Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The influence of marine fungal meroterpenoid meroantarctine A toward HaCaT keratinocytes infected with Staphylococcus aureus

Abstract

A new biological activity was discovered for marine fungal meroterpenoid meroantarctine A with unique 6/5/6/6 polycyclic system. It was found that meroantarctine A can significantly reduce biofilm formation by Staphylococcus aureus with an IC50 of 9.2 µM via inhibition of sortase A activity. Co-cultivation of HaCaT keratinocytes with a S. aureus suspension was used as an in vitro model of skin infection. Treatment of S. aureus-infected HaCaT cells with meroantarctine A at 10 µM caused a reduction in the production of TNF-α, IL-18, NO, and ROS, as well as LDH release and caspase 1 activation in these cells and, finally, recovered the proliferation and migration of HaCaT cells in an in vitro wound healing assay up to the control level. Thus, meroantarctine A is a new promising antibiofilm compound which can effective against S. aureus caused skin infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original data presented in the study are included in the article; further inquiries can be directed to the corresponding author.

References

  1. de Oliveira Santos JV, et al. Panorama of bacterial infections caused by epidemic resistant strains. Curr Microbiol. 2022;79:175.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ikuta KS, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400:2221–48.

    Article  Google Scholar 

  3. Yang L, et al. Global epidemiology of asymptomatic colonisation of methicillin-resistant Staphylococcus aureus in the upper respiratory tract of young children: a systematic review and meta-analysis. Arch Dis Child. 2024;109:267.

    Article  PubMed  Google Scholar 

  4. Murray CJ, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    Article  CAS  Google Scholar 

  5. Liang Y, Li J, Hou L, Zhang X, Hou G, Zhang W. Changes of Staphylococcus aureus infection in children before and after the COVID-19 pandemic, Henan, China. J Infect. 2023;86:e70–e71.

    Article  PubMed  Google Scholar 

  6. Outterson K, Orubu ESF, Rex J, Årdal C, Zaman MH. Patient access in 14 high-income countries to new antibacterials approved by the US Food and Drug Administration, European Medicines Agency, Japanese Pharmaceuticals and Medical Devices Agency, or Health Canada, 2010–2020. Clin Infect Dis. 2022;74:1183–90.

    Article  PubMed  Google Scholar 

  7. Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol. 2020;18:275–85.

    Article  PubMed  Google Scholar 

  8. Wang C, Tang S, Cao S. Antimicrobial compounds from marine fungi. Phytochem Rev. 2021;20:85–117.

    Article  CAS  Google Scholar 

  9. El-Demerdash A, Kumla D, Kijjoa A. Chemical diversity and biological activities of meroterpenoids from marine derived-fungi: a comprehensive update. Mar Drugs 2020;18:317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gomes NM, et al. Antibacterial and antibiofilm activities of tryptoquivalines and meroditerpenes isolated from the marine-derived fungi Neosartorya paulistensis, N. laciniosa, N. tsunodae, and the soil fungi N. fischeri and N. siamensis. Mar Drugs. 2014;12:822–39.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leshchenko EV, et al. Meroantarctines A–C, meroterpenoids with rearranged skeletons from the alga-derived fungus Penicillium antarcticum KMM 4685 with potent p-glycoprotein inhibitory activity. J Nat Prod. 2022;85:2746–52.

    Article  PubMed  CAS  Google Scholar 

  12. Zhuravleva OI, et al. Anthraquinone derivatives and other aromatic compounds from marine fungus Asteromyces cruciatus KMM 4696 and their effects against Staphylococcus aureus. Mar Drugs. 2023;21:431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yurchenko AN, et al. New cyclopiane diterpenes and polyketide derivatives from marine sediment-derived fungus Penicillium antarcticum KMM 4670 and their biological activities. Mar Drugs. 2023;21:584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Campbell J. High‐throughput assessment of bacterial growth inhibition by optical density measurements. Curr Protoc Chem Biol. 2010;2:195–208.

