed  Google Scholar 

  17. Brito R, Castillo G, González J, Valls N, Rodrigo R. Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp Clin Endocrinol Diabetes. 2015;123:325–35.

    CAS  PubMed  Google Scholar 

  18. Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev. 2015;11:132–42.

    CAS  PubMed  Google Scholar 

  19. Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999;18:6104–11.

    CAS  PubMed  Google Scholar 

  20. Chen BT, Avshalumov MV, Rice ME. H(2)O(2) is a novel, endogenous modulator of synaptic dopamine release. J Neurophysiol. 2001;85:2468–76.

    CAS  PubMed  Google Scholar 

  21. Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, et al. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 2002;91:1038–45.

    CAS  PubMed  Google Scholar 

  22. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95:210–6.

    CAS  PubMed  Google Scholar 

  23. Zimmerman MC, Davisson RL. Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol. 2004;84:125–49.

    CAS  PubMed  Google Scholar 

  24. Avshalumov MV, Chen BT, Koós T, Tepper JM, Rice ME. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci: Off J Soc Neurosci. 2005;25:4222–31.

    CAS  Google Scholar 

  25. Bao L, Avshalumov MV, Patel JC, Lee CR, Miller EW, Chang CJ, et al. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J Neurosci: Off J Soc Neurosci. 2009;29:9002–10.

    CAS  Google Scholar 

  26. Maker HS, Weiss C, Silides DJ, Cohen G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem. 1981;36:589–93.

    CAS  PubMed  Google Scholar 

  27. Zimmerman MC, Dunlay RP, Lazartigues E, Zhang Y, Sharma RV, Engelhardt JF, et al. Requirement for Rac1-dependent NADPH oxidase in the cardiovascular and dipsogenic actions of angiotensin II in the brain. Circ Res. 2004;95:532–9.

    CAS  PubMed  Google Scholar 

  28. Peterson JR, Burmeister MA, Tian X, Zhou Y, Guruju MR, Stupinski JA, et al. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II. Hypertension (1979). 2009;54:1106–14.

    CAS  Google Scholar 

  29. Bao L, Avshalumov MV, Rice ME. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci: Off J Soc Neurosci. 2005;25:10029–40.

    CAS  Google Scholar 

  30. Hoffman WE, Philips MI, Schmid PG, Falcon J, Weet JF. Antidiuretic hormone release and the pressor response to central angiotensin II and cholinergic stimulation. Neuropharmacology. 1977;16:463–72.

    CAS  PubMed  Google Scholar 

  31. Johnson AK, Hoffman WE, Buggy J. Attenuated pressor responses to intracranially injected stimuli and altered antidiuretic activity following preoptic-hypothalamic periventricular ablation. Brain Res. 1978;157:161–6.

    CAS  PubMed  Google Scholar 

  32. Johnson AK. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res Bull. 1985;15:595–601.

    CAS  PubMed  Google Scholar 

  33. Mahon JM, Allen M, Herbert J, Fitzsimons JT. The association of thirst, sodium appetite and vasopressin release with c-fos expression in the forebrain of the rat after intracerebroventricular injection of angiotensin II, angiotensin-(1-7) or carbachol. Neuroscience. 1995;69:199–208.

    CAS  PubMed  Google Scholar 

  34. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78:583–686.

    CAS  PubMed  Google Scholar 

  35. Lauar MR, Colombari DSA, De Paula PM, Colombari E, Cardoso LM, De Luca LA, et al. Inhibition of central angiotensin II-induced pressor responses by hydrogen peroxide. Neuroscience. 2010;171:524–30.

    CAS  PubMed  Google Scholar 

  36. Lauar MR, Colombari DSA, Colombari E, De Paula PM, De Luca LA, Menani JV. Catalase blockade reduces the pressor response to central cholinergic activation. Brain Res Bull. 2019;153:266–72.

    CAS  PubMed  Google Scholar 

  37. Ruiz P, Basso N, Cannata MA, Taquini AC. The renin-angiotensin system in different stages of spontaneous hypertension in the rat (S H R). Clin Exp Hypertens Part A Theory Pract. 1990;12:63–81.

    CAS  Google Scholar 

  38. Menani JV, Saad WA, Camargo LA, Renzi A, De Luca Júnior LA, Colombari E. The anteroventral third ventricle (AV3V) region is essential for pressor, dipsogenic and natriuretic responses to central carbachol. Neurosci Lett. 1990;113:339–44.

