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Splice-site variants in cardiac genes may predispose carriers to potentially lethal arrhythmias. To investigate, we screened 1315
probands and first-degree relatives enrolled in the Canadian Hearts in Rhythm Organization (HiRO) registry. 10% (134/1315) of
patients in the HiRO registry carry variants within 10 base-pairs of the intron-exon boundary with 78% (104/134) otherwise
genotype negative. These 134 probands were carriers of 57 unique variants. For each variant, American College of Medical Genetics
and Genomics (ACMG) classification was revisited based on consensus between nine in silico tools. Due in part to the in silico
algorithms, seven variants were reclassified from the original report, with the majority (6/7) downgraded. Our analyses predicted
53% (30/57) of variants to be likely/pathogenic. For the 57 variants, an average of 9 tools were able to score variants within splice
sites, while 6.5 tools responded for variants outside these sites. With likely/pathogenic classification considered a positive outcome,
the ACMG classification was used to calculate sensitivity/specificity of each tool. Among these, Combined Annotation Dependent
Depletion (CADD) had good sensitivity (93%) and the highest response rate (131/134, 98%), dbscSNV was also sensitive (97%), and
SpliceAI was the most specific (64%) tool. Splice variants remain an important consideration in gene elusive inherited arrhythmia
syndromes. Screening for intronic variants, even when restricted to the ±10 positions as performed here may improve genetic
testing yield. We compare 9 freely available in silico tools and provide recommendations regarding their predictive capabilities.
Moreover, we highlight several novel cardiomyopathy-associated variants which merit further study.
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INTRODUCTION
The study of genotype-phenotype relationships has primarily
focused on variants of interest in coding regions of DNA. In recent
years, next generation sequencing has allowed investigators
to study the whole genome, including variants in non-coding
regions, with the implication that these variants may have
functional consequences causing disease. Some of these variants
impact splicing, whereby the primary mRNA sequence is
processed to remove non-coding introns.
Variants at exon-intron boundaries are thought to alter

spliceosome recognition, especially when they occur in highly
conserved splice donor or acceptor sequences [1]. Canonically, the

splice donor site at the beginning (5ʹ) of an intron contains a GT
dinucleotide and the splice acceptor site at the end (3ʹ) of an
intron contains an AG dinucleotide [2]. These sites are central to
spliceosome complex recognition and subsequent excision yields
mature mRNA; the template for protein translation (Fig. 1).
Variants at either dinucleotide site almost invariably alters intron
recognition and changes the protein sequence through a variety
of mechanisms, with the potential for significant functional
consequences. Variants immediately flanking the donor and
acceptor sites may also alter splicing, but the association with
disease is less clear [3]. Deep intronic variants can create new
splice donor or acceptor sites, leading to activation of ‘cryptic’

Received: 26 March 2022 Revised: 23 August 2022 Accepted: 8 September 2022
Published online: 22 September 2022

1Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada. 2Section of Cardiac
Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada. 3Cardiovascular Genetics Center, Montreal Heart Institute, Montreal,
QC, Canada. 4Department of Medicine, Universite de Montreal, Montreal, QC, Canada. 5Heart Institute, University of Ottawa, Ottawa, ON, Canada. 6Population Health Research
Institute, Hamilton, ON, Canada. 7Department of Medicine, Queen’s University, Kingston, ON, Canada. 8Children’s Heart Centre, BC Children’s Hospital, Vancouver, BC, Canada.
9Institut Universitaire de Cardiologie et Pneumologie de Quebec, Laval University, Quebec City, QC, Canada. 10Division of Cardiology, QEII Health Sciences Center, Halifax, NS,
Canada. 11St Michael’s Hospital, University of Toronto, Toronto, ON, Canada. 12Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada. 13Division of Cardiology,
The Hospital for Sick Children (SickKids), Toronto, ON, Canada. 14Division of Medical Genetics, Island Health, Victoria, BC, Canada. 15Royal Jubilee Hospital, Victoria, BC, Canada.
16Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada. 17Division of Pediatric Cardiology, CHU Sainte-Justine, Universite de
Montreal, Montreal, QC, Canada. 18Division of Pediatric Cardiology, University of Alberta Stollery Children’s Hospital, Edmonton, AB, Canada. 19Division of Cardiology, Department
of Medicine, University of Alberta, Edmonton, AB, Canada. 20Heart Health Institute, Scarborough Health Network, Scarborough, ON, Canada. 21Division of Cardiology, McGill
University Health Centre, Montreal, QC, Canada. 22Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
23Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia. ✉email: zachary.laksman@ubc.ca

www.nature.com/ejhg

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01193-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01193-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01193-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01193-9&domain=pdf
http://orcid.org/0000-0002-8858-8982
http://orcid.org/0000-0002-8858-8982
http://orcid.org/0000-0002-8858-8982
http://orcid.org/0000-0002-8858-8982
http://orcid.org/0000-0002-8858-8982
http://orcid.org/0000-0002-1472-0258
http://orcid.org/0000-0002-1472-0258
http://orcid.org/0000-0002-1472-0258
http://orcid.org/0000-0002-1472-0258
http://orcid.org/0000-0002-1472-0258
http://orcid.org/0000-0002-5344-1278
http://orcid.org/0000-0002-5344-1278
http://orcid.org/0000-0002-5344-1278
http://orcid.org/0000-0002-5344-1278
http://orcid.org/0000-0002-5344-1278
http://orcid.org/0000-0002-2476-9864
http://orcid.org/0000-0002-2476-9864
http://orcid.org/0000-0002-2476-9864
http://orcid.org/0000-0002-2476-9864
http://orcid.org/0000-0002-2476-9864
http://orcid.org/0000-0002-7790-541X
http://orcid.org/0000-0002-7790-541X
http://orcid.org/0000-0002-7790-541X
http://orcid.org/0000-0002-7790-541X
http://orcid.org/0000-0002-7790-541X
https://doi.org/10.1038/s41431-022-01193-9
mailto:zachary.laksman@ubc.ca
www.nature.com/ejhg


