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Abstract
Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However,
allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely
restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell
whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq
(restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting
and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be
amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much
lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272
female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-
resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism
in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female
haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and
oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation
genetic diagnosis.

Introduction
A multicellular organism is composed of individual cells

and genetic information exists as individual chromosomes
in each cell. Development of single-cell whole-genome
sequencing techniques has enabled us to amplify and
sequence the diploid genome in a single cell to study the
genetic heterogeneities within a population of cells,
including single-nucleotide variations (SNVs), copy-
number variations (CNVs), and structural variations
(SVs)1. A variety of single-cell genome sequencing

technologies based on the next-generation sequencing
(NGS) platforms have been developed, such as degenerate
oligonucleotide-primed polymerase chain reaction (DOP-
PCR)2, multiple displacement amplification (MDA)3,
multiple annealing and looping-based amplification cycles
(MALBAC)4, emulsion WGA (eWGA)5, linear amplifi-
cation via transposon insertion (LIANTI)6, primary
template-directed amplification (PTA)7 and multiplexed
end-tagging amplification of complementary strands
(META-CS)8. Although these techniques are powerful in
the detection of CNVs and SNVs due to the high accuracy
of the NGS platforms, they are limited by the short read-
length and thus have poor performance in the detection of
SVs. SVs include deletion, insertion, duplication, inver-
sion and translocation, which are important categories of
genetic variations underlying many human diseases such
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as cancer9,10. Therefore, it is crucial to study the SVs at
single-cell resolution. Based on the third-generation
sequencing (TGS, also known as single-molecule
sequencing) platforms, we developed single-molecule
real-time sequencing of long fragments amplified
through transposon insertion (SMOOTH-seq)11 in recent
years, which used low-density Tn5 transposase to ran-
domly fragment genomic DNA from an individual cell to
achieve relatively even genome amplification. It could
efficiently detect the structural variations in addition to
CNVs and SNVs. However, limited coverage of both
alleles in a diploid cell made it of high false negative rates
in the detection of heterozygous single-nucleotide poly-
morphisms (hetSNPs).
In SMOOTH-seq, two alleles (for example, A and B) in

homologous chromosomes are cut randomly. If the gen-
ome coverage is n% (n% chance of capturing the allele A
or allele B), the possibility of capturing both allele A and B
simultaneously should be n% × n%, i.e., (n%)2. Note that
the two alleles in the diploid genome usually have iden-
tical restriction endonuclease recognition sites; the
homologous DNA fragments generated by restriction
endonuclease cutting usually have identical length (Fig. 1).
Therefore, in DNA fragments generated by restriction
endonuclease cutting, the possibility of capturing both
alleles would be higher because fragments with equal
length have more chance to be amplified simultaneously
than those with random lengths. Based on this assump-
tion, we developed Refresh-seq (restriction fragment
ligation-based genome amplification and TGS), a novel
single-cell long-read whole-genome sequencing technique
based on restriction endonuclease cutting and ligation
strategy (Fig. 1 and Supplementary Fig. S1a). Restriction
endonucleases were identified in the early 1950s, subse-
quently being widely used in molecular biology of DNA
such as physical DNA mapping, DNA manipulation and
DNA accessibility studies12. For example, Msp I was used
in multiplexed single-cell reduced representation bisulfite
sequencing (Msc-RRBS) to enrich CpG-rich sequences
such as CpG islands13. Restriction enzymes were also used
to reduce the complexity across target genomes in
restriction-site associated DNA sequencing (RADseq) to
deliver high-resolution population genomic data14,
whereas no trial has been made to combine restriction
endonucleases with TGS platform-based whole-genome
sequencing. We developed Refresh-seq and investigated
the great potential of restriction endonucleases in whole-
genome amplification for the first time.
Meiosis is a crucial process in generating haploid

gametes for sexual reproduction and serves as the basis of
genetic diversity15. Crossover represents the exchange
between homologous chromosomes and promotes a new
combination of haplotypes from parents on recombinant
chromosomes in the offspring15. Linkage disequilibrium

and pedigree studies have revealed that in all the studied
organisms the distribution of crossovers is uneven across
the genome, but recombination active regions are not
conserved between species16,17. Also, recombination rates
differ between the two sexes in many organisms18,19,
showing sexual dimorphism. Previous studies based on
genetic linkage analyses can only analyze the crossover
patterns of the gametes that can generate live offspring.
Currently it lacks single-cell whole-genome sequencing
analyses revealing and comparing the sexual dimorphism
in meiotic recombination of the same mouse strain
simultaneously. Here, we applied Refresh-seq to map
meiotic crossovers in both male and female mouse
gametes with high resolution at low sequencing depth
accompanied by accurate detection of aneuploidy. More
importantly, we took the advantage of TGS long reads to
phase the heterozygous SVs (hetSVs) with high precision.
Our results show that Refresh-seq has great potential for
biological and medical applications.
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Fig. 1 The schematic of Refresh-seq. After single cell lysis and
proteinase digestion, restriction digestion of single cell genomic DNAs
(gDNAs), end repair and dA-tailing afterwards are performed on a
small volume. Then dsDNA adapters are ligated to 3’-dA-tailed
molecules. Barcoded adaptors are used in Refresh-seq (multiplexed)
and cells with different barcodes are pooled together and then
purified. The purified samples are amplified to generate enough DNA
material for Nanopore sequencing with another barcode (P3 barcode)
addition.
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Results
The schematic of Refresh-seq
To investigate the feasibility of Refresh-seq, we first

tested it on 500 pg, 100 pg, 50 pg and 10 pg of genomic
DNAs extracted from GM12878 (HG001) cells, a human
diploid B lymphoid cell line.
Firstly, we simulated the length distribution of DNA

fragments after restriction endonuclease cutting and
validated the accuracy by applying to bulk genomic
DNAs and downstream fragment analysis. Then we
ligated adaptors and amplified the DNA fragments and
found that the long DNA fragments over 3 kb had lower
recovery rate probably due to the efficiency of ligation
reaction. Thus, we should choose endonuclease that
generates DNA fragment length concentrated between
1 kb and 3 kb to get better whole-genome coverage of
single cells. Also, due to the amplification bias of shorter
DNA fragments, the fragments with concentrated length
distribution would be amplified more evenly and the
endonuclease could consequently perform better for
single-cell whole-genome sequencing. Therefore, EcoRI
was chosen due to the relatively concentrated and proper
(most fragments between 1 kb and 3 kb) length dis-
tribution of genomic fragments after restriction frag-
ment length simulation (Supplementary Fig. S1b–d).
Refresh-seq worked best on 500 pg of genomic DNAs
and achieved ~50% genome coverage with ~1× sequen-
cing depth. The samples started with 10 pg of genomic
DNAs achieved ~9% genome coverage with ~1×
sequencing depth. An individual human cell contains
about 6 pg of genomic DNAs and we then tested
Refresh-seq on the scale of genomic DNAs of a single
cell. But it didn’t work well until the volume of digestion
and amplification system was reduced to 1/10 of the
original trial, which increased the relative concentration
of genomic DNAs in the reaction. Briefly, restriction
digestion of single-cell genomic DNAs and afterward
end repair and dA-tailing were performed in small
volume after single-cell lysis. Then dsDNA adapters
were ligated to 3’-dA-tailed molecules to provide com-
plementary DNA sequence of barcode addition (Sup-
plementary Fig. S1a). Over amplification was observed
when the numbers of PCR cycles exceeded 20. Thus the
second round of amplification could be applied to the
PCR products after purification. Multiplexed version of
this method, referred to as Refresh-seq (multiplexed),
was also developed, where barcoded adaptors were used
to increase experimental throughput accordingly. After
end repair and dA-tailing, single-cell genomic DNA
fragments were ligated with barcoded adaptors. Cells
with different barcodes were then pooled together, after
which library amplification with P3-barcode addition
was performed to generate enough DNA for nanopore
sequencing (Fig. 1).

We performed species mixing experiments for Refresh-
seq (multiplexed), using two cell lines mixed in equal
quantities, including a human cell line (GM12878) and a
mouse cell line (3T3). In Refresh-seq (multiplexed), none
of the single cells were identified as doublets after quality
control (Supplementary Fig. S1e), which meant that
minimal cross contaminations were observed in Refresh-
seq (multiplexed).