    CAS  PubMed  Google Scholar 

  39. Aragon CM, Rogan F, Amit Z. Dose- and time-dependent effect of an acute 3-amino-1,2,4-triazole injection on rat brain catalase activity. Biochem Pharmacol. 1991;42:699–702.

    CAS  PubMed  Google Scholar 

  40. Máximo Cardoso L, de Almeida Colombari DS, Vanderlei Menani J, Alves Chianca D, Colombari E. Cardiovascular responses produced by central injection of hydrogen peroxide in conscious rats. Brain Res Bull. 2006;71:37–44.

    PubMed  Google Scholar 

  41. Cardoso LM, Colombari DSdA, Menani JV, Toney GM, Chianca DA, Colombari E. Cardiovascular responses to hydrogen peroxide into the nucleus tractus solitarius. AJP: Regul Integr Comp Physiol. 2009;297:R462–R469.

    CAS  Google Scholar 

  42. Urzedo–Rodrigues LS, Depieri T, Cherobino AJ, Lopes OU, Menani JV, Colombari DSA. Hypothalamic disconnection caudal to paraventricular nucleus affects cardiovascular and drinking responses to central angiotensin II and carbachol. Brain Res. 2011;1388:100–8.

    PubMed  Google Scholar 

  43. Melo MR, Menani JV, Colombari E, Colombari DSA. Hydrogen peroxide attenuates the dipsogenic, renal and pressor responses induced by cholinergic activation of the medial septal area. Neuroscience. 2015;284:611–21.

    CAS  PubMed  Google Scholar 

  44. Sá JM, Barros MC, Melo MR, Colombari E, Menani JV, Colombari DSA. Endogenous hydrogen peroxide affects antidiuresis to cholinergic activation in the medial septal area. Neurosci Lett. 2019;694:51–56.

    PubMed  Google Scholar 

  45. Buggy J, Fink GD, Johnson AK, Brody MJ. Prevention of the development of renal hypertension by anteroventral third ventricular tissue lesions. Circ Res. 1977;40:I110–7.

    CAS  PubMed  Google Scholar 

  46. Menani JV, Machado BH, Krieger EM, Salgado HC. Tachycardia during the onset of one-kidney, one-clip renal hypertension: role of the renin-angiotensin system and AV3V tissue. Brain Res. 1988;446:295–302.

    CAS  PubMed  Google Scholar 

  47. Moreira TS, Takakura AC, Colombari E, Menani JV. Antihypertensive effects of central ablations in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1797–806.

    CAS  PubMed  Google Scholar 

  48. Sorg O, Horn TF, Yu N, Gruol DL, Bloom FE. Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes. Mol Med. 1997;3:431–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci: Off J Soc Neurosci. 1994;14:2924–32.

    CAS  Google Scholar 

  50. Zoccarato F, Valente M, Alexandre A. Hydrogen peroxide induces a long-lasting inhibition of the Ca(2+)-dependent glutamate release in cerebrocortical synaptosomes without interfering with cytosolic Ca2+. J Neurochem. 1995;64:2552–8.

    CAS  PubMed  Google Scholar 

  51. Zoccarato F, Cavallini L, Valente M, Alexandre A. Modulation of glutamate exocytosis by redox changes of superficial thiol groups in rat cerebrocortical synaptosomes. Neurosci Lett. 1999;274:107–10.

    CAS  PubMed  Google Scholar 

  52. Sah R, Galeffi F, Ahrens R, Jordan G, Schwartz-Bloom RD. Modulation of the GABA(A)-gated chloride channel by reactive oxygen species. J Neurochem. 2002;80:383–91.

    CAS  PubMed  Google Scholar 

  53. Takahashi A, Mikami M, Yang J. Hydrogen peroxide increases GABAergic mIPSC through presynaptic release of calcium from IP3 receptor-sensitive stores in spinal cord substantia gelatinosa neurons. Eur J Neurosci. 2007;25:705–16.

    PubMed  PubMed Central  Google Scholar 

  54. Ostrowski TD, Dantzler HA, Polo-Parada L, Kline DD. H2O2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels. Am J Physiol Cell Physiol. 2017;312:C651–C662.