exons, which may cause various disease states, including inherited
heart disease. Approximately 10% of gene-elusive hypertrophic
cardiomyopathy (HCM) patients carry deep intronic splice-site
variants [4].
It is estimated that 15% of genotype elusive disease cases are

due to altered splicing resulting from intronic variations [5].
Changes in the splice sites or introduction of novel splice sites
may alter splicing and lead to a frameshift, premature stop codon
and truncation, or nonsense mediated decay. Haplo-insufficiency
may result, whereby the amount of protein is insufficient to
maintain normal function. Alternatively, the poison peptide
hypothesis proposes that a mutant protein may have a dominant
negative effect [6]. Alternatively, activation of cryptic splice sites
can lead to intronic inclusion or cassette exon skipping [7].
Numerous in silico tools aim to predict the deleterious nature of

gene variants. For example, SpliceAI is a recently developed, RNA
sequencing (RNA-seq) validated tool which uses a 32-layer deep
neural network to predict splicing from the pre-mRNA sequence
[8]. In silico tools predict splicing impact without the need for
traditional in vitro or in vivo validation studies. Each tool has
inherent strengths and weaknesses and there is some overlap
between the algorithms utilized by each [9]. MaxEntScan (MES),
Human Splice Finder (HSF), and Splice Site Prediction by Neural
Network (NNSplice) are only optimized for analysis of variants
occurring in splice-sites and branch point [10]. MutationTaster
makes predictions based on inter-species conservation; it focuses
on splice-site alterations and loss of protein function, utilizing
features from UniProt [11], Ensembl [12], and the splice-site
prediction program NNSplice [13]. It was validated against other
applications such as Polymorphism Phenotyping (PolyPhen),
which it outperformed [14]. Combined Annotation Dependent
Depletion (CADD) derives the deleteriousness of simulated
variants through comparison with fixed/nearly fixed alleles. CADD
combines 63 distinct annotations, among which the best-
performing were the protein-level metrics SIFT and PolyPhen [15].
Deleterious Annotation Using Neural Networks (DANN) is similar to
CADD but also uses deep learning to assess variant pathogenicity
[16]. dbscSNV’s was developed for single nucleotide variants
occurring in the splice consensus sites [9]. SpliceAI utilizes deep
learning to automatically extracts sequence features, with the trade-
off that it may incorporate irrelevant features into themodel [8]. The
detailed comparison of these tools is beyond the scope of this work,
however, the available selection of tools, accessing each, and output
variability between tools makes interpretation difficult and repre-
sents hurdles to widespread utility.

The selected splice tools utilized in this study are readily
accessible through online platforms without the need for local
program installation. These programs are optimized for analysis,
for example in a clinic setting, of a limited number of variants and/
or when genetic reports do not contain raw sequencing
information as was the case with our data set. Diagnostic
pipelines may incorporate other tools which will be further
discussed below. The role of further bioinformatic requirements
when considering whole exome or whole genome sequencing are
not addressed in our manuscript or analyses.
In silico tools often do not indicate the splicing error and are often

low specificity [17]. As a result, American College of Medical Genetics
and Genomics for Molecular Pathology (ACMG-AMP) criteria
associated with in silico tools can be supportive of pathogenicity
(PP3) while functional analysis of RNA can serve as strong evidence
(PS3) [18]. In this study, we used nine in silico tools to analyze 57
unique splice-site variants to uncover trends, revisit ACMG-AMP
classification of each, and assess the utility of these tools.
We have interrogated the Canadian National Hearts in Rhythm

Organization (HiRO) registry (NCT04189822) which contains cases
from the Cardiac Arrest Survivors with Preserved Ejection Fraction
Registry (CASPER) (NCT00292032), Long QT syndrome (LQTS)
(NCT02425189), and Arrhythmogenic Right Ventricular Cardiomyo-
pathy (ARVC) (NCT01804699) sub-registries. This study surveys the
prevalence of splice variants across a large, well characterized
population and assesses the utility of in silico prediction tools for
rapid characterization of novel splice variants.

MATERIALS AND METHODS
Patient cohort
This project was conducted in compliance with the protocols and
principles laid down in the Declaration of Helsinki and approved in full
by the Providence Health/University of British Columbia ethics board (REB
number H20-00129). A retrospective analysis of the HiRO registry was used
to identify probands and first-degree relatives with heritable arrhythmias
and/or cardiomyopathies enrolled between March 2004 and January 2020.
The strength of applied diagnoses is dependent on the available clinical
data based on previously defined criteria [19], whereby patients have
possible, probable, or definite disease.