Refresh-seq had increased genome coverage and
uniformity at single-cell level
We comprehensively compared Refresh-seq with

SMOOTH-seq, the first single-cell genome sequencing
method based on TGS platform11. Refresh-seq was per-
formed on 173 human NA24385 (HG002) cells, with 88
cells using the single tube version (Refresh-seq) and 85
cells using the multiplexed version (Refresh-seq (multi-
plexed)). Single-cell genome sequencing data of HG002
by SMOOTH-seq were from our previous study20.
Refresh-seq had 69.7% of reads aligned to the human

genome. The average number of reads for each single cell
was 221,203, and the average length of reads was 1669 bp.
Refresh-seq (multiplexed) had a mapping ratio of 88.4%.
The average number of reads for each single cell was
188,639 with an average length of 2172 bp. Refresh-seq
could achieve relative high genome coverage at low
sequencing depth and we compared the coverage of
Refresh-seq with that of SMOOTH-seq. Refresh-seq had
better coverage than SMOOTH-seq at the same sequen-
cing depth and it required fewer sequencing data to reach
the same genome coverage (Fig. 2a). With ~0.25×
sequencing depth, Refresh-seq achieved ~11.7% genome
coverage and Refresh-seq (multiplexed) achieved ~13.3%
genome coverage, compared with 6.0% in SMOOTH-seq.
The coverage of Refresh-seq and Refresh-seq (multi-
plexed) increased linearly with the increase of sequencing
data at low sequencing depth (Supplementary Fig. S2a).
The coverage of Refresh-seq (multiplexed) outperformed
Refresh-seq, probably due to the higher initial genomic
input (carrier effect) which led to less amplification bias
(Fig. 2a and Supplementary Fig. S2a).
Now that single-cell whole-genome sequencing meth-

ods enable us to trace the amount of genomic DNA from
a single cell (a few picograms), amplification uniformity is
a quite important feature and is crucial for accurate
measurements of genomic variations such as CNVs.
Although SMOOTH-seq utilized Tn5 transposase, which
was considered to relatively randomly fragment genomic
DNAs from single-cell lysates, raw reads of Refresh-seq
distributed more evenly compared with SMOOTH-seq at
chromosome level (Supplementary Fig. S2b). It meant that
Refresh-seq, based on specific restriction endonuclease
recognition site, actually had better amplification uni-
formity than SMOOTH-seq. We then compared the
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single-cell amplification uniformity between these two
methods in three ways.
The first approach was to calculate the bin-to-bin var-

iations in read counts (Spikiness), the Bhattacharya dis-
tance between the number of continuous stretches of bins
with the same copy number21. Lower Spikiness scores
meant fewer variations and better uniformity. Both
Refresh-seq and Refresh-seq (multiplexed) had better
Spikiness scores than SMOOTH-seq (Fig. 2b, c). Three
cells amplified with Refresh-seq showed comparable
uniformity with SMOOTH-seq and they featured low
concentrations after amplification. Spikiness scores of
SMOOTH-seq were 4.3 times higher than Refresh-seq
and 5.2 times than that of Refresh-seq (multiplexed) at
~0.25× sequencing depth, which validated that Refresh-
seq had better amplification uniformity (Fig. 2b, c). The
second approach used coefficient of variation (CV) of read
density, which was also a nice measurement of the uni-
formity of the read distribution. We calculated CVs for
each single cell and Refresh-seq showed less variations as
well (Supplementary Fig. S2c). CVs of SMOOTH-seq
were 1.85 times higher than Refresh-seq and 1.90 times
higher than those of Refresh-seq (multiplexed) at ~0.25×
sequencing depth (Supplementary Fig. S2d). The third
approach was to calculate the Shannon entropy for read
counts and Refresh-seq also had better performance than
SMOOTH-seq (Supplementary Fig. S2e, f), consistent
with the results of Spikiness and CVs.
In order to measure the uniformity at different scales,

we further calculated CVs of read density at ~0.25×
sequencing depth under different sizes of bins. The gen-
ome was divided into 100 kb, 1Mb and 10Mb bins
respectively and the number of reads in each bin was
calculated. The CVs of read number were used to quantify
the amplification bias at different scales. As shown in Fig.
2d–f, Refresh-seq achieved lower CVs than SMOOTH-
seq with respect to all bin sizes, which proved that
Refresh-seq had better amplification uniformity.
We validated that Refresh-seq had better amplification

uniformity than SMOOTH-seq at the single-cell level.
Then we merged single-cells into pseudobulk and

calculated the uniformity at the 1Mb scale as described
above (Fig. 2g, h). Pseudobulk samples were adjusted to
~13× mean sequencing depth for further comparison.
The density of bins in SMOOTH-seq had sharper peaks
than Refresh-seq and Refresh-seq (multiplexed) (Fig. 2g),
indicating that the number of reads in different bins of
SMOOTH-seq had fewer variations. SMOOTH-seq also
featured slightly lower CV values of read counts at
pseudobulk level (Fig. 2h). It was reasonable due to the
coincident distribution of restriction endonuclease
recognition sites in each cell. In Refresh-seq, restriction
fragments with appropriate length distribution (within
3 kb) tended to be amplified in each single cell. When
reads from different cells were merged as pseudobulk,
these regions were enriched and exhibited accumulation
of reads. Pseudobulk sample of Refresh-seq achieved
~83.5% genome coverage while SMOOTH-seq could
cover 93.6% of the genome, which was also a reflection of
read enrichment.
Amplification uniformity is important for measure-

ments of CNVs. We then performed Refresh-seq on 18
human K562 cells to analyze the CNVs at low sequencing
depth (~0.4×). We calculated the ratios of reads in every
window at 1Mb size within each individual cell. The CNV
patterns were relatively stable for single cells and the
coefficient of variation was 0.24 on average (Fig. 2i). The
patterns were clearly visible in the heatmap (Fig. 2j) and
were consistent with those in bulk samples (Fig. 2k). Thus,
Refresh-seq had acceptable performance on CNV analysis
at the resolution of 1Mb.

Refresh-seq had lower allele dropout rate than SMOOTH-
seq
Allele dropout arises from the tiny amounts of input

material from a single cell and uneven amplification,
which largely restricts the application of single-cell whole-
genome sequencing methods particularly for medical
applications1. We compared the recall of hetSNPs in
Refresh-seq and SMOOTH-seq to reflect the ability to
detect both alleles in a diploid cell. Cells amplified with
Refresh-seq and Refresh-seq (multiplexed) had higher

(see figure on previous page)
Fig. 2 Comparison of Refresh-seq with SMOOTH-seq. a Scatter plot showing the sequencing data and genome coverage of each HG002 cell.
Cells amplified with SMOOTH-seq were shown as blue dots. Cells amplified with Refresh-seq (single tube version) were shown as orange dots. Cells
amplified with Refresh-seq (multiplexed) were shown as red dots. b Scatter plot showing the sequencing data and Spikiness value of each HG002
cell. c Boxplot showing the quantification of Spikiness values at ~0.25× sequencing depth shown in b. For boxplots, center line represents the
median; box limits represent upper and lower quartiles. d–f CVs for read depths along the genome under 100 kb, 1 Mb and 10 Mb bins, respectively,
showing amplification bias on different scales. g The density of bins with normalized read depths in pseudobulk (~13×) from SMOOTH-seq, Refresh-
seq and Refresh-seq (multiplexed). h CVs of the read depths in pseudobulk (~13×) from SMOOTH-seq, Refresh-seq and Refresh-seq (multiplexed).
i CNVs of one single K562 cell showing in 1 Mb windows. j CNVs for 18 single K562 cells amplified with Refresh-seq showing on heatmap. k CNVs of
bulk K562 samples showing in 1 Mb windows. l Scatter plot showing the sequencing data and the detection of both alleles at hetSNP sites of each
cell. m Quantification of the ratios of hetSNPs detected by SMOOTH-seq, Refresh-seq and Refresh-seq (multiplexed). n Allele dropout rates of
SMOOTH-seq, Refresh-seq and Refresh-seq (multiplexed) at hetSNP sites covered by over 5 reads.
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recall of hetSNPs compared with SMOOTH-seq (Fig. 2l,
m). With ~0.25× sequencing depth, Refresh-seq detected
~1.64% of hetSNPs, which was 5 times higher than
~0.33% of hetSNPs by SMOOTH-seq (Fig. 2m). In
hetSNP positions covered by more than 5 reads, the mean
allele dropout rate of Refresh-seq was 38% and that of
Refresh-seq (multiplexed) was 65%, which were sig-
nificantly lower than 90% in SMOOTH-seq (Fig. 2n). It
could be that the two alleles on the homologous chro-
mosomes were cut into DNA fragments with identical
length which tended to be amplified simultaneously.
Refresh-seq (multiplexed) featured higher allele dropout
rate than the single tube version (Fig. 2n), which might be
due to the lower ligation efficiency of the self-synthesized
barcoded adaptors.
To test the universality of Refresh-seq and Refresh-seq

(multiplexed), Refresh-seq was performed on 37 human
HG001 cells and Refresh-seq (multiplexed) was per-
formed on 120 HG001 cells. Refresh-seq and Refresh-seq
(multiplexed) had consistent performance on HG001 cells
compared with HG002 cells. With ~1× sequencing depth,
Refresh-seq for HG001 achieved ~21.4% genome cover-
age and Refresh-seq (multiplexed) achieved ~24.6% gen-
ome coverage (Supplementary Fig. S2g). With ~1×
sequencing depth, Refresh-seq detected ~6.6% of hetSNPs
(Supplementary Fig. S2h). The allele dropout rate of
Refresh-seq was 48%, and that of Refresh-seq (multi-
plexed) was 64% in hetSNP positions covered over 5
times. Refresh-seq using two other restriction endonu-
cleases, SacI and AsiSI, was performed on both HG001
(Supplementary Fig. S2g, h) and HG002 (Supplementary
Fig. S2i, j) cells. The predicted fragment length distribu-
tion of SacI cutting was similar to that of EcoRI (Sup-
plementary Fig. S1c). The average length was 1738 bp/
1837 bp in Refresh-seq (SacI) and 2058 bp/2829 bp in
Refresh-seq (multiplexed) (SacI) for HG001/HG002 cells,
respectively. Refresh-seq using EcoRI and SacI had com-
parable genome coverage and recall of hetSNPs, illus-
trating the reproducibility and universality of Refresh-seq
technique (Supplementary Fig. S2g–j). AsiSI had longer
(8 bp) recognition sequence which sparsely distributed
throughout the genome and the predicted length of DNA
fragments was much longer (Supplementary Fig. S1d).
Now that only fragments with appropriate length range
(usually between 1 kb and 3 kb) could be successfully
amplified, these genomic regions would be enriched by
Refresh-seq. Given that only part of genome could be
retained as input, only Refresh-seq (multiplexed) might
work well for the restriction endonucleases with longer
recognition sequences. The coverage of Refresh-seq
(multiplexed) (AsiSI) was low due to the enrichment of
DNA fragments of specific lengths (Supplementary Fig.
S2g, i), but it acquired much higher sequencing depth in
these recovered genomic regions (Supplementary Fig.

