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Protein tyrosine phosphatase PTPRO represses lung
adenocarcinoma progression by inducing mitochondria-
dependent apoptosis and restraining tumor metastasis
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Emerging evidence indicates that protein activities regulated by receptor protein tyrosine phosphatases (RPTPs) are crucial for a
variety of cellular processes, such as proliferation, apoptosis, and immunological response. Protein tyrosine phosphatase receptor type
O (PTPRO), an RPTP, has been revealed as a putative suppressor in the development of particular tumors. However, the function and
the underlying mechanisms of PTPRO in regulating of lung adenocarcinoma (LUAD) are not well understood. In this view, the present
work investigated the role of PTPRO in LUAD. Analysis of 90 pairs of clinical LUAD specimens revealed significantly lower PTPRO levels
in LUAD compared with adjacent non-tumor tissue, as well as a negative correlation of PTPRO expression with tumor size and TNM
stage. Survival analyses demonstrated that PTPRO level can help stratify the prognosis of LUAD patients. Furthermore, PTPRO
overexpression was found to suppress the progression of LUAD both in vitro and in vivo by inducing cell death via mitochondria-
dependent apoptosis, downregulating protein expression of molecules (Bcl-2, Bax, caspase 3, cleaved-caspase 3/9, cleaved-PARP and
Bid) essential in cell survival. Additionally, PTPRO decreased LUAD migration and invasion by regulating proteins involved in the
epithelial-to-mesenchymal transition (E-cadherin, N-cadherin, and Snail). Moreover, PTPRO was shown to restrain JAK2/

STAT3 signaling pathways. Expression of PTPRO was negatively correlated with p-JAK2, p-STAT3, Bcl-2, and Snail levels in LUAD tumor
samples. Furthermore, the anti-tumor effect of PTPRO in LUAD was significant but compromised in STAT3-deficient cells. These data
support the remarkable suppressive role of PTPRO in LUAD, which may represent a viable therapeutic target for LUAD patients.
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INTRODUCTION

Tyrosine phosphorylation is a crucial regulator of various human
physiological phenomena, including cellular activation, gene
transcription, and environmental homeostasis. This process is
tightly regulated by the coordinated action of protein tyrosine
kinases (PTKs) and protein tyrosine phosphatases (PTPs) [1, 2].
While numerous researchers focus on PTKs, which have domi-
nated the cancer target therapeutics sphere. Increasing articles
have reported that PTPs play a role in certain physiological and
pathological activities by regulating tyrosine dephosphorylation,
which is an opposing but equally significant mechanism as PTKs
[3, 4]. Protein tyrosine phosphatase receptor type O (PTPRO), one
of the receptor-type PTPs (RPTPs), was first found in renal
glomerular epithelial cells [5]. As a transmembrane protein and
expressed in several parenchymal and inflammatory cells (includ-
ing lung, liver, breast, macrophages, and lymphocytes) [6], PTPRO
has been linked to both elemental biological processes and
development of inflammatory diseases, such as embryogenesis
[7], osteoclast function [8], immune response [9], neuron
differentiation [10, 11], atherosclerosis [6], lung injury [12, 13]

and hepatitis [14]. Increasing studies demonstrated the critical
functions of PTPRO in tumor suppression of certain cancer types.
For example, PTPRO exhibits tumor-suppressive properties in
chronic lymphocytic leukemia through negative regulating of
B-cell receptor (BCR) signaling [15]. In the case of breast cancer,
PTPRO promoter methylation is a prognostic factor for HER2-
positive patients and suppresses ERBB2-driven breast cancer
growth by promoting ERBB2 dephosphorylation and endocytotic
degradation [9, 16]. Moreover, PTPRO-mediated autophagy
inhibits tumorigenesis in hepatocellular carcinoma (HCC) [17],
and PTPRO downregulation is associated with an IL-6-driven
increase in PD-L1 expression in monocytes and macrophages [18].
In addition, by increasing immunological infiltrates, PTPRO may
serve as a therapeutic target in pancreatic cancer [19]. However,
its role and mechanisms in lung cancer remain unknown.