Variant evaluation and in silico workflow
We compiled a list of intronic splice variants, then input these variants into
nine unique in silico tools (Table S1). Sequencing data was not generated
or analyzed for these patients, rather genetic reports containing the
identified variants was utilized. Human Genome Variation Society (HGVS)
nomenclature corresponding to the canonical transcript is reported here
and was used for interpretation as the majority of genetic test reports did
not provide the specific transcript ID. The splice-site is variably defined but
likely encompasses the last three base pairs of the exon and first six base
pairs of the intron (donor) as well as the last 20 nucleotides of an intron
and the first three base pairs of an exon (acceptor). We focused on ±10
base pairs as this covers the majority of these regions, has sufficient
sensitivity in detecting most variants, and accounts for variability in test
reading frames used by different commercial laboratories. For each
individual, panel sequencing was used with the details of screened genes
provided in the supplement (Table S2). Blueprint Genetics reports variants
within ±20 base pairs, while GeneDx does so for variants “close to the
splice junction”, and smaller regional labs do not clearly communicate the
reading frame.
The in silico work-flow is detailed here and summarized in Fig. 2. Each

variant was initially queried using Varsome version 8.1 [20] which
annotates variant allele frequency from the gnomAD v2.1.1 database
[21] and splice prediction scores from DANN version 2014 [16],
MutationTaster version2021 [14], and dbscSNV v1.1 [22]. MutationTaster
predicts the disease-causing potential of a variant based on nucleotide
conservation, alterations in the splice site, and potential loss of protein
function [14]. DANN and dbscSNV (ADA and RF) use machine learning
algorithms to classify the potential impact of a variant [16].
To compare the wildtype splice-site sequence and variant sequence,

were entered into NNSplice 0.9 version [13]. CADD v1.5 [15] requires

Fig. 1 RNA splicing schematic. The splice donor/acceptor sites,
splicing of the intronic lariat, and protein product are labelled.
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the entry of chromosome number, position, and nucleotide change; all
available through Varsome. CADD scores variants by combining dozens of
other scores such as SIFT [23] and PolyPhen [24] which independently
attempt to predict the effect of nucleotide substitutions on protein stability
and function through examination of cross-species conservation features.
Franklin also summarizes numerous resources in one easy-to-use interface
which includes a SpliceAI v1.3.1 [8] score. HSF v3.1 [25] and MES version 2.0
[26] scores are accessible through a single online interface. MES, NNSplice,
and HSF are integrated into the commercially available software package
Alamut (Interactive Biosoftware, Rouen, France).

(ACMG-AMP) criteria
The in silico results were used in part to apply the 2015 ACMG-AMP criteria.
Variants within canonical splice regions (±1/2 position) were assigned PVS1
(presumed null effect) when identified in a gene where loss-of-function
(LOF) is an established mechanism for disease. For example, based on
recent evidence, variants in RyR2 canonical splice dinucleotides were
assigned PVS1 [27]. PS3 criteria was assigned to variants where in vitro/
vivo studies support the deleterious impact of a variant, whereas
BS3 supports no impact.
Output scores from the in silico tools and predefined critical thresholds

were used to determined pathogenicity. PP3 or BP4 ratings were applied
when multiple computational tools indicated that the variant does/not
have a deleterious effect, respectively. When at least 3 tools responded, a
BP4/PP3 rating was assigned based on agreement between the majority.
The literature from databases such as ClinVar, Pubmed, and Google Scholar
were used to assign additional ACMG-AMP criteria [18].
The proportion of variants in which evidence from the in silico

prediction tools contributed to a change in variant interpretation was
determined. Diagnostic implications of variant position (±1/2 vs. ±3 to ±10)
was compared.

RESULTS
1315 participants in the HiRO registry were found to carry 1761
gene variants (Table S2). 134 (10.2%) of these patients carried 57

unique splice-region variants in 23 genes. Mean age at first
assessment was 42.7 ± 18.0 years. 49% of patients were females,
83% identified as Caucasian, and 51% were symptomatic, most
commonly experiencing palpitations (19%), cardiac arrest (16%),
or syncope (12%) (Table 1). The most common diagnosis was
ARVC (36%), while 27 probands did not have a clear diagnosis
(19.6%) (Tables S3 and S4). Most patients were symptomatic
probands (44%) or asymptomatic family members (43%). Among
the 57 splice-region variants, 28 were in splice sites, 30 were
absent from gnomAD, and 6 had a gnomAD allele frequency less
than 0.001%.
LMNA (53%), PKP2 (25%), TTN (21%), and MYBPC3 (10%) stand

out as genes where a significant percentage of the variants
identified occur in splice-sites. 48/134 (36%) of individuals carrying
splice-site variants had a diagnosis of ARVC, 36/48 (75%) of these
were otherwise genotype-negative. Of the remaining 25%, 2 were
carriers of LP variants with the rest VUS. In HiRO, 10/57 (18%)
of the unique splice-site variants were found in PKP2; 7/10
(70%) of these variants received a “pathogenic” rating with the
rest being VUS.
57% of the variants occurred in the splice sites. The number of

variants identified decreased with prolongation of the reading
frame with ±6 positions containing 88% of the identified variants.
8% of variants were missense (Fig. 3).

Variants identified in a single proband
Forty-one variants were only observed in one individual. The
average age of assessment in these patients was 44.3 ± 16.6 years
old. 42% of these patients were females, 73% were of Caucasian
ethnicity, and ARVC was the most common diagnosis (22%). Most
of these patients (68%) were symptomatic probands. A minority
(3/41, 7%) also carried a non-splice site variant classified as LP or P,
possibly causative of the observed phenotype (Table S3).