S2k), which was similar to RADseq22. Therefore, Refresh-
seq using endonucleases of long recognition sequences
could achieve higher sequencing depth when sequencing
the same amount of data with the selection of the length
of DNA fragments.

Refresh-seq of mouse sperm to phase the haploid genome
Meiotic recombination is the basis of genetic diversity

and is essential for accurate segregation of homologous
chromosomes15. It results in the exchange of genetic
information and thus each germ cell has unique genome
sequences. Sequencing multiple single germ cells from an
individual allows us to construct the recombination map
and have a better understanding of recombination
events23. We performed Refresh-seq (EcoRI) on
828 sperm cells from the male B6D2F1 (C57BL/6NCrl ×
DBA/2NCrl F1 hybrid) mice which contained 4.3 million
hetSNPs to phase the genome and construct the recom-
bination map at high resolution (Fig. 3a). In total,
676 sperm cells were amplified with Refresh-seq (single
tube version) and 152 sperm cells were amplified with
Refresh-seq (multiplexed). Refresh-seq and Refresh-seq
(multiplexed) did not exhibit differences in the detection
of the crossover events, and thus downstream analysis was
performed without distinguishing different versions of
Refresh-seq. With the 828 spermatozoa sequenced at
~0.1–0.3× depth, 700 sperm cells passed quality control
with genome coverage higher than 1% (Fig. 3b). The
genome coverage increased near-linearly with the increase
of sequencing data ranging from 0.1–1 Gb and the mean
coverage was about 5% (Fig. 3c). The average length of
sequencing reads was 1.9 kb (Fig. 3d) and the average
number of reads per sperm was 143,914.
Haplotype means the combinations of genetic variants

(or genetic polymorphisms) along a single chromosome
that are inherited together from a single parent24. Hap-
lotype phasing is crucial for the correct description of the
genome and is essential for identification of meiotic
crossovers. We phased the genome of each sperm by the
hetSNPs of the male mice with high accuracy. The
benchmark set of the B6D2F1 hybrid mouse contained 4.3
million hetSNPs from 19 autosomes and X chromosome
with relative even distribution (Supplementary Fig. S3a).
In each sperm, an average of ~253,000 hetSNPs were
detected (Fig. 3e) and the accuracy of SNP detection was
over 98.9%. Hidden Markov Model (HMM) was used to
phase the hetSNPs and 99.97% of the hetSNPs were
precisely phased to the correct haplotype in the genome
(Supplementary Table S1), which was comparable with
previous studies. The SNP linkage in the gametes offers
information for constructing chromosome-level phased
haplotypes of the individual25. Then, we inferred cross-
overs on each chromosome of every single sperm with the
phased haplotypes. Crossover events in each sperm were
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identified as transitions between one parental genotype to
the other.
We then defined the ‘non-continuity score’. We divided

the genome into several genotype regions with corre-
sponding hetSNPs: if a genomic region had consecutive
maternal hetSNPs it would be judged as a genomic region
of maternal genotype and vice versa. The ‘non-continuity
score’ was defined as the frequency of switching between
one genomic region of a parental genotype to that of the
other parental genotype. The score was generally small in
a haploid cell as it just rose at the location of crossover or
PCR/sequencing errors and was much higher in a diploid
cell with a mixture of two distinct haploid genomes. Due
to the existence of two alleles, the non-continuity score of
a diploid cell could be aberrantly high when allele dropout
happened. Thus, we identified the diploid cells by calcu-
lating the non-continuity scores, excluding the autosomes
with the highest scores (given the possibility of gain of one
chromosome) in each cell26 (Fig. 3f). Among the
700 sperm cells passed quality control, there were 688
haploid spermatozoa cells and 12 diploid cells, which
could be contaminated diploid somatic cells (Fig. 3f). We
labeled the diploid cells as D1 to D12 (Fig. 3f) and vali-
dated the authenticity of the 12 diploid cells using dis-
tribution maps. The distribution map and CNV patterns
of the diploid cell D8 were shown in Supplementary Fig.
S3b, c. The map featured balanced distribution of paternal
and maternal alleles, illustrating that the cell D8 was likely
to be a diploid somatic cell of the B6D2F1 hybrid mouse.
We then distinguished X sperm cells and Y sperm cells
according to the number and ratio of reads mapping to
the X and Y chromosomes (Fig. 3g and Supplementary
Fig. S3d). We identified 344 X sperm cells and 329 Y
sperm cells, with 8 sperm cells being indistinguishable
(sex chromosome gain or loss) (Fig. 3g and Supplemen-
tary Fig. S3d). The ratio of X sperm and Y sperm was close

to 1:1, which was consistent with Mendel’s Law of
Segregation27.
We constructed crossover distribution maps of 20

chromosomes for all the sperm cells and showed the
crossover maps and CNVs of one Y sperm cell and one X
sperm cell (Fig. 3h–k). Overall, Refresh-seq could acquire
high-resolution crossover distribution map with relative
low sequencing depth.

Detection of aneuploid sperm cells with high accuracy
Aneuploidy is usually due to errors of chromosome

segregation during cell division, leading to abnormal
number of chromosomes in a cell. Aneuploidy in early
embryos often leads to miscarriage or genetic disorders of
fetus. Several screening and diagnostic technologies such
as CGH and SNP arrays have been developed to detect
aneuploidy but the resolution is relatively limited28. The
aneuploidy could be determined using MALBAC due to
its high genome coverage and uniformity29. Using
Refresh-seq, autosome aneuploidy could be accurately
screened and verified with three approaches due to its
high coverage uniformity and low allele dropout rate.
First, aneuploid sperm cells with gain of chromatids were
screened out with the non-continuity scores in different
chromosomes (Supplementary Fig. S4a–h). Diploid cells
showed high non-continuity scores in most chromosomes
(Supplementary Fig. S4a–h), whereas aneuploid sperm
cells featured elevation of non-continuity scores in
aneuploid chromosomes (Supplementary Fig. S4c–h). We
identified five sperm cells (labeled as A1, A2, A3, A4, A6)
with gain of chromatids by calculating the non-continuity
score of each chromosome, with A6 having gain of three
chromatids (chromosomes 1, 6 and 19) (Supplementary
Fig. S4c, e, h). Secondly, loss of chromatids was often
characterized by a significant reduction in the recall of
hetSNPs on the aneuploid chromosomes compared with

(see figure on previous page)
Fig. 3 Schematic charts of mouse sperm meiosis and phasing of genome using single-sperm Refresh-seq data. a Schematic charts showing
the process of meiosis of hybrid mouse sperm and Refresh-seq of single sperm. Mature sperm cells of B6D2F1 (B6 × DBA F1 hybrid) mice undergone
meiotic homologous recombination were obtained and sorted to each well by fluorescence-activated cell sorting (FACS). Refresh-seq was performed
to each single sperm. b Scatter plot showing the sequencing data and genome coverage of each sperm cell. Cut off was set at genome coverage of
1% marked as red dotted line. c Scatter plot showing the sequencing data and genome coverage of each sperm cell passed quality control fitted
with linear regression (line) at 95% credible interval (shading). d Distribution of average read-length for single sperm amplified by Refresh-seq. The
mean and median lengths are marked as red and blue dotted lines respectively. e Distribution of the number of hetSNPs covered in each sperm. The
mean number of the covered hetSNPs is marked as blue dotted line. f Computational recognition of diploid cells by the non-continuity scores of
each sperm (exclude the autosome with the highest frequency). Non-continuity scores of contaminated diploid cells are much higher than haploid
sperm. The dashed red line marks the inflection point beyond which sperm cells are flagged as potential diploid cells showing as purple dots and
excluded from downstream analysis. g Distinction of X sperm cells and Y sperm cells using number of reads mapping to X and Y chromosomes. 344
X sperm cells (red dots) and 329 Y sperm cells are identified, with 8 sperm cells being indistinguishable for X or Y (orange dots). h, i Parental
haplotype contribution map of the 20 chromosomes from individual sperm cells. Parental haplotype contributions are determined by the proportion
of the paternal or maternal SNPs, and crossover positions are detected by identifying the crossing locations of the two parental haplotypes by an
HMM. Parental haplotype contribution map of the 20 chromosomes from one Y sperm cell is shown in h and map of one X sperm cell is shown in i.
Blue regions are contributed by the paternal SNPs and red regions are contributed by the maternal SNPs. Crossover sites are marked as forks. j CNVs
of the Y sperm displayed in h, showing in 1 Mb windows. k CNVs of the X sperm displayed in i, showing in 1 Mb windows.