Lung cancer is the most prevalent cause of cancer-related
death, contributing to the highest morbidity and mortality rates
worldwide [20-22]. Lung cancer is expected to account for 12% of
all new cancer diagnoses in 2023 [22]. The two primary
histological subtypes of lung cancer are non-small-cell lung
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cancer (NSCLC) and small-cell lung cancer (SCLC). NSCLC, which and immunotherapies, LUAD survival has increased remarkably in
accounts for about 80% of all lung cancer cases, is classified into the last decade [23]. The development of targeted therapeutics for
two main subtypes: lung adenocarcinoma (LUAD, ~48% of NSCLC) lung cancer greatly benefits from abnormal tyrosine phosphoryla-
and lung squamous cell carcinoma (LSCC, ~28%) [21]. With tion catalyzed by RPTKs, such as the Epidermal Growth Factor
significant advances in LUAD treatment such as targeted therapies Receptor (EGFR). On the other hand, RPTPs-mediated tyrosine
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Fig. 1 Low PTPRO expression is associated with advanced TNM stage and poor prognosis of LUAD patients. A Pan-cancer analysis of
PTPRO gene expression in different tumor types from TCGA datasets. B Different PTPRO gene expression in LUAD and adjacent normal lung
specimens in GEO datasets (GSE19188 and GSE 19804). C PTPRO gene expression difference between LUAD and normal lung tissues in TCGA
cohort. D PTPRO gene expression in LUAD with TNM stage |-l vs. those with TNM stage llI-IV in TCGA cohort. E PTPRO gene expression in
LUAD with T stage T1-2 vs. T stage T3-4 in TCGA cohort. F, G Kaplan-Meier overall survival analyses of LUAD patients according to the gene
level of PTPRO in TCGA cohort and a combined cohort (TCGA, EGA, GEO), respectively. H Representative IHC staining of PTPRO protein
expression in paired LUAD tissues and adjacent normal specimens in microarray. Statistical comparison of PTPRO immunoreactivity scores
were exhibited in the right panels. | Representative IHC staining of high expression and low expression of PTPRO in LUAD specimens.
J Kaplan-Meier overall survival analysis of LUAD patients according to PTPRO protein expression level. ACC adrenocortical carcinoma, BLCA
adrenocortical carcinoma, BRCA breast invasive carcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL
cholangiocarcinoma, COAD colon adenocarcinoma, DLBC lymphoid neoplasm diffuse large B-cell lymphoma, ESCA esophageal carcinoma,
GBM glioblastoma multiforme, HNSC head and neck squamous cell carcinoma, KICH kidney chromophobe, KIRC kidney renal clear cell
carcinoma, KIRP kidney renal papillary cell carcinoma, LAML acute myeloid leukemia, LGG brain lower grade glioma, LIHC liver hepatocellular
carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, MESO mesothelioma, OV ovarian serous cystadenocarcinoma,
PAAD pancreatic adenocarcinoma, PCPG pheochromocytoma and paraganglioma, PRAD prostate adenocarcinoma, READ rectum
adenocarcinoma, SARC sarcoma, SKCM skin cutaneous melanoma, STAD stomach adenocarcinoma, TGCT testicular germ cell tumors, THCA
thyroid carcinoma, THYM thymoma, UCEC uterine corpus endometrial carcinoma, UCS uterine carcinosarcoma, UVM uveal melanoma.

METHODS

In silico test

PTPRO mRNA levels in lung cancer and normal tissues were retrieved from
the TCGA and GEO datasets (GEO19188, GEO19804). GSEA was performed

Table 1. Characteristics of LUAD patients and their associations with
PTPRO protein level.