Fig. 2 Work-flow of utilized in silico tools. The in silico tools and other online tools used in the analysis of splice-site variants are outlined in a
stepwise manner. Deleterious Annotation Using Neural Networks (DANN) evaluates genome wide, MutationTaster evaluates genome wide but
test data sets were limited to donor (last 3 exonic bases and 6 first intronic bases) and acceptor (last 12 intronic bases and 2 first exonic bases)
splice sites., dbscSNV (ADA and RF score) evaluates from −3→ +8 at the 5ʹ and −12→+2 at the 3ʹ end, Splice Site Prediction by Neural
Network (NNSplice), Combined Annotation Dependent Depletion (CADD) evaluates genome wide, SpliceAI evaluates genome wide, Human
Splice Finder (HSF) evaluates genome wide, MaxEntScan (MES) evaluates −3→+6 at 5’ end and −20→+3 at 3ʹ end.
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PKP2 (NM_001005242.3):c.1034+ 12 C > T (VUS) occurs in the
+12 position, however it serves as a variant of interest. This variant
presented with different phenotypes in the same family; sudden
cardiac death (SCD) in a 19-year-old male with post-mortem
findings consistent with ARVC and an asymptomatic 45-year-old
female diagnosed with Brugada Syndrome (BrS) following
procainamide challenge.

Variants seen in multiple patients
Sixteen unique variants were seen in more than one individual,
with 93 patients carrying a variant that was also seen in at least
one other individual in the registry. 55% of these patients were
asymptomatic first-degree family members (Table 1). Among
these patients, only thirteen (13/93, 14%) carried additional non-
splice site variants, with eleven patients carrying a VUS, and only 2
patients (2%) with a LP or P variant.
Most splice variants (14/16, 88%) were associated with a single

diagnosis across multiple carriers. With respect to the variants
associated with more than one diagnosis, LMNA (NM_170708.4):
c.1609-3 C > G was seen in ten unaffected individuals, one patient
had unclassified cardiomyopathy, and one patient had AV block/
Torsades. NEXN (NM_144573.4):c.1053+ 1 G > A was seen in two
individuals with LV non-compaction and one patient with BrS
(Table S4).

ACMG-AMP classification of variant pathogenicity
Among the 27 PVS1 variants, 25 (92.6%) received a LP or P
designation, whereas of the 30 variants that did not receive the
PVS1 rating, only 4 (13%) received a LP/P designation (ChiSquare=
44.00, p= <0.0001).
44 variants were classified as PP3, 10 as BP4, and 3 were not

classified as less than 3 tools reported a prediction. Of the 28
variants in splice sites, 23 (82%) were classified as pathogenic, with
the other 5 variants classified as VUS, despite the PVS1 and PP3
criteria assigned and ultimately due to a lack of supporting data
(Tables 2 and S5).
After completion of in silico analyses, we reclassified 7 variants

based on the ACMG-AMP criteria; 6 were downgraded and 1
upgraded (Table S5). In silico analysis contributed to 3 of these
reclassifications; with CACNB2 (NM_201571.4):c.1122+ 3 A > T
reclassified from VUS to LB, FLNC (NM_001458.5):c.7385-1 G > A
reclassified from LP to P, and KCNQ1 (NM_000218.3):c.477+
5 G > A reclassified from LP/P to P.
Functional data correlated well with the in silico tests as all 8 of

the variants with a PS3 rating also received a PP3 rating; and 5 of
these variants were classified as “pathogenic” (62.5%).
76 patients carried variants in the splice donor/acceptor sites,

among these 33 (43%) were symptomatic with 31 (41%) having a
definite diagnosis. In contrast, of the 58 patients carrying variants
outside these sites 23 (40%) were symptomatic (ChiSquare= 0.19,
p= 0.66) and 23 (40%) had a definite diagnosis (ChiSquare=
0.018, p= 0.89) (Tables S3 and S4). There was no significant
difference between variants within or adjacent to the splice sites
with respect to symptomaticity.
An average of 8.96/9 tools scored the 28 variants in the ±1/2

positions and there was good consensus with 8.64/9 tools on
average predicting pathogenicity. In contrast, 29 variants outside
these positions were scored by an average of 6.5/9 tools with an
average of 3.2/9 tools predicting pathogenicity. Insertions and
deletions were rarely classified by in silico tools; for the two
duplications and one insertion which we screened, a total of 4
tools responded.

In silico tool sensitivity and specificity
DANN and CADD responded most frequently when queried with
the variants we analyzed (54/57, 95%). MutationTaster (32/57, 56%)
and MES (35/57, 61%) responded least frequently. To calculate
sensitivity and specificity, we considered PP3 as a positive and BP4

Table 1. Demographic and phenotypic data.