Wang et al. Cell Discovery           (2024) 10:26 Page 8 of 22



0

2

4

6 Copy
numbers

<  1
=  1
>  1

Single sperm #A6  CV =  0.26

0

2

4

6 Copy
numbers

<  1
=  1
>  1

Single sperm #A5  CV =  0.3

a

dc

e

chr  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X chr  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

b

f

Paternal haplotype
Maternal haplotype
Coverage
HMM inferred crossover

Paternal haplotype
Maternal haplotype
Coverage
HMM inferred crossover

A1

A2

A3

A4

A5

A6

A7

ID

0
2
4
6
8

0
2
4
6
8

5.0
7.5

10.0
12.5
15.0

0.0
2.5
5.0
7.5

10.0

R
ec

al
l o

f h
et

SN
Ps

 (%
)

0.0
2.5
5.0
7.5

10.0

0

5

10

15

0
2
4
6
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Chromosome

Single sperm #A5 Single sperm #A6

Ploidy
2N
1N±m
1N

Heter rate

0

2

4

6

A1
A2
A3
A4
A5
A6
A7

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12

ID

2N
1N

±m
1N

8 9 10 11 12 13 14 15 16 17 18 19 X Y1chr 2 3 4 5 6 7

Fig. 4 (See legend on next page.)

Wang et al. Cell Discovery           (2024) 10:26 Page 9 of 22



the relative homogeneous proportion of hetSNPs in other
normal chromosomes (Fig. 4a). We identified 4 sperm
cells with chromatid loss (labeled as A2, A4, A5, A7)
(Fig. 4a), among which A2 and A4 also showed gain of
another chromatids (both on chromosome 3) by calcu-
lating the non-continuity scores. The sperm A7 did not
show homogeneity of hetSNP recall in most chromo-
somes, which was not likely to happen in a cell, indicating
that the sperm A7 was more likely to be an unevenly
amplified sample (technical artefact) rather than being an
aneuploid cell. The sperm cells with gain of chromatids
(A1, A3 and A6) found before by non-continuity scores
also showed higher detection of heterozygous SNPs in the
corresponding aneuploid chromosomes (Fig. 4a). Thirdly,
since Refresh-seq had comparative efficiencies in detect-
ing both alleles in a cell, aneuploid sperm cells with gain
of chromatids were more likely to have both alleles
detected, showing increased heterozygosity rates of the
gained chromosomes. In the screened sperm cells with
gain or loss of chromatids, the heterozygosity rates of the
aneuploid chromosomes were clearly distinguishable from
other normal chromosomes except for A7 which was
likely to be unevenly amplified (technical artefact)
(Fig. 4b). The diploid cells (except for D11 and D12 which
had the lowest coverages in diploid cells) had higher
heterozygosity rates in most chromosomes while aneu-
ploidy featured changed heterozygosity rates of the
aneuploid chromosomes (Fig. 4b). The aneuploid chro-
mosomes identified by heterozygosity rates were the same
with those identified by non-continuity scores (Supple-
mentary Fig. S4a–h) and the recall of hetSNPs (Fig. 4a) as
expected. For example, the heterozygosity rate, recall of
hetSNPs and non-continuity score of chromosome 13 all
elevated in the sperm A1, illustrating gain of chromosome
13 in this sperm. We further confirmed the authenticity of
the 6 aneuploid sperm cells (A1–A6) using crossover
distribution maps and CNV patterns, whereas A7 was an
unevenly amplified sample (technical artefact) as expec-
ted. For the sperm A5 shown in Fig. 4c, loss of chromo-
some 11 was clearly observed while the other
chromosomes showed normal coverage depth. The CNV
patterns of this sperm showed that the copy number on

chromosome 11 was less than 1 (Fig. 4e), consistent with
the crossover distribution map as well as recall of hetSNPs
and heterozygosity rates. Another sperm A6 whose
crossover distribution map shown in Fig. 4d featured gain
of chromosomes 1, 6 and 19, and the SNP map showed
higher heterozygosity on these chromosomes. The CNV
patterns of the sperm showed gain of copy number on
chromosomes 1, 6 and 19 as well (Fig. 4f). For aneuploid
sperm cells A2 and A4, they both had gain at the top
quarter of chromosome 3 and loss at other regions of the
chromosome, which could be clearly observed in the
haplotype contribution map (Supplementary Fig. S4i, j). In
the CNVs of chromosome 3, we could see copy numbers
higher than 1 (red) in regions having gain of chromo-
somes and the copy numbers came to zero where loss of
chromosomes happened (Supplementary Fig. S4k, l). The
co-occurrence of gain and loss on the same chromosome
also explained for the different changes in recall of
hetSNPs and heterozygosity rates (loss inferred by recall
of hetSNPs and gain inferred by heterozygosity rates).
In conclusion, we identified 8 sperm cells with sex

chromosome gain or loss and 6 sperm cells with auto-
some aneuploidy. The ratio of aneuploid sperm cells was
2% in our data and was consistent with previous studies
(1%–2%)30. Thus, Refresh-seq could distinguish
chromosome-level aneuploidy as well as gain or loss of
chromosome fragments with high accuracy and
sensitivity.

Genetic map of mouse sperm and crossover interference
Crossover events in each sperm were identified as

transition between the parental haplotypes as described
above. We identified a total of 7292 crossovers in 673
euploid sperm cells, with an average of 11 recombination
events in each sperm (Fig. 5a), which was compatible with
previous study31. Crossover locations were inferred with a
median resolution of ~400 kb (Fig. 5b). Approximately
50%, 40% and 25% of the crossovers could be assigned to
intervals of 300 kb, 200 kb, and 100 kb, respectively. Thus,
Refresh-seq could achieve relatively high resolution in
crossover identification with low sequencing depth
(~0.1–0.3×). All sperm cells tended to concentrate

(see figure on previous page)
Fig. 4 Identification of aneuploid sperm. a The ratios of covered hetSNPs compared with the gold standard in 19 autosomes from 7 aneuploid
sperm cells. Outlier blue dots indicate loss and red dots indicate gain of chromatids. The sizes of the dots mean the deviation from the average ratio.
The verified aneuploid chromosomes are highlighted by orange rectangles and the sperm A7 is more likely to be an unevenly amplified sample
(technical artefact) rather than true aneuploidy. b The rates of covering both alleles at hetSNP sites in sperm cells. Heatmap showing the
heterozygosity rates of the 19 autosomes from 12 diploid cells (showing as 2 N), 7 aneuploid sperm cells (1 N ±m) and several haploid sperm cells
(1 N). The sperm A7 is more likely to be an unevenly amplified sample (technical artefact) rather than true aneuploidy. c Parental haplotype
contribution map of the 20 chromosomes from the aneuploid sperm cell A5 with loss of chromosome 11. Blue regions are the paternal SNPs and red
regions are the maternal SNPs. Crossover sites are marked as forks. d Parental haplotype contribution map of the 20 chromosomes from the
aneuploid sperm cell A6 with gain of chromosomes 1, 6 and 19. Blue regions are the paternal SNPs and red regions are the maternal SNPs. Crossover
sites are marked as forks. e CNVs of the aneuploid sperm A5, showing in 1 Mb windows. f CNVs of the aneuploid sperm A6, showing in 1 Mb
windows.
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crossovers in specific regions of the genome and the
enrichments of crossover locations were generally con-
sistent with previous data of B6 × CAST F1 hybrid31, with
more crossovers in distal regions (enriched near the tel-
omeres) and fewer in centromere-proximal regions (Fig.
5c), agreeing with previous studies32. An explanation for
this could be crossovers near centromeres might interrupt
the attachment of the spindles to the centromeres or
disrupt the pulling of the centromeres to opposite poles of
a cell during cell division33. Crossover location density
plots were described for each chromosome (Supplemen-
tary Fig. S5a), showing the specific spatial enrichments of

crossovers in different chromosomes. It had been repor-
ted that DNA double-strand break (DSB) formation
occurred after DNA replication in the process of meiosis
and recombination was highly related to DNA replication
at the scales of time and space34. In our data, the positions
with high crossover density corresponded with genomic
regions of early DNA replication and positions with low
crossover density corresponded with genomic regions of
late DNA replication (Supplementary Fig. S5b).
We calculated the crossover frequency of each chro-

mosome and chromosome 1 featured the highest fre-
quency due to its longest chromosome axis (Fig. 5d),
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consistent with previous studies31. At least one crossover
per chromosome pair per meiosis was available to ensure
the correct separation of homologous chromosomes,
equivalent to 0.5 crossovers per chromosome pair per
sperm (Fig. 5d)35. In our sperm data, a nearly linear cor-
relation between chromosome size and chromosome
recombination frequency was observed, with a Pearson
correlation coefficient of 0.86 (Supplementary Fig. S5c).

The correlation was also validated in previous studies
which observed crossovers (MLH1 foci) cytologically36–38.
Crossover interference is a phenomenon in which the

crossover at one position would reduce the probability of
another crossover occurring nearby on the same chro-
mosome23,29 and the distance the interference signal
spreads is called the ‘interference distance’36. We calcu-
lated the distances between two crossovers on the same
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chromosome and compared the distribution with random
simulation (Fig. 5e). The median distance between two
crossover events on chromosome 1 was 130Mb, much
longer than 54Mb based on random simulation, and only
about 1% of the distances between double crossover
events were smaller than 60Mb (Fig. 5e). A maximum of
three recombination crossover events was observed to
occur simultaneously on chromosome 1, and the fre-
quencies of zero to triple crossovers (Fig. 5f) were con-
sistent with the previous publication19. Crossover
interference was also evident for all chromosomes and the
median interference distance was 92Mb, compared with
56Mb based on random simulation (Supplementary Fig.
S5d).