    Article  PubMed  Google Scholar 

  15. Kifer D, Mužinić V, Klarić MŠ. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1, 8-cineole against Staphylococcus aureus planktonic and biofilm growth. J Antibiot (Tokyo). 2016;69:689–96.

    Article  PubMed  CAS  Google Scholar 

  16. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brooks BR, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30:1545–614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Haberthür U, Caflisch A. FACTS: Fast analytical continuum treatment of solvation. J Comput Chem. 2008;29:701–15.

    Article  PubMed  Google Scholar 

  19. Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 2011;32:2149–59.

    Article  PubMed  CAS  Google Scholar 

  20. Yurchenko EA, Khmel OO, Nesterenko LE, Aminin DL. The Kelch/Nrf2 antioxidant system as a target for some marine fungal metabolites. Oxygen. 2023;3:374–85.

    Article  CAS  Google Scholar 

  21. Kozlovskiy SA, et al. Anti-inflammatory activity of 1,4-naphthoquinones blocking P2X7 purinergic receptors in RAW 264.7 macrophage cells. Toxins. 2023;15:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Girich EV, et al. Absolute stereochemistry and cytotoxic effects of vismione E from marine sponge-derived fungus Aspergillus sp. 1901NT-1.2.2. Int J Mol Sci. 2023;24:8150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zong Y, Bice TW, Ton-That H, Schneewind O, Narayana SVL. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem. 2004;279:31383–9.

    Article  PubMed  CAS  Google Scholar 

  24. Tsuchiya K. Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol Immunol. 2020;64:252–69.

    Article  PubMed  CAS  Google Scholar 

  25. Jang KO, Lee YW, Kim H, Chung DK. Complement inactivation strategy of Staphylococcus aureus using decay-accelerating factor and the response of infected HaCaT cells. Int J Mol Sci. 2021;22:4015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Paharik AE, Horswill AR. The Staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectrum. 2016;4:VMBF-0022-2015

  27. Malone M, et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care. 2017;26:20–25.

    Article  PubMed  CAS  Google Scholar 

  28. Simonetti O, et al. New perspectives on old and new therapies of staphylococcal skin infections: the role of biofilm targeting in wound healing. Antibiotics. 2021;10:1377.

  29. Guo N, Bai X, Shen Y, Zhang T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit Rev Food Sci Nutr. 2023;63:2216–30.

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, et al. The protection effect of rhodionin against methicillin-resistant Staphylococcus aureus-induced pneumonia through sortase A inhibition. World J Microbiol Biotechnol. 2022;39:18.

    Article  PubMed  CAS  Google Scholar 

  31. Kudryavtsev KV, Fedotcheva TA, Shimanovsky NL. Inhibitors of sortases of gram-positive bacteria and their role in the treatment of infectious diseases (review). Pharm Chem J 2021;55:751–6.

    Article  CAS  Google Scholar 

  32. Jiang T, et al. Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia. Med Microbiol Immunol. 2023;212:421–35.

    Article  PubMed  CAS  Google Scholar 

  33. Marraffini LA, Ton-That H, Zong Y, Narayana SVL, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus: a conserved arginine residue is required for efficient catalysis of sortase A. J Biol Chem. 2004;279:37763–70.

    Article  PubMed  CAS  Google Scholar 

  34. Thappeta KR, et al. In-Silico identified new natural sortase A inhibitors disrupt S. aureus biofilm formation. Int J Mol Sci. 2020;21:8601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Missiakas D, Winstel V. Selective host cell death by Staphylococcus aureus: A strategy for bacterial persistence. Front Immunol. 2021;11:621733.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng Y-L, et al. Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3β-regulated pathway. Infect Immun. 2009;77:4002–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gómez MI, et al. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med. 2004;10:842–8.