Variants
seen in one
individual
(n= 41)

Variants
seen in
more than
one
individual
(n= 93)

Total
individuals
with a splice
variant
(n= 134)

Female gender 17 (41.5%) 50 (53.8%) 67 (50.0%)

Caucasian
ethnicity

30 (73.2%) 81 (87.1%) 111 (82.8%)

Symptomatic 29 (70.7%) 39 (41.9%) 68 (50.7%)

Presyncope 5 (12.2%) 6 (6.5%) 11 (8.2%)

Syncope 10 (24.4%) 6 (6.5%) 16 (11.9%)

Palpitations 11 (26.8%) 15 (16.1%) 26 (19.4%)

Cardiac arrest 14 (34.1%) 8 (8.6%) 22 (16.4%)

Total ARVC 9 (22.0%) 39 (41.9%) 48 (35.8%)

Definite ARVC 6 (66.7%) 22 (56.4%) 28 (58.3%)

Probable ARVC 1 (11.1%) 9 (23.1%) 10 (20.8%)

Possible ARVC 2 (22.2%) 8 (20.5%) 10 (20.8%)

Total LQTS 7 (17.1%) 13 (14.0%) 20 (14.9%)

Definite LQTS 4 (57.1%) 9 (69.2%) 13 (65%)

Probable LQTS 1 (14.3%) 2 (15.4%) 3 (15%)

Possible LQTS 2 (28.6%) 2 (15.4%) 4 (20%)

Total HCM 5 (12.2%) 1 (1.1%) 6 (4.5%)

Definite HCM 1 (20%) 0 1 (16.7%)

Probable HCM 4 (80%) 1 (100%) 5 (83.3%)

Possible HCM 0 0 0

Unaffected 0 (0%) 5 (5.4%) 5 (3.7%)

Age at first
assessment

44.3 ± 16.6 42.0 ± 18.6 42.7 ± 18.0

Symptomatic
proband

28 (68.3%) 31 (33.3%) 59 (44.0%)

Symptomatic
family member

1 (2.4%) 8 (8.6%) 9 (6.7%)

Asymptomatic
primary referral

6 (14.6%) 3 (3.2%) 9 (6.7%)

Asymptomatic
family member

6 (14.6%) 51 (54.8%) 60 (42.5%)

Fig. 3 Position of identified splice-site variants. This figure
indicates the position of variants relative to the splice donor/
acceptor site as a percentage of patient carriers. The label on each
column indicates the number of individuals found to carry a variant
within the indicated distance from the splice site. 8% of the variants
were missense. 57% of variants occurred in the ±2, 85% in ±4, 88%
in ±6, 90% in ±8, and 93% in ±10 positions.
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Table 2. In silico analysis and ACMG classification.