Detection and phasing of SVs (insertions and deletions) in
mouse sperm
SVs are important sources of genetic diversities and

contribute to many diseases such as tumor and neuro-
developmental disorders9,39. Compared with the NGS
platforms, the advantage of the long read-length of the
TGS platforms improves the ability of detecting SVs. Not
only the detected number but also the detection resolu-
tion of SVs have been greatly improved40. Therefore, we
identified insertions and deletions in our sperm data,
which accounted for the second most common types of
genomic variations41. In order to evaluate Refresh-seq’s
ability of SV detection, we used the 54,471 heterozygous
SVs (insertions and deletions) in the B6D2F1 hybrid
mouse as the gold standard set.
In our data of mouse sperm, a total of 33,193 SVs

supported by gold standard were detected, including
18,825 deletions and 14,368 insertions. An average of 973
SVs were detected in each sperm (Fig. 6a). The median
length of deletions was 180 bp and the median length of
insertions was 122 bp (Fig. 6b). A peak at 6–7 kb was
visible on the length distribution of deletions, which
corresponded to the length of LINE1 elements; and peaks
at 200 bp, close to the length of B1 elements (equivalent of
Alu elements in human), were clear for both deletions and
insertions (Fig. 6b)42,43.
We used precision and recall to evaluate Refresh-seq’s

ability of SV detection. At the level of over one read per
cell, the precision of SVs supported by three cells was 79%
and the recall was 47% (Fig. 6c). The precision and recall
of deletions were higher than that of insertions and 80.4%
of the detected deletions supported by three cells were
true (Supplementary Fig. S6a, b). It was reasonable as the
average length of Refresh-seq was not long enough to
detect large insertions.
SVs had a great diversity between two alleles, leading to

loss, gain and reshuffling of genes as well as regulatory
elements. If two neighboring SVs in the same gene were
on the same allele, the cell would have one normal version

of the gene and usually showed no defects. If they hap-
pened on different alleles, the cell would lack normal
version of the gene and might show disease phenotypes.
Haplotype information is important to distinguish
between these two scenarios24. Thus, haplotype infor-
mation of SVs can be helpful for studying allele-specific
gene expression, heterozygosity, genetic association test-
ing, testing for natural selection, and other diplontic
effects44,45. In order to phase the SVs accurately, we used
SVs supported by over two reads per cell and the accuracy
was 76.4%. Of all the phased SVs, 98.8% were precisely
phased to the true haplotypes in genome and no sig-
nificant differences were observed between different
chromosomes (Fig. 6d and Supplementary Table S1). The
overall recall ratio of true-phased SVs was 50% (Fig. 6e
and Supplementary Table S1). We then annotated the
types of these correctly phased SVs (Fig. 6f, g) and the
overall distribution of elements was similar with SVs in
the bulk samples (Supplementary Fig. S6c, d). The pro-
portion of unique sequences in phased SVs was slightly
higher than that in bulk gold standard and the proportion
of repetitive elements was a bit lower, which might be due
to different mapping qualities of unique sequences and
repetitive elements in the genome. The counts and recall
of the different annotation types of SVs were shown in
Supplementary Fig. S6e, f. We showed a paternal (DBA)
specific deletion of SINE element between two LINE
elements (Supplementary Fig. S6g) and a paternal specific
insertion near a simple repeat region (Supplementary Fig.
S6h), illustrating the ability of phasing SVs in highly
repetitive or low-complexity genomic regions where
short-read NGS technologies met problems46,47.

Refresh-seq of mouse polar bodies and probing meiotic
recombination of female germ cells
The process of meiosis has significant sexual dimorph-

ism with different characteristics of recombination in
males versus females48. Meiosis of spermatocytes is a
continuous process, whereas oocytes are arrested at the
diplotene stage of prophase I after initial meiotic pro-
gression. At the time prior to ovulation, oocyte matura-
tion is induced by a surge of luteinizing hormone, after
which extrusion of the first polar body (PB1) occurs and
the oocyte progresses to metaphase II (MII). The oocyte
becomes arrested again at MII until fertilization, when the
extrusion of the second PB (PB2) occurs18,49. Thus,
oocytes are never truly haploid given that the second
meiotic division occurs only after fertilization by a sperm
cell, which introduces another haploid genome to form
the zygote50.
To study meiosis and recombination of female mice, we

mated female B6D2F1 mice with DBA male mice to
induce the extrusion of the PB2 and collect these haploid
PB2 cells for sequencing (Fig. 7a). We also sequenced
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diploid PB1, MII oocytes, and zygotes containing a female
pronucleus and a male pronucleus (DBA genome) (Fig.
7a). Parthenogenetic (PG) activation of mouse oocytes
was also performed to acquire haploid genomes of oocytes
(equivalent to female pronucleus in the zygote) without
the incorporation of paternal genome (Fig. 7a). The
number of different types of cells passed quality control
was shown in Fig. 7b. The cells were sequenced at
~0.1–1.2× depth and the mean genome coverage was
10.4% (Fig. 7c). The mean coverage of diploid cells was
11.8%, a bit higher than that of haploid cells (9.6%) (Fig.
7c). A total of 15 aneuploid PB2 cells and 20 aneuploid
PB1 cells were identified and verified with the advantage
of Refresh-seq. The aneuploidy rates were 8.1% in PB2
cells and were 15.2% in PB1 of mice aged 4–8 weeks. The
ratio of aneuploidy in female was much higher than that
in male with elevated frequency of segregation errors,
which was known not only in mice but also in
humans18,29. It is probably due to prolonged arrest in the
process of meiosis51,52, with enduring oxidative stress,
accumulation of DNA damage, epigenetic changes and
also maternal exposure to environmental stimuli30.
We then phased the genome of each cell and found

crossovers of euploid cells. Note that the zygotes were
obtained by mating female B6D2F1 mice (crossover visi-
ble) with DBA male mice (crossover invisible), and the
female pronucleus from B6D2F1 contributed only one
chromatid copy of each chromosome to the zygote30 with
a complementary set of chromosomes contributed by the
male pronucleus (DBA). We deduced the haplotypes of
female pronucleus: the paternal alleles would show as
homozygous and maternal alleles would show as ‘het-
erozygous’ due to the incorporation of DBA genome from
the male pronucleus (Fig. 7a). Thus, the zygotes were
classified to haploid in analysis of crossovers as they
reflected the haplotypes of female pronucleus. We iden-
tified 2522 crossovers in 141 normal diploid cells, with an
average of 18 crossovers per cell (Supplementary Fig. S7a).

Of the 281 female normal haploid cells, a total of 3799
crossovers were identified, with an average of 14 recom-
bination events per cell (Fig. 7d). The crossover numbers
in diploid did not reach twice that in haploid cells as some
of the false negatives in the detection of crossovers in
diploid cells29. Crossover frequency in female haploid
germ cells was 1.25 times that in sperm (13.5 vs 10.8),
which was consistent with the results in C57BL/6J ×
CAST/EiJ F1 mice19. It might be attributed by ~20%
longer chromosome axes in female mice than male36.
Refresh-seq could detect the homologous crossover
events of the paired cells. In the paired MII and PB1
shown in Supplementary Fig. S7b, c, all corresponding
crossovers were located at the same regions within 1 to
3Mb genomic distances. In the paired PG oocyte and
PB2 shown in Supplementary Fig. S7d, e, two homologous
crossovers at the same locations were observed in chro-
mosomes 2 and 11, within a 10 kb genomic distance.
In order to compare homologous recombination in

female and male mice, only haploid cells (PG oocytes and
PB2) were included in the downstream analysis. Locations
of crossovers in oocytes and PB2 were assigned to a
median resolution of ~283 kb (Fig. 7e). About 42%, 30%
and 15% of the crossovers could be assigned to intervals of
200 kb, 100 kb, and 30 kb, respectively. Thus, Refresh-seq
could also identify crossovers in female germ cells with
high resolution at relative low sequencing depth as well.
The crossover location density plot of female mice
showed fewer enrichments in centromere-proximal
regions, which was the same as in male (Fig. 7f). The
sub-telomeric regions showed milder enrichments of
crossovers in female mice than male (Fig. 7f), consistent
with previous results53–55.
Crossover frequency of each chromosome was calcu-

lated (Fig. 7g) and chromosome 1 featured the highest
frequency of 1.016, which meant that each chromosome 1
in each haploid cell had one crossover on average,
equivalent to two crossovers in a pair of chromosome 1

