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Dear Editor,
Since the emergence of the Omicron BA.1.1.529 variant of

SARS-CoV-2 in November 20211, a number of Omicron
sublineages with increased antibody evasion capacity and
transmissibility have been identified and caused regional and
global outbreaks, including BA.1.1, BA.2, BA.2.12.1 and
BA.4/52–4. While BA.4 and BA.5 share identical spike (S)
sequence, for unknown reasons BA.5 outcompeted BA.4 in
many regions, with a global prevalence of 77.1% as of epi-
demiological week 40 (3rd–9th October 2022) (https://
reliefweb.int/report/world/coronavirus-disease-covid-19-
weekly-epidemiological-update-26-october-2022).
Recently, a new variant related to BA.4/5, designated

BA.4.6, has emerged and expanded in the United States
where BA.5 dominates [80.3% prevalence as of 31st October
2022 (https://cov-spectrum.org/explore/United%20States/
AllSamples/from=2022-07-01&to=2022-11-01/variants?
nextcladePangoLineage=ba.5*&)], rising from < 2% of
sequences in early July to 11.7% as of 31st October 2022
(https://cov-spectrum.org/explore/United%20States/AllSam
ples/from=2022-07-01&to=2022-11-01/variants?nextclade
PangoLineage=BA.4.6&). Compared to BA.4/5, BA.4.6
contains two extra mutations in the Spike protein (S), R346T
in the Receptor Binding Domain (RBD) and N658S in the
C-terminal domain. The R346T mutation has raised con-
cern for enhanced antibody evasion over BA.4/5, as the
R346K mutation in BA.1.1 reduced serum neutralization

compared to BA.1 and impaired the activity of a number of
monoclonal antibodies (mAbs)2. Here, we study the neu-
tralization profile of BA.4.6 using Pfizer-BioNtech vaccine
serum, BA.1, BA.2, and BA.4/5 vaccine breakthrough
immune serum (characteristics of sample donors are shown
in Supplementary Table S1), as well as panels of mAbs.
Remarkably, we show further antibody evasion of BA.4.6,
providing guidance for vaccine design and the use of ther-
apeutic monoclonals.
To evaluate the antibody evasion capacity of BA.4.6, we

constructed a panel of pseudotyped lentiviruses5 expres-
sing the S gene from BA.4.6 and other SARS-CoV-2
variants together with early pandemic Wuhan-related
strain, Victoria, used as a control. Firstly, we examined the
neutralization profile with sera collected 4 weeks follow-
ing a third dose of the Pfizer-BioNtech vaccine BNT162b2
(n= 22). Compared to BA.4/5, neutralization titers
against BA.4.6 were reduced twofold (P < 0.0001) for
BNT162b2 sera (Fig. 1a).
Next, we assayed the neutralization profile for serum

samples collected from vaccinees infected with BA.1
[samples (n= 16), taken ≥ 28 days following symptom
onset], BA.2 [samples (n= 23), taken ≥ 12 days following
symptom onset] or BA.4/5 [samples (n= 11, all but one
vaccinated), taken > 23 days following symptom onset]
(Fig. 1b–d). Neutralization titers against BA.4.6 were
significantly reduced compared to BA.4/5 for both
breakthrough BA.1 (1.5-fold; P= 0.0006) and BA.2 (1.2-
fold; P= 0.0384) serum samples. Notably, BA.4.6 was able
to effectively escape neutralization by serum samples from
BA.1 breakthrough infections, showing a substantial
reduction in titers compared to BA.1 (4.4-fold;
P= 0.0001), BA.2 (threefold; P= 0.0009) and BA.4/5 (1.5-
fold; P= 0.0006). A small non-significant increase in
neutralization titers against BA.4.6 was observed in the
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Fig. 1 (See legend on next page.)
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BA.4/5 breakthrough cohort compared to BA.4/5. Of
note, the single serum sample from the unvaccinated
BA.4/5 convalescent showed lower levels of neutralization
to most variants, especially BA.1 and BA1.1. It is not clear
why the BA.2 and BA.4/5 neutralization titers using BA.2
and BA.4/5 serum respectively were not higher than titers
for other SARS-CoV-2 variants as one might expect.
To further characterize the antigenic escape properties of