Gene Variant In silico prediction BP4/PP3 ACMG criteria Classification

ACTN2 (NM_001103.4):c.1255+ 2dupT 1/1 PM2 VUS

CACNB2 (NM_201571.4):c.1122+ 3 A > T 0/9 BP4 BS1, BP4, BP6 LB

CASQ2 (NM_001232.4):c.606+ 1 G > C 9/9 PP3 PVS1, PM2, PP3, PP5 P

DSC2 (NM_024422.6):c.631-2 A > G 9/9 PP3 PVS1, PS3, PP3 P

DSC2 (NM_024422.6):c.943-1 G > A 9/9 PP3 PVS1, PM2, PP3, PP5 P

DSG2 (NM_001943.5):c.523+ 1 G > C 9/9 PP3 PP3 VUS

DSG2 (NM_001943.5):c.1880-2 A > G 9/9 PP3 PS3, PM2, PP3 P

DSP (NM_004415.4):c.939+ 1 G > A 9/9 PP3 PVS1, PS3, PM2, PP3 P

EMD (NM_000117.3):c.265+ 2 T > A 9/9 PP3 PM4, PM2, PP3, PP5 LP

FLNC (NM_001458.5):c.7385-1 G > A 7/9 PP3 PVS1, PM2, PP3 P

GLB1 (NM_000404.4):c.1480-4 G > T 0/8 BP4 BP4 VUS

GLB1 (NM_001317040.1):c.1879-5_1879-4dup 0/1 BS1 VUS

JUP (NM_002230.4):c.1653+ 1 G > A 9/9 PP3 PVS1, PM2, PP3, BP2 P

KCNH2 (NM_000238.4):c.472+ 1 G > C 9/9 PP3 PVS1, PM2, PP3 P

KCNH2 (NM_000238.4):c.1128 G > A‡ 5/6 PP3 PVS1, PM2, PP3, PP5 P

KCNH2 (NM_000238.4):c.2145 G > A‡ 6/8 PP3 PVS1, PM2, PP3, PP5 P

KCNH2 (NM_000238.4):c.2692+ 8 G > A 2/8 BP4 BS1, BS4, BP4 LB

KCNQ1 (NM_000218.3):c.387-5 T > A 5/7 PP3 PM2, PP3 VUS

KCNQ1 (NM_000218.3):c.477+ 1 G > A 9/9 PP3 PVS1, PS3, PP3, PP5, BP2 P

KCNQ1 (NM_000218.3):c.477+ 5 G > A 5/8 PP3 PS3, PP3 LP

KCNQ1 (NM_000218.3):c.921 G > A‡ 4/8 PP3 PS3, PM5, PP3 LP

KCNQ1 (NM_000218.3):c.1033-3 C > T 0/8 BP4 BP4, BP6 LB

KCNQ1 (NM_000218.3):c.1686-1 G > T 9/9 PP3 PVS1, PM2, PP3 P

KRAS (NM_001369786.1):c.*5-3 C > T 0/5 BP4 PM1, PM2, BP4 VUS

LMNA (NM_001282626.2):c.937-1 G > C 7/9 PP3 PVS1, PM2, PP3 P

LMNA (NM_170708.4):c.1609-3 C > G 6/7 PP3 PM2, PP3, PP5, BS4, BP1 VUS

MIB1 (NM_020774.4):c.2050-4 T > C 0/8 BP4 PM2, BP4 VUS

MYBPC3 (NM_000256.3):c.1227-2 A > G 6/9 PP3 PVS1, PM2, PM5, PP3, PP5 P

MYBPC3 (NM_000256.3):c.1624G > C‡ 7/9 PP3 PVS1, PS3, PM5, PP3 P

MYBPC3 (NM_000256.3):c.1897+ 1 G > A 9/9 PP3 PVS1, PM2, PP3, PP5 P

MYBPC3 (NM_000256.3):c.2737+ 1 G > C 9/9 PP3 PVS1, PM2, PP3, PP5 P

MYH7 (NM_000257.4):c.639+ 5 G > T 5/8 PP3 PP3 VUS

NEXN (NM_144573.4):c.1053+ 1 G > A 9/9 PP3 PVS1, PP3, BS4, BP5 VUS

PKP2 (NM_001005242.3):c.224-3 C > G 5/7 PP3 PM2, PP3 VUS

PKP2 (NM_001005242.3):c.337-2 A > T 9/9 PP3 PVS1, PM2, PP3, PP5 P

PKP2 (NM_001005242.3):c.1034+ 1 G > A 9/9 PP3 PVS1, PP3, PP5 P

PKP2 (NM_004572.4): c.1510+ 5 G > A 4/6 PP3 PP3 VUS

PKP2 (NM_004572.4): c.1584 G > A 1/5 BP4 BP4, BP6, BP7 VUS

PKP2 (NM_004572.4):c.1689-1 G > C 8/9 PP3 PVS1, PP3, PP5 P

PKP2 (NM_004572.4):c.1688+ 1 G > A 9/9 PP3 PVS1, PP3, PP5 P

PKP2 (NM_004572.4):c.2146-1 G > C 8/8 PP3 PVS1, PS3, PP3 P

PKP2 (NM_004572.4):c.2299+ 1 G > A 9/9 PP3 PVS1, PM2, PP3, PP5 P

PKP2 (NM_001005242.3):c.2357+ 1 G > A 9/9 PP3 PVS1, PP3, PP5 P

RYR2 (NM_001035.3):c.6022+ 5 G > A 5/8 PP3 PP3, BS1 VUS

RYR2 (NM_001035.3):c.8715-2 A > G 9/9 PP3 PVS1, PM2, PP3, BP2 P

RYR (NM_001035.3):c.9129-10 T > A 0/7 BP4 PM2, BP4 VUS

SCN5A (NM_000335.5):c.392+ 3 A > G 6/7 PP3 PM2, PP3 VUS

SCN5A (NM_000335.5):c.483 G > A‡ 4/8 PP3 PM2, PP3 VUS

SCN5A (NM_198056.3):c.4437+ 5 G > A 2/5 BP4 PP4, BP4 VUS

TRDN (NM_006073.4):c.1322-10 T > A 6/6 PP3 PP3 VUS

TPM1 (NM_001018005.2):c.375-3 C > T 0/8 BP4 BS1, BP4, BP6 LB
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as a negative prediction. The final classification of LP/P was deemed
to be a positive and a LB/B/VUS rating a negative result. For
example, a BP4 output and a P rating would be deemed a false
negative, while a PP3 and a LP would be a true positive. Every tool
was found to have high sensitivity (>80%) in predicting pathogeni-
city with MutationTaster and MES having a sensitivity of 100%,
however MES had a specificity of 0% as it failed to detect any true
negatives. For MutationTaster, these values are similar to the
sensitivity (89%) and specificity (93%) reported by the developers
[14]. Among the other tools, dbscSNV (ADA/RF) (97%), HSF (96%),
CADD (93%), and DANN (93%) were sensitive. Specificity was lower
for all tools, with SpliceAI (64%), DANN (63%), and CADD (54%)
predicting the greatest number of true negatives. These results are
summarized in Fig. 4.

DISCUSSION
This study of the national HiRO registry has identified variants
which may effect the splicing of cardiac genes leading to disease.
Trends in prevalence of splice-site variants, genotype-phenotype
relationships, variable expressivity, and differential phenotypic
presentations are highlighted here. We have also compiled a
selection of available in silico tools to aid clinicians in determining

the pathogenic potential of rare variants. Among 1315 participants
and 1761 gene variants, 134 patients (10.2%) carried intronic
splice-region variants. 57 unique variants were identified and this
was the sole variant identified in 78% (104/134) of patients. Splice
variants were felt to be either likely pathogenic or pathogenic in
the majority of cases (30/57, 53%) and correlated well with
observed clinical phenotypes (27/57, 47%). In silico analyses aided
in reclassification of 7 (12%) variants, with pathogenicity down-
graded in the majority, correlating well with the observed clinical
findings.
Six new splice acceptor and 2 new donor sites were predicted

by HSF/MES; findings which require further in vitro validation
(Table S5). One of the splice variants identified was upgraded from
LP to P, and five variants were downgraded from: LP/P to LP, VUS
to LB, P to VUS, LP/P to VUS, LP to VUS, and P to VUS. For those
downgraded, the available functional data were insufficient to
support a LP/P rating.
The design of in silico tools is predicated on several

assumptions and each has inherent strengths and weaknesses.
Newly developed tools tend to be validated against older tools
and often improve upon the predictive potential [9]. MutationTa-
ster and MES had the highest sensitivity (~100%); yet responded
less frequently than other tools.