    PubMed  PubMed Central  Google Scholar 

  55. Dantzler HA, Matott MP, Martinez D, Kline DD. Hydrogen peroxide inhibits neurons in the paraventricular nucleus of the hypothalamus via potassium channel activation. Am J Physiol-Regul Integr Comp Physiol. 2019;317:R121–R133.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT. The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol. 2011;38:144–52.

    CAS  PubMed  Google Scholar 

  57. Berenguer LM, Garcia-Estañ J, Ubeda M, Ortiz AJ, Quesada T. Role of renin-angiotensin system in the impairment of baroreflex control of heart rate in renal hypertension. J Hypertens. 1991;9:1127–33.

    CAS  PubMed  Google Scholar 

  58. Blanch GT, Freiria-Oliveira AH, Speretta GFF, Carrera EJ, Li H, Speth RC, et al. Increased expression of angiotensin II type 2 receptors in the solitary-vagal complex blunts renovascular hypertension. Hypertension. 2014;64:777–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Leenen FH, Scheeren JW, Omylanowski D, Elema JD, Van der Wal B, De Jong W. Changes in the renin-angiotensin-aldosterone system and in sodium and potassium balance during development of renal hypertension in rats. Clin Sci Mol Med. 1975;48:17–26.

    CAS  PubMed  Google Scholar 

  60. Freiria-Oliveira AH, Blanch GT, Li H, Colombari E, Colombari DSA, Sumners C. Macrophage migration inhibitory factor in the nucleus of solitary tract decreases blood pressure in SHRs. Cardiovasc Res. 2013;97:153–60.

    CAS  PubMed  Google Scholar 

  61. Masson GS, Nair AR, Silva Soares PP, Michelini LC, Francis J. Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. Am J Physiol-Heart Circ Physiol. 2015;309:H1115–H1122.

    CAS  PubMed  Google Scholar 

  62. Simpson JB. The circumventricular organs and the central actions of angiotensin. Neuroendocrinology. 1981;32:248–56.

    CAS  PubMed  Google Scholar 

  63. Dugaich APC, Oliveira-Sales EB, Abreu NP, Boim MA, Bergamaschi CT, Campos RR. Role of the rostral ventrolateral medulla in the arterial hypertension in chronic renal failure. Int J Hypertens. 2011;2010:219358.

    PubMed  PubMed Central  Google Scholar 

  64. Cardoso LM, Colombari E, Toney GM. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates sympathetic nerve activity responses to L-glutamate. J Appl Physiol (1985). 2012;113:1423–31.

    CAS  Google Scholar 

  65. Nishi EE, Oliveira-Sales EB, Bergamaschi CT, Oliveira TGC, Boim MA, Campos RR. Chronic antioxidant treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats. Am J Hypertens. 2010;23:473–80.

    CAS  PubMed  Google Scholar 

  66. Oliveira-Sales EB, Colombari DSA, Davisson RL, Kasparov S, Hirata AE, Campos RR, et al. Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla. Hypertension (1979). 2010;56:290–6.

    CAS  Google Scholar 

  67. Nishi EE, Bergamaschi CT, Oliveira-Sales EB, Simon KA, Campos RR. Losartan reduces oxidative stress within the rostral ventrolateral medulla of rats with renovascular hypertension. Am J Hyperten. 2013;26:858–65.

    CAS  Google Scholar 

  68. Nishi EE, Almeida VR, Amaral FG, Simon KA, Futuro-Neto HA, Pontes RB, et al. Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension. Hypertens Res. 2019;42:1683–91.

    CAS  PubMed  Google Scholar 

  69. Nishi EE, Lopes NR, Gomes GN, Perry JC, Sato AYS, Naffah-Mazzacoratti MG, et al. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res. 2018. https://doi.org/10.1038/s41440-018-0171-9

Download references

Acknowledgements

The authors thank Silas Pereira Barbosa for expert technical assistance, Silvana A.D. Malavolta and Carla D.M.D. Souza for secretarial assistance, and Ana V. de Oliveira and Mikail Douglas dos Santos for animal care. This research was supported by funding from Brazilian public research agencies (Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (2013/05189-4 and 2015/23467-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (302258/2015-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. Menani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauar, M.R., Blanch, G.T., Colombari, D.S.A. et al. Anti-hypertensive effect of hydrogen peroxide acting centrally. Hypertens Res 43, 1192–1203 (2020). https://doi.org/10.1038/s41440-020-0474-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-0474-5

Keywords

Search

Quick links