BA.4.6, we performed pseudoviral assays on a panel of
potent human mAbs generated from BA.1 breakthrough
convalescents2 (Fig. 1e). In general, the neutralization pro-
files of BA.4.6 were similar to those of BA.4/5. However, the
residual activity of Omi-35 (IC50= 1.687 µg/mL) was fur-
ther knocked out for BA.4.6, and the potency of Omi-32
and Omi-33 against BA.4/5 (IC50= 0.035 and 0.013 µg/mL,
respectively) was completely impaired for BA.4.6. The loss
in activity of Omi-32 could be explained by the disruption
of the interaction between CDR-H1 and R346 by the R346T
mutation, as illustrated by previous structural analysis2.
Finally, we evaluated the neutralization activities of a

number of mAbs in clinical use (Fig. 1f). The potency of
AZD1061/cilgavimab against BA.4/5 was completely
knocked out against BA.4.6, leading to a total loss in
activity of AZD7742/Evusheld (a combination of
AZD1061/cilgavimab and AZD8895/tixagevimab which is
already inactive against BA.4/5). The activity of S309/
sotrovimab [no longer authorized by the U.S. food and
drug administration (FDA) for COVID-19 treatment since
April 2022 due to its inefficacy against BA.2] was further
reduced compared to BA.2 and BA.4/5. This, therefore,
leaves LY-CoV1404/bebtelovimab the only option for the
treatment of BA.4.6.
In summary, BA.4.6 showed further reduction in neu-

tralization by serum from triple dose Pfizer vaccinees, as well
as from BA.1 and BA.2 vaccine breakthrough convalescents
compared to BA.4/5, which is in line with recent reports6.
Notably, BA.4.6 does not seem to be more resistant to
neutralization by serum from BA.4/5 breakthrough infection
compared to other variants. This altogether suggests that
there is a strong likelihood of infection or breakthrough
infection by BA.4.6 unless one has been triply vaccinated
and recovered from BA.4/5 infections, which seems to
provide some protection against BA.4.6. Mutation R346T
has been acquired by a number of emerging SARS-CoV-2

strains, notably BA.7 a derivative of BA.5 which is increasing
in a number of locations (https://cov-spectrum.org/explore/
United%20Kingdom/AllSamples/Past6M/variants?nextclad
ePangoLineage=bf.7*&).
Bivalent booster vaccination, combining the ancestral

strain with Omicron BA.1 is being rolled out in the UK
(https://www.gov.uk/government/news/pfizerbiontech-
bivalent-covid-19-booster-approved-by-uk-medicines-
regulator), and has been recently authorized by FDA
(https://www.fda.gov/news-events/press-announcements/
coronavirus-covid-19-update-fda-authorizes-moderna-
pfizer-biontech-bivalent-covid-19-vaccines-use). It remains
to be seen how effective these bivalent boosters are at pre-
venting BA.4.6 infection. Finally, BA.4.6 has further impaired
the activity of Evusheld which remained active against BA.4/
5; as a result, now only LY-CoV1404/bebtelovimab retains
potency against all circulating SARS-CoV-2 variants.
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Fig. 1 Characterisation of BA.4.6 by pseudoviral neutralization assay. a–d Pseudoviral neutralization assays of BA.4.6 by vaccine, BA.1, BA.2, and
BA.4.5 immune serum. IC50 values for the indicated viruses using serum obtained from vaccinees 28 days following their third dose of Pfizer
BNT162b2 vaccine (n= 22, a). IC50 values for the indicated viruses against serum from volunteers suffering vaccine breakthrough BA.1 (n= 14, b),
BA.2 (n= 23, c) and BA.4/5 (n= 11, d) infections. Geometric mean titers are shown above each column. The Wilcoxon matched-pairs signed rank test
was used for the analysis and two-tailed P values were calculated. e Neutralization curves for a panel of 28 monoclonal antibodies made from
samples taken from vaccinees infected with BA.1 against BA.4.6 were compared with Victoria, BA.1, BA.1.1, BA.2, BA.4/5, and BA.2.75 variants. Error bars
represent means ± SEM of repeat experiments. f Neutralization curves for a panel of 12 commercial monoclonal antibodies against same variants.
IC50 ± SEM values are shown in Supplementary Table S2.
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