    Article  PubMed  Google Scholar 

  38. Alexander EH, Rivera FA, Marriott I, Anguita J, Bost KL, Hudson MC. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts. BMC Microbiol. 2003;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jelachich Mary L, Lipton Howard L. Theiler’s murine encephalomyelitis virus induces apoptosis in gamma interferon-activated M1 differentiated myelomonocytic cells through a mechanism involving tumor necrosis factor alpha (TNF-α) and TNF-α-related apoptosis-inducing ligand. J Virol. 2001;75:5930–8.

    Article  PubMed Central  Google Scholar 

  40. Lima Leite E, et al. Involvement of caspase‐1 in inflammasomes activation and bacterial clearance in S. aureus‐infected osteoblast‐like MG‐63 cells. Cell Microbiol. 2020;22:e13204.

    Article  PubMed  Google Scholar 

  41. Hu XM, et al. Guidelines for regulated cell death assays: a systematic summary, a categorical comparison, a prospective. Front Cell Developmental Biol. 2021;9:634690.

    Article  Google Scholar 

  42. Syed AK, Reed TJ, Clark KL, Boles BR, Kahlenberg JM. Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun. 2015;83:3428–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol. 2021;23:e13317.

    Article  PubMed  CAS  Google Scholar 

  44. Wiegand C, Abel M, Ruth P, Hipler UC. HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide. Wound Repair Regeneration. 2009;17:730–8.

    Article  PubMed  Google Scholar 

  45. Kirker KR, Secor PR, James GA, Fleckman P, Olerud JE, Stewart PS. Loss of viability and induction of apoptosis in human keratinocytes exposed to Staphylococcus aureus biofilms in vitro. Wound Repair Regeneration. 2009;17:690–9.

    Article  PubMed  Google Scholar 

  46. Chingizova EA, et al. Marine fungal cerebroside flavuside B protects HaCaT keratinocytes against Staphylococcus aureus induced damage. Mar Drugs 2021;19:553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yurchenko EA, et al. Cytoprotective activity of p-terphenyl polyketides and flavuside B from marine-derived fungi against oxidative stress in Neuro-2a cells. Molecules. 2021;26:3618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Seo S-H, Jeong G-S. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression. Int Immunopharmacol 2015;29:246–53.

    Article  PubMed  CAS  Google Scholar 

  49. Moormeier DE, Bose JL, Horswill AR, Bayles KW. Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio. 2014;5:e01341–14. https://doi.org/10.1128/mbio.01341-01314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Díaz-Navarro M, et al. Understanding the diagnosis of catheter-related bloodstream infection: real-time monitoring of biofilm growth dynamics using time-lapse optical microscopy. Front Cell Infect Microbiol. 2023;13:1286527.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Caudal F, et al. Anti-biofilm extracts and molecules from the marine environment. Mar Drugs. 2024;22:313.

Download references

Acknowledgements

This study was carried out using the equipment of the Collective Facilities Center “The Far Eastern Center for Structural Molecular Research (NMR/MS) PIBOC FEB RAS” and using the Collective Facilities Center “Collection of Marine Microorganisms PIBOC FEB RAS”.

Funding

This research was funded by the Russian Science Foundation (grant number 23-24-00471).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, EAY and EAC; methodology, EAY, EAC and ESM; software, EAY, ASK and ANY; validation, DLA, and IVG; formal analysis, ESM, ASK and EAC; investigation, EAC, ARC, ESM, EAP, EVL, GVB, and EAY; resources, IVG and EAC; data curation, DLA and EAY; writing—original draft prep-aration, EAC, and EAY; writing—review and editing, DLA and IVG; visualization, ESM, EAP, and EAC supervision, EAY and DLA; project administration, EAC and EAY; funding acquisition, EAC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ekaterina A. Chingizova or Ekaterina A. Yurchenko.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chingizova, E.A., Chingizov, A.R., Menchinskaya, E.S. et al. The influence of marine fungal meroterpenoid meroantarctine A toward HaCaT keratinocytes infected with Staphylococcus aureus. J Antibiot (2024). https://doi.org/10.1038/s41429-024-00771-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-024-00771-x

Search

Quick links