(see figure on previous page)
Fig. 7 Probing meiotic recombination features of female mice by Refresh-seq. a Schematic charts showing the characteristics of meiosis of
hybrid female mice. MII oocytes of B6D2F1 which have undergone meiotic homologous recombination are either fertilized with DBA male mice or
parthenogenetic activated to induce PB2 extrusion. Haploid PB2, PG oocytes, and diploid PB1, MII, zygotes were obtained and picked up by
microcapillary. b The numbers of different type of cells and their actual ploidies. c Scatter plot showing the sequencing data and genome coverage
of each cell. Haploid cells are shown as green dots and diploid cells are shown as red dots. d Distribution of crossover numbers in haploid female
germ cells including PG oocytes, PB2 and zygotes. The zygotes are classified to haploid in this panel as they reflect the haplotypes of female
pronucleus. The mean numbers of crossovers are marked as dotted lines. e Resolution of crossover determination in female haploid cells.
Accumulative percentage of crossover numbers is shown as red curve. f Crossover location density plots for all chromosomes in female and male
mice, showing the crossover density by the distance from the centromere to telomere. g Average number of crossovers identified per chromosome
per haploid cell. h The relationship between crossover frequency and chromosome size fitted with simple linear regression with a Pearson correlation
of 0.80. i Distribution of inter-crossover distances measured in megabases of DNA length on all chromosomes. The red line represents the distribution
curve fitting the experimental data. The black line shows the distribution of randomly generated distances. The dotted lines represent the median
distances of the random distribution and experimental data distribution. j Merged distribution curves of inter-crossover distances measured in
megabases of DNA length on all chromosomes in female and male meiosis. The dotted lines represent the median distances of the distribution
curves. P value of Mann–Whitney U test = 0.0024. k Distribution of crossover classes along chromosome 1 in male and female haploid germ cells.
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per meiosis. It was consistent with the longest chromo-
some axes of chromosome 1 in mice56. The recombina-
tion rate of chromosome 1 in female was 0.75 cM/Mb, 1.2
times higher than 0.64 cM/Mb in male mice, also agreeing
with the results previously reported16. A nearly linear
correlation between chromosome size and chromosome
recombination frequency was also observed in female
germ cells, with a Pearson correlation coefficient of 0.80
(Fig. 7h).
We then studied crossover interference in haploid germ

cells (PG oocytes and PB2) in female mice. The average
distance between two crossover events was 85Mb in
female for all chromosomes, longer than 54Mb based on
random simulation (Fig. 7i). Inter-crossover distance
showed differences between female and male meiosis at
the scale of genetic distances (number of base pairs), with
oocytes and PB2 having weaker interference (85Mb)
compared with sperm (92Mb) (Fig. 7j). It was consistent
with the fact that oocytes had more crossovers than
sperm. However, when we measured inter-crossover dis-
tance at the scale of the physical distances of the synap-
tonemal complex (SC) length (μm), the interference in
both sexes was similar (Supplementary Fig. S7f). Con-
sistent results were also found in chromosome 1 of mice
by genetic linkage analyses19 and in humans by single-cell
genome sequencing29. A maximum of three recombina-
tion crossover events were observed to occur simulta-
neously on chromosome 1 (Fig. 7k). No crossovers were
found on chromosome 1 in 25% of the female haploid
germ cells and 36% of sperm. Single crossovers were
found on chromosome 1 in about 50% of germ cells of
both sexes, ensuring one crossover per chromosome pair
per meiosis to make sure proper segregation of homo-
logous chromosomes35. Frequencies of multiple cross-
overs were different between sexes, with PB2 and oocytes
having higher frequencies of double and triple crossovers
on a chromosome 1 than sperm (Fig. 7k). The overall
frequency was consistent with previous reports19.
Detection and phasing of SVs (insertions and deletions)

were also performed in PG oocytes and PB2. A total of
34,916 SV events supported by the gold standard were
detected in oocytes and PB2, including 20,106 deletions
and 14,810 insertions. The length peak at 6–7 kb (LINE1
elements) was visible in deletions and peaks at 200 bp (B1
elements) were clear for both deletions and insertions
(Supplementary Fig. S8a), as seen in sperm cells. At the
level of over one read per cell, the precision of SVs sup-
ported by three cells was 83% and the recall was 49%
(Supplementary Fig. S8b). We used SVs supported by over
two reads per cell to perform SV phasing. Of the phased
SVs, 96.7% were precisely phased to the true haplotype in
the genome and the overall recall of true-phased SVs was
54.0% (Supplementary Fig. S8c, d and Table S1). The
annotation of the correctly phased SVs in female haploid

cells was performed (Supplementary Fig. S8e, f) and the
overall distribution of different types of SVs was also
similar with that in the bulk samples (Supplementary Fig.
S6c, d). Thus, we validated for the first time that
chromosome-wide hetSV phasing was also feasible with
single-cell genome sequencing data from haploid female
germ cells (PG oocytes and PB2).

Discussion
We combine restriction endonuclease cutting and

ligation strategy with TGS platform for single-cell genome
sequencing for the first time and develop Refresh-seq, a
single-cell long-read genome sequencing technique.
Refresh-seq has increased genome coverage and uni-
formity compared with SMOOTH-seq. It has improved
recovery rate for the two alleles of a diploid cell, even at a
very shallow sequencing depth, having great potential for
medical applications such as preimplantation genetic
diagnosis57. This method is easy to be implemented and
many samples can be processed manually without com-
plicated automation. It’s also adjustable according to dif-
ferent restriction enzymes used to meet different
demands. Refresh-seq is based on the TGS platform and
can detect SVs as well as repeat elements inside the var-
iant structures effectively. Refresh-seq has limitations as
well. Due to the efficiency of ligation reaction, the lengths
of amplicons only reach 2–3 kb, much shorter than
SMOOTH-seq whose amplicon length is ~6 kb. Thus,
Refresh-seq can not capture very long insertion events
due to its amplicon length range.
The library construction of Refresh-seq can be accom-

plished within one day and the cost of library construction
was $3.6 per cell for one-tube version of Refresh-seq and
$2 per cell for multiplexed version. The cost can be even
lower if Refresh-seq is to be combined with microfluidic
bioprocessor capable for nanoliter dispensing. Micro-
fluidic Refresh-seq may also have better performance in
genome coverage because bulk samples started with 10 pg
of genomic DNAs achieved only ~9% coverage with ~1×
sequencing depth whereas Refresh-seq for single
HG001 cells whose library construction was 1/10 volume
of that in bulk achieved ~21.4% genome coverage. It may
be that microfluidic Refresh-seq with much smaller
volume (500- to 1000- fold less reagent volumes) can
increase the relative concentration of genomic DNAs to a
larger extent58 and improve ligation and PCR efficiency.
We have applied Refresh-seq to study meiosis of single

germ cell in male and female B6D2F1 mice successfully.
For sperm, PG oocytes and PB2 sequenced at ~0.1–0.3×
depth, the mean coverage of sperm is about 5% and mean
coverage of haploid PG oocytes and PB2 is 7.7%. It is
consistent with coverage of sperm and oocytes amplified
with MALBAC. The coverage of sperm is lower than
oocytes probably due to the condensed chromatin
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structures of sperm23,29. We have acquired high-
resolution genetic maps of male and female meiosis
recombination at low sequencing depth and have revealed
differences in female and male meiosis in mice using this
new single-cell whole-genome sequencing method.
Refresh-seq works well in screening aneuploid sperm

and oocytes due to its high uniformity and low allele
dropout rate, making it promising in preimplantation
genetic diagnosis. Due to its long read-length compared
with NGS platforms, it also has advantage in detecting
SVs especially in highly repetitive or low-complexity
genomic regions. We have successfully performed
chromosome-wide hetSV phasing with Refresh-seq data
of sperm cells as well as female haploid germ cells
respectively, and have analyzed the repeat element fea-
tures in these SVs. Expansions of simple sequence repeats
affect the nervous systems and cause diseases such as
amyotrophic lateral sclerosis, Parkinson’s disease, Hun-
tington disease, recessive ataxia and fragile X syn-
drome59,60, which largely affected human health. De novo
mutations can also occur in families previously unaf-
fected, thus it’s helpful to apply long-read whole-genome
sequencing for preimplantation genetic diagnosis. Our
Refresh-seq offers a new way to resolve these clinically
relevant problems.

Materials and methods
Cell culture
NA24385 cells (HG002) and GM12878 Cells (HG001)

were cultured in RPMI1640 (Gibco, cat# 11875093) with
15% fetal bovine serum (FBS, Gibco, cat# 26140079) and
1× Pen/Strep (Gibco, cat# 15140122) at 37 °C with 5%
CO2. K562 cells were cultured in RPMI1640 with 10%
FBS, 1× L-glutamine and 1× Pen/Strep. 3T3 cells were
maintained in Dulbecco’s modified Eagle’s medium
(DMEM)/high glucose (Corning, cat# 10-013-CV) with
10% FBS and 1× Pen/Strep. 3T3 cells were digested with
0.25% Trypsin-EDTA (Gibco, cat# 25200056) while K562
and GM12878 cell lines were harvested directly to prepare
single cell suspensions.
GM12878 genomic DNA (gDNA) was extracted using

the QIAGEN DNeasy Blood and Tissue Kit (QIAGEN,
cat# 69504) following the manufacturer’s Quick-
StartProtocol. The extracted GM12878 gDNA was
quantified using the Equalbit 1× dsDNA HS Assay Kit
(Vazyme, cat# EQ121).

The isolation and FACS sorting of mice sperm
B6D2F1 mice were maintained on a 12/12-hour light/

dark cycle and all animal experiments were performed
under the guidelines of Ethical Committee for use of
laboratory animals at Peking University. Mature mouse
spermatozoa were obtained from epididymides of B6D2F1
mice using the swim-up assay61. Briefly, epididymis was

pricked with a needle and placed into preheated HTF
medium (Nanjing Aibei Biotechnology Co, cat# M1130)
for 1 h at 37 °C. The top fractions containing motile sperm
were collected and centrifuged. The cell pellets were
resuspended with 0.1% phosphate-buffered saline-bovine
serum albumin for three times. Cell suspension was
incubated at 55 °C to inactivate the sperm and stained
with DAPI and then sorted into 96-well plates by FACS.