Table 2. continued

Gene Variant In silico prediction BP4/PP3 ACMG criteria Classification

TTN (NM_001267550.2):c.7330+ 5 G > C 7/7 PP3 PM2, PP3, BP1 VUS

TTN (NM_001267550.2):c.33340 G > T‡ 7/9 PP3 BP1, PP3 VUS

TTN (NM_001267550.2):c.33911-6_33911-5insG 2/2 BS1 VUS

TTN (NM_001267550.2):c.35875+ 1 G > C 9/9 PP3 PVS1, PP3, BP2 VUS

TTN (NM_001267550.2):c.51739+ 1 G > C 7/9 PP3 PM2, PM4, PP3, PP5, BS4 LP

TTN (NM_133378.4):c.51923-1 G > C 9/9 PP3 PVS1, PM2, PP3 P
‡Located at the last base pair position of the exon.
In silico prediction column indicates the number of tools which predicted a pathogenic variant/the number of tools which responded ie. 0/9 indicates that
none of the tools predicted a damaging effect out of nine which scored the variant.

Fig. 4 Predictive capability of in silico tools. The sensitivity (white) and specificity (black) for each tool is displayed as a percentage.
Sensitivity was determined from the number of true positives as a ratio of true positives and false negatives. Specificity was determined from
the number of true negatives as a ratio of true negatives and false positives. The final classification of LP or P was considered a positive result
and any other ACMG-AMP classification considered negative for each prediction. The table lists the false negatives, false positives, true
negatives, and true positives that were used to calculate the sensitivity and specificity for each tool.
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A result was provided most frequently by the tools CADD/DANN
(54/57, 95%), SpliceAI (52/57, 91%), and dbscSNV (51/57, 89%).
Conversely, MutationTaster (32/57, 56%), MES (35/57, 61%), and
HSF (36/57, 63%) provided a score least frequently, which was
likely due to several factors. Tools such as CADD, SpliceAI,
dbscSNV, and DANN do not pick up insertions, deletions, or
duplications as they exclusively respond to single nucleotide
variants (SNV). NNSplice, HSF, and MES are optimized for variants
occurring at splice sites and branch points [10]. The frame of
evaluation is limited in some tools such as MES and to a lesser
extent dbscSNV (Table S1). Similarly, MutationTaster was originally
optimized on data containing variants adjacent to the splice site
[14]. Lastly, missense mutations were generally poorly analyzed.
MES had poor specificity (0%) as it failed to detect any true

negatives and in fact did not provide a response when queried
with any of the variants which we eventually labelled as unlikely to
be LP/P. The reasons for this are discussed above and include
training on variants adjacent to the splice sites (-3→+6 at the 5’
end and -20→+3 at the 3’ end) and lack of response to silent
mutations. With our data set, MES responded the least frequently
(35/57, 61%) among the tools tested. Others have shown MES to
have a high false positive rate, particularly when analyzing deep
intronic variants. We also found this to be the case with 29% (10/
35) false positive rate [28].
MES is optimized for detection of variants occurring at splice

sites and branch points and at these foci it appears accurate [28].
Other groups have shown this tool to be highly accurate when
analyzing splice donor sites [29] and Jian et al. found it both highly
sensitive (86%) and specific (92%) [17]. This tool was originally
developed and optimized on a relatively small number of ~1800
transcripts [26].
In contrast, HSF and dbscSNV responded with greater frequency

(63% and 89%, respectively) and had similarly high sensitivity
(~97%) in predicting pathogenicity. CADD had high sensitivity in
predicting true positives (93%). This deep learning tool combines
63 annotation scores to predict splicing impact [16]. Specificity
was generally poor for all nine tools; SpliceAI (64%), DANN (63%),
and CADD (54%) were most accurate at ruling out variant
pathogenicity.
A recent publication used functional assessments of 249 VUS to

test the predictive capabilities of nine in silico algorithms
including: CADD, Splicing Clinically Applicable Pathogenicity
Prediction (S-CAP), Modular Modeling of Splicing (MMSplice),
and MES [30]. Consistent with our results, they report that SpliceAI
outperformed the others. A consensus score (using 4/8 algorithms
to support splicing disruption) outperformed each individual
algorithms but was marginally worse than SpliceAI, whereas
weighted scoring of the algorithms provided only marginal gains
compared to SpliceAI [30].
Overall, if selecting a limited number of tools to use clinically,

we would recommend the recently developed SpliceAI which
uses deep learning; a more flexible methodology compared to
most of the other tools. SpliceAI was well rounded: responding
for a large number of the variants while being specific/sensitive
in predicting the nature of each. CADD and dbscSNV also
performed well and may be used to complete a triad of clinically
applicable in silico tools. CADD in particular has been shown by
other comprehensive studies to perform particularly well in
predicting variant pathogenicity [31]. When tested separately,
these three tools alone had the same accuracy (93%) as the
entire toolset (Fig. 4).
The clinical relevance of variants adjacent to the splice sites is

debatable [1, 3]. 57% of our identified variants were found in the
canonical sites (Fig. 3), yet a significant number (58/134, 43%)
occurred outside these sites. The need for evaluating flanking
regions is highlighted by KCNQ1 (NM_000218.3):c.387-5 T > A,
identified in a proband and her two children. All three presented
with LQTS and 5/7 tools predicted an effect on splicing leading to