Collection of polar bodies
The 4- to 8-week-old female B6D2F1 mice were super-

ovulated by intraperitoneal injection of 5 IU PMSG
(pregnant mare serum gonadotropin, Sansheng Biological
Technology, cat# 21958956) and then after 46 to 48 h 5 IU
human chorionic gonadotrophin (hCG, Sansheng Biolo-
gical Technology, cat# 110041282).
Then, the female mice were mated with DBA/2NCrl

(DBA) male mice one to one. Females were sacrificed by
cervical dislocation and embryos were collected at
20–24 h post hCG from the oviducts of female mice.
Cumulus cells were removed by treating with 300 µg/mL
hyaluronidase (Sigma, cat# H4272) in M2 media (Nanjing
Aibei Biotechnology Co, cat# M1250) with gentle pipet-
ting. Embryos were depleted of zona pellucida with Tyr-
ode’s solution (Sigma, T1788) and quickly transferred to
1:1 Accutase (Sigma, cat# A6964):0.25% Trypsin-EDTA
(Gibco, cat# 25200056) preheated to 37 °C. The embryos
were pipetted up and down by microcapillary to dissociate
the PB1 and PB2 from zygotes.
Artificial activation of mouse oocytes with SrCl2 was

performed to acquire maternal genomes without the
incorporation of paternal genomes62 and the protocol was
previously optimized63,64. Briefly, embryos were exposed
to 10mM concentrations of SrCl2 (Sigma, cat# 439665)
for 3 h in 20 μL Ca2+ free CZB medium droplet covered
by mineral oil (Sigma, M8410) in 37 °C incubator filled
with 5% CO2. The dissociation of PB1, PB2 as well as
zygotes was same as described above.

Library construction of Refresh-seq
The detailed protocols for Refresh-seq and Refresh-seq

(multiplexed) are available in Supplementary information.
Individual cells were collected with a microcapillary

connected to a mouth pipette or by FACS after washed
with 0.1% phosphate-buffered saline-bovine serum albu-
min for three times. Each single cell was placed into a
0.2 mL thin-walled PCR tube containing 2.5 μL lysis buf-
fer. The cells were lysed at 50 °C for 3 h to digest histones
and then 70 °C for 30min to inactivate the protease.
For Refresh-seq, after single cell lysis, restriction

digestion of single cell gDNA was performed by adding
0.5 μL 10× buffer, 1.9 μL water and 0.1 μL restriction
enzyme. The reaction program was adjustable according
to the restriction enzyme used. For EcoRI (NEW
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ENGLAND BioLabs, cat# R3101L) and SacI (NEW
ENGLAND BioLabs, cat# R3156S), the restriction diges-
tion was performed at 37 °C 15min, and then 65 °C
20min to inactivate the restriction enzyme. For AsiSI
(NEW ENGLAND BioLabs, cat# R0630S), the restriction
digestion was performed at 37 °C 1 h, and then 80 °C
20min to inactivate the restriction enzyme.
Then end repair and dA-tailing (Kapa Biosystems,

KAPA HyperPrep kit, cat# KK8504) were performed and
dsDNA adapters (NEBNext Singleplex Oligos for Illu-
mina) were ligated to 3’-dA-tailed molecules, after which
USER Enzyme (uracil-specific excision reagent, NEW
ENGLAND BioLabs, cat# M5505L) was added to
the ligation mixture. Each sample was purified with 1
volume of AMPure XP beads (BECKMAN COULTER,
cat# A63882) and amplified with Barcode-P5 (GCTA-
[24 bp P5-barcode 81-96]-TACACTCTTTCCCTACAC
GACGCTCTTCCGATCT) and Barcode-P3 (ATCG-
[24 bp P3-barcode 1-24]-GACTGGAGTTCAGACGTGT
GCT) (Supplementary Table S2). The PCR program was
98 °C 45 s, 98 °C 15 s, and then 20 cycles of 98 °C for 15 s,
65 °C for 30 s, and 72 °C for 5 min. After that, gDNA
amplicons were purified with 0.7× AMPure XP beads for
twice (0.65× AMPure XP beads twice for haploid cells).
The purified amplicons were quantified using Equalbit 1×
dsDNA HS Assay Kit.
For Refresh-seq (multiplexed), single-stranded oligos

were annealed with their appropriate partner before liga-
tion. Synthesized oligos (NEB same-A: GATCGGAAGA
GCACACGTCTGAACTCCAGTC with 5’Phospholation
modification and Barcoded-B: ACACTCTTTCCCTACAC
GAC-[24 bp adaptor-barcode 31-46]-GCTCTTCCGAT
C*T) (Supplementary Table S2) were dissolved to an initial
concentration of 100 μM. To create a duplex adapter, NEB
same-A and Barcoded-B were combined in a 1:1 ratio for a
total annealed adapter concentration of 50 μM (use 50 μL
adapter NEB same-A and 50 μL adapter Barcoded-B) and
mixed thoroughly. Barcoded adaptors were ligated to the
fragments after the process of end repair and dA-tailing.
Cells with different barcodes were pooled together and
purified with 1 volume of AMPure XP beads, after which
library amplification was performed with Common-P5
(ACACTCTTTCCCTACACGAC) and Barcode-P3 (ATC
G-[24 bp P3-barcode 1-24]-GACTGGAGTTCAGACGTG
TGCT) (Supplementary Table S2). The PCR program and
the purification afterwards were the same with Refresh-seq.
Each library was loaded into R9 flow cell and sequenced

on PromethION HAC (high accuracy) model.

Basic processing of Refresh-seq data
The raw data produced by ONT sequencing was con-

verted into fastq format. We used nanoplexer v0.1
(https://github.com/hanyue36/nanoplexer) to demulti-
plex single cells from the noisy long-read library for

successive two times according to our library structure of
dual single-cell barcodes. Cutadapt v3.4 (https://
github.com/marcelm/cutadapt) was applied to remove
adaptors at 5’ ends and 3’ ends in demultiplexed reads as
well as filtering out reads shorter than 500 bp to preserve
long reads only. The adaptor sequences were shown above
in the library construction. Trimmed reads were aligned
to the reference genome hg38 or mm10 by minimap2
v2.24 (https://github.com/lh3/minimap2). We used sam-
tools v1.14 (https://github.com/samtools/samtools) to
filter out the reads mapping quality less than 30 and
remove PCR duplicates in each single cell.

Assessment of uniformity of Refresh-seq data
Since single-cell sequencing libraries were always

inherently noisy and amplification bias affected the sub-
sequent analysis, we need to know the uniformity of our
data. To compare the amplification uniformity of different
methods, we used three approaches to describe it.

We used Spikiness ðs ¼
PT�1

t¼1
xtþ1�xtj j

PT

t¼1
xt

) and Shannon

entropy (e ¼ �
PT

t¼1
xt

X� log xt
Xð Þ and X ¼ PT

t¼1xt) to assess library

quality. Among which Spikiness was a measure for the
bin-to-bin variation of the read count and Shannon
entropy was a measure of the uniformity of the read dis-
tribution. The third strategy used coefficient of variation to
measure the dispersion of the read distribution with dif-
ferent size of windows. Most importantly, blacklist regions
were out of consideration which could have a huge impact
on the results so as to cover the real situation.

Evaluation of cross-contamination
To evaluate cross-contamination among single cells, we

used the strategy mapping human-mouse mixed reads to
the reference genome mixed by hg38 and mm10 and
other steps were the same as data pre-processing. It was
worth mentioning that the mixed genome was indexed by
minimap2 with the parameter ‘-I 10 G’. Only high-quality
single cells were used.
Then we counted the read numbers for mm10 and hg38

alignments apart for each single cell. The species of
reference genome majorly mapped was determined to be
the species of this single cell. Cells with high proportion of
reads mapping to minor genome more than 10% were
identified as cross-contaminates or doublets.

CNV analysis
We used Control-FREEC v11.6 (https://github.com/

BoevaLab/FREEC) to detect CNVs of K562 cells and
B6D2F1 germ cells. The window was set to 1Mb, and the
ploidy was set to 3 for K562 cells and 1 for B6D2F1
haploid germ cells. We calculated the mean ratio of reads
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detected in each window and normalized to 3 for K562
and 1 for B6D2F1 haploid germ cells as the average copy
number across the whole genome. The fold change of
copy number in each window against the average copy
number was considered as CNV. To evaluate the devia-
tion of profiling CNVs, we calculated the CV for each cell
with the mean copy number of single cells as the baseline.