a PP3 rating. Evidence suggests pathogenicity is due to out-of-
frame skipping of exon 2, with the mutant encoding the majority
(~85%) of transcripts. Members of two families with LQTS were
previously reported as carriers of this variant [32]. RNA analysis in
heterozygous carriers showed that as little as 10% functional
protein is protective against congenital deafness occurring in
Jervell and Lange-Nielsen Syndrome, but is insufficient to maintain
normal QT duration [32, 33].
A variant in the +12 position, initially excluded from our

analysis due to it’s location, is an interesting example of different
phenotypes within a family. It also highlights that it may be
worthwhile to extend analysis into deep intronic regions in
genotype negative families. This family was identified after the
tragic SCD of a 19-year-old male. Post-mortem examination was
suggestive of ARVC and the patient was a carrier of PKP2
(NM_001005242.3):c.1034+ 12 C > T. The patient’s mother was
asymptomatic on presentation and without clinical evidence of
ARVC. She carried the same variant and a positive procainamide
challenge yielded a diagnosis of BrS. The relationship between
PKP2 variants and BrS has only recently been uncovered, with
studies pointing to an overlap in the pathophysiology of BrS and
ARVC [34, 35]. This variant highlights the limitations of in silico
tools, particularly when considering variants located outside the
splice regions. Only 5/9 tools responded when queried, and
none indicated an impact on splicing.

Future directions
Future studies may explore the unique predictive capabilities of
a myriad of available in silico tools in comparison with those
utilized here. MutPred Splice uses machine learning to predict
the potential consequences of exonic changes on pre-mRNA
splicing [36]. Splicing Prediction in Consensus Elements (SPiCE),
is a downloadable program that builds on SpliceSiteFinder-like
[1] and MES to predict the impact of spliceogenic variants with
high sensitivity and specificity [37]. S-CAP builds on seven tools
including CADD and MutPred Splice to develop its own unique
features; offering significant sensitivity in detecting splice-
disrupting VUS [38]. MMSplice uses neural networks trained on
large genomic datasets to predict the effect of variants on
splicing and pathogenicity [39]. The Super-QUick Information
content Random-forest Learning of Splice variants (SQURILS)
algorithm uses interpretable wild-type and variant sequence
features for machine learning-based prediction, doing so with
high accuracy comparable to CADD and SpliceAI [40]. These
programs require raw sequencing data in variant call format
(vcf); a limitation which precluded comparison in this study with
the nine selected tools. MutPred Splice, SQURILS, and SPiCE
can also take single variant genomic position as input. When
queried, SPiCE performed well, responding to 93% of the
variants, with a sensitivity of 86.2%, and a specificity of 45.8%
(Table S6). Despite their unique strengths, these tools do not
necessarily have a predictive advantage over those tested here.
For example, Rowlands et al. found SpliceAI to outperform both
MMSplice and S-CAP [30] while Rentzsch et al. showed that
S-CAP outperforms CADD on canonical splice site variants and
intronic SNVs [41].
In vitro and in vivo studies on human tissue can define and

measure the consequences of genetic variants on splicing, and
report effects on RNA metabolism and cell physiology. RNA
extracted from venous blood samples can be used to investigate
splice variants for select cardiac genes, however may not always
replicate or reflect tissue level expression profiles [42]. Human
induced pluripotent stem cells (hiPSC) can be derived directly
from patients with cardiac disease and subsequently differen-
tiated into hiPSC-derived cardiomyocytes. Transcriptome analy-
sis of hiPSC can be used to discover pathogenic splice
variants [43]. Leveraging transcriptomics can create a clearer
genotype-to-phenotype picture [44, 45]. By pairing RNA-seq,
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bioinformatics, and proteomics, a more accurate categorization
of a patient’s splicing patterns and gene expression can be
obtained [46].

Limitations
Published reports were used to study the impact of variants,
however the majority of the variants presented here have not
been studied at the RNA or protein level to allow for correlation
with clinical data. We limited our study to variants within ±10 base
pairs of the splice site to incorporate variants reported by different
clinical labs as we lacked access to the sequencing source data.
Distant splice regulatory elements are of some importance but
were not capture here [4, 8, 47–49]. In addition, in silico tool do
not capture aspects of splicing which are actively being studied,
for example the role of RNA secondary structures [50]. The
patients included in this study were sequenced by different labs at
different times.

CONCLUSION
A significant proportion of patients with inherited arrhythmia
and cardiomyopathy syndromes carry clinically relevant variants
in the non-coding segments of the DNA: 10% of patients in the
HiRO database were found to carry splice-site variants account-
ing for 8% of all the variants in the database. We tested nine in
silico tools, that can predict the impact of these intronic variants.
These tools responded most frequently when queried with
variants in the canonical splice sites. A number of tools were
found to have high sensitivity and moderate specificity in
predicting pathogenicity. To allow for rapid risk stratification,
without sacrificing predictive accuracy in the clinical setting, we
recommend an abridged version of the toolkit comprising of
three in silico tools: CADD, SpliceAI, and dbscSNV. Contingent on
clinician comfort, consensus between two or three of these tools
may be used to guide further investigations or subsequent
treatment course. The novel variants explored here, particularly
those where in silico tools suggest an impact on splicing and for
which functional data is lacking, are an excellent starting point
for in vitro characterization.
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