Identification and validation of SNPs
On account of the open access to a benchmark SNP

calling set of the HG002 and HG001 genome on GIAB,
we used these diploid cell lines as objects of study to
evaluate the advantages of our method in the aspect of
amplifying two alleles in a cell.
To evaluate the precision at known SNP site in our data,

we used longshot v.0.4.5 (https://github.com/pjedge/
longshot) to call SNVs. Considering that our data was at
low sequencing depth, we set minimum coverage (of reads
passing filters) to consider position as a potential SNV to
2 in order to include as many SNPs as possible. We
evaluated the precision of homozygous SNP sites among
benchmark SNP calling set on longshot outputs. Only
SNVs having the same mutation as benchmark were
regarded as true positive.
To evaluate the precision of SNP phasing, we used R

package Hapi (https://github.com/rli012/Hapi/) which is a
novel easy-to-use and high-efficient algorithm that only
requires 3 to 5 gametes to reconstruct accurate and high-
resolution haplotypes of an individual. We constructed a
matrix with the information of genotype data of known
hetSNPs in each gamete cell as Hapi input. It reported the
high-resolution haplotypes as well as the confidence level
of each phased hetSNPs. The phased hetSNPs consistent
with parental hetSNPs were considered as the true posi-
tive and we calculated the precision.

Evaluation of heterozygosity of SNP sites
To genotype our data, we used whatshap v.1.5 (https://

whatshap.readthedocs.io/en/latest/) to compute genotype
likelihoods for all three genotypes (0/0, 0/1, 1/1) at given
variant positions and output them in a VCF file together
with a genotype prediction. We ran it using the command
‘whatshap genotype --reference ref.fasta -o genotyped.vcf
variants.vcf reads.bam’. The file variants.vcf was the
HG002 or HG001 SNP benchmark downloaded from
GIAB or B6D2F1 bulk SNP benchmark. We calculated the
proportion of heterozygotes as the ratio of two alleles
detected.

Crossover event calling
To identify the most likely sequence of haplotypes, we

used an HMM to correct the genotyping errors in read
calls. Before genotyping, we need a benchmark hetSNP
set. Genomic reads of the C57 and DBA samples

sequenced on the Illumina sequencing platform from bulk
library were used to call high-confident SNPs and formed
a benchmark SNP set. Only hetSNPs were filtered for
downstream analysis.
To infer the genome positions of crossovers in each

sperm, we did the following:
Based on the benchmark SNP set, we used ‘whatshap

genotype’ command to score every hetSNP loci and gave
out the most likelihood genotype at the SNP sites at first.
Only homozygous (0/0 or 1/1) genotype locations were
reserved because our sperm sample was expected to be
haploid and a heterozygous genotype is likely due to
sequencing or mapping errors. This step output a file
recording the observational genotype for HMM algorithm.
Due to the existence of crossovers, each sperm cell was

expected to be composed of segments of DBA and C57
genomes which represented the underlying hidden states
we wished to infer. We introduced 0 and 1 to signify the
hidden states which inherited from C57 and DBA genome
and we set initial probabilities of the two states equal to
0.5 since both haplotypes were indiscriminate initially. On
account of sequencing and alignment errors in addition to
other uncertainty factors, we set P(h= 1|s= 1)= P(h= 0|
s= 0)= 0.99 and P(h= 0|s= 1)= P(h= 1|s= 0)= 0.01
as the emission probabilities of emitting an observed state
after the hidden state is determined. The transition of
states between two adjacent sites reflected a crossover
event from C57 to DBA or from DBA to C57. So we set
the transition probability between linked sites to be P(si
+1= 0|si= 1)= P(si+1= 1|si= 0)= 0.2. Then we ran the
HMM in both the forward-chromosomal and the reverse-
chromosomal directions and kept the sites with same
hidden state in both directions left. Boundaries of the last
SNP in the first haplotype and the first in the next were
defined as crossover regions.
Due to the existence of random DBS repair and low

accuracy of nanopore sequencing platform (sequencing
accuracy of 96.5%), we can see many “crossovers” within a
few SNPs. By reasons of the low accuracy of TGS
sequencing data and low depth of our data, these cross-
overs supported by less than 100 SNPs or spaced shorter
than 0.5Mb seemed more likely to be pseudo. Thus, we
filtered out these regions and finally determined the
crossovers every chromosome in each cell.
To plot the density of the distribution of crossover

regions, we calculated the counts of all crossover events
across all samples in 1Mb windows on each chromosome.
We used ‘bedtools makewindows’ to divide each chromo-
some into 1Mb windows with the parameter ‘-w 1,000,000’.

Filtering out of diploid cells from single sperm Refresh-seq
dataset
In diploid cells or doublets which contained two hap-

lotypes, fragments from paternal and maternal were
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randomly distributed and were not able to maintain a
state in a large genome region due to allele dropout, and
thus we detected consecutively observed SNP alleles that
appeared on different parental haplotypes and defined it
as ‘non-continuity score’. To filter out diploid cells whose
non-continuity scores, we summed the non-continuity
scores of all autosomes except for the autosome with the
highest scores to avoid mistakenly identifying cells with
chromosome gains as diploid cells. This resulted in a
clear inflection point wherein doublets had a high
non-continuity score. All cells below this inflection
point (identified with the function ‘ede’ from the
R package ‘inflection’ (https://CRAN.R-project.org/
package=inflection) were labeled as haploid cells.

Aneuploidy and chromosome arm loss/gain
As described in CNV analysis, we ran control-freec with

parameter ‘ploidy = 1’ and ‘window = 1,000,000’ to
identify copy number variations for the cells labeled as
haploid. The cells with copy number reduction meanwhile
this region having small quantity of SNPs compared to
other normal chromosomes were considered as chromo-
some deficiency. The cells with copy number increase
meanwhile this region showing high heterozygosity and
high non-continuity scores were considered as gain of
chromosomes.

SV calling and benchmarking
SV identification for each single cell was performed by

cuteSV v1.0.10 (https://github.com/tjiangHIT/cuteSV), a
sensitive, fast and scalable long-read based SV detection
approach suitable for nanopore long reads. We set the
recommended parameters for nanopore as ‘--max_clus-
ter_bias_INS 100 --diff_ratio_merging_INS 0.3 --max_-
cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3’ to
process single-cell bam files. We also set ‘--min_support
1’ to reach resolution at single cell level.
We integrated SV calls from all B6D2F1 sperm cells

passed quality control using SURVIVOR V1.0.7 (https://
github.com/fritzsedlazeck/SURVIVOR) with ’SURVIVOR
merge’ command. The maximum breakpoints distance to
merge two SVs was set to 500 and the minimum size of
the reserved SV was 50 bp, besides, the SVs type and
strand type was taken into account. By changing the
number of cells supported, we got each SV supported by
at least one to ten cells.
Before evaluation of SV calling, we need to get a

benchmark SV set. Genomic reads of the C57 and DBA
bulk samples sequenced on the ONT platform were used
to produce the high-confidence benchmark SV set.
To compare the SVs identified with the benchmark SV

set, we used the following criteria. For insertions, the
breakpoints need to be within ±500 bp of each other. For
deletions, the two SV regions need to be overlapped.

Meanwhile, the length of both insertion and deletion
events should be consistent with benchmark SV set with
100 bp tolerance range. Then we used precision (Precision
= true positive/(true positive + false positive)) to measure
the ratio of true positives in all detected positives in order
to quantify the performance of SV detection.

SV phasing
To phase SVs, we constructed a sparse matrix con-

taining the information about the existence or not of each
SVs each cell based on benchmark SV set. That was, 0
represents C57 genotype and 1 represents DBA genotype.
The conditions for determining whether an SV exists
were its length should not differ from benchmark by
100 bp and the breakpoints need to be within ±100 bp of
each other. If a site was covered by reads but no SV was
detected, the site was labeled as the other genotype. The
core algorithm to phase SVs in a chromosome consists of
three main steps: (1) data pre-processing; (2) draft hap-
lotype inference; (3) haplotype assembly. For low coverage
sequencing, heterozygous SVs that were genotyped in at
least five sperm cells can be selected to form a ‘precursor’
framework for the draft haplotype construction using the
‘hapiFrameSelection’ function (https://github.com/rli012/
Hapi/). Then we selected the top 100 cells with the
highest total number of SVs to form a pre-phasing fra-
mework and removed SVs supported by less than 3 cells.
To improve phasing accuracy, we corrected the SVs which
seemed more likely to be an error from technical limita-
tions or DSB repairs. The proofreading strategy followed
the steps below: First, we selected one cell as a test, and
ran the HMM in the other cells with transition probability
between linked sites being P= 1� e�d ´ 10�8

where d
represented the distance. Then we checked if the rest 99
cells had the same SV genotypes as the test. SVs sup-
ported by more than 5 even half of cells inconsistent with
test were regarded as errors in the test. Each cell did the
same steps above in turn. We considered that SVs with
more than 5 cells labeled as wrong were error-prone and
excluded from subsequent phasing, but SVs with less than
3 cells labeled as wrong were corrected using the ‘flipFun’
function from Hapi R package in errant cells as they
looked more likely random mistakes. At this point, the
basic framework was constructed. Missing genotypes in
each cell were iteratively imputed by observed genotypes
in other cells to facilitate the draft haplotype inference
using function ‘imputationFun1’ with parameter
‘nSPT=2’ which meant several successive heterozygous
SVs in a sperm cell can be imputed only if imputations
were supported by more than 2 consecutive SVs with
consistent genotype and no imputation conflict from
different supporting cells. We kept SVs less than 2
missing genotypes and cells without missing genotypes to
run ‘hapiPhase’ function. The preliminary phasing results
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were proofread using ‘hapiBlockMPR’ function with
parameter ‘cvlink=2’ and ‘smallBlock=2’. Finally, we used
function ‘hapiAssemble’ to assemble the consensus high-
resolution haplotypes.
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