Variable Cases PTPRO protein expression p value on TCGA cohorts using software from Broad Institute (http://
software.broadinstitute.org/gsea/index.jsp). Low- or high-PTPRO expres-
(n = 86) Low High sion was distinguished using the mean cutoff based on their risk score
(n = 44) (n=42) expression. The differentially expressed genes (DEGs) between these two
Age (years) groups were subjected to gene set enrichment analysis (GSEA) and KEGG
pathway analysis to investigate possible differences in biological processes
<60 years 37 19 18 0.976 and signaling pathways.
260 years 49 25 24
Sex Immunohistochemical (IHC) staining
Famale 42 23 19 0514 The protein expression profile of PTPRO in lung adenocarcinomas and
adjacent nontumorous lung tissues was assessed using a commercially
Male 44 21 23 available tissue microarray (Shanghai Outdo Biotech, Shanghai, China) with
Tumor diameter the IHC method. LUAD biopsy were acquired from ten patients in Nanjing
Medical University First Affiliated Hospital. Briefly, the tissue microarray and
20l i 20 28 00185 LUAD tissues were subjected to the following procedures: deparaffiniza-
23.0cm 38 24 14 tion, rehydration, antigen retrieval by microwave, inactivation of endo-
Differentiation genous peroxidase, primary antibody incubation, secondary antibody
incubation, stain development, and counterstaining [26]. Two independent
Well 7 4 3 0.799 pathologists blinded to patients’ information analyzed IHC results based on
Moderate 59 31 28 staining intensity and proportion of positively stained cells.
Poor 20 9 11
T stage Cells and transient transfection
The human lung adenocarcinoma cell lines HCC827, PC9, and H1975 were
T1a-T1b 29 10 19 0.035% employed in this investigation and cultured as previously described [21].
Tic 36 19 17 GeneChem (Shanghai, China) helped insert the PTPRO coding region into
™ 21 15 6 the GV230 vector. Transient transfection was performed using Lipofecta-
mine3000 following the manufacturer's protocol. Blank vector
N stage GV230 served as a negative control. Transfection efficiency was validated
NO 54 27 27 0.664 by Western blotting. Each experiment was repeated at least three times
independently.
N1 21 10 1
N2 1 7 4 Lentivirus and CRISPR plasmids
M stage The lentivirus vector GV492 (Ubi-MCS-3FLAG-CBh-gcGFP-IRES-puromycin)
MO 64 31 33 0.388 containing PTPRO coding region and empty vector were purchased from
Genechem (Shanghai, China). For lentivirus infection, cells were initially
M 22 13 9 cultured in 6-well plates at a concentration of 3 x 10* cells per well for a
*p < 0.05. duration of 24 h. Subsequently, they were subjected to transduction with

Bold values indicates statistically significant p values less than 0.05. an optimal quantity of prepared lentiviral vectors as previously detailed
[21]. Following a post-transfection incubation period of 3-4 days, cells

were subjected to selective pressure using a puromycin-containing growth

dephosphorylation counterbalance oncogenic tyrosine kinase
signaling [24, 25]. Nevertheless, limited research focuses on the
roles of RPTPs, including PTPRO, in LUAD. In the present
investigation, we examine the patterns of PTPRO expression in
LUAD and its prognostic significance. Moreover, we performed
systematic tests via in vitro and in vivo strategies to explore the
inhibitory effect and the underlying molecular mechanism of
PTPRO in LUAD, which could serve as a novel anticancer target.
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medium, rendering them suitable for subsequent experimentation.

The preparation of CRISPR-Cas9/gRNA plasmid DNA followed estab-
lished procedures, as detailed in previous studies [27]. In brief, gRNAs
against STAT3 were designed and annealed into LentiCRISPRv2 plasmids
(Supplementary Table 1). Positive clones harboring the gRNA-encoding
DNA sequences were rigorously validated through DNA sequencing.
Lipofectamine 3000 was employed for plasmid transfection, and the
assessment of transfection efficacy was subsequently conducted through
Western blot.

SPRINGER NATURE
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Table 2. Univariate and multivariate Cox regression analyses for the overall survival of LUAD patients.
Variable Univariate Multivariate
HR 95% Cl p value® HR 95% Cl p value®
Age (years) 0.907
<60 years Reference
260 years 0.961 0.491-1.879
Sex 0.079
Female Reference
Male 1.849 0.930-3.675
Tumor diameter 0.452
<3.0cm Reference
23.0cm 0.773 0.395-1.512
Differentiation 0.799
Well Reference
Moderate 1.089 0.256-4.638
Poor 1.507 0.333-6.826
T stage 0.693
T1a-T1b Reference
Tlc 1.235 0.573-2.662
T2 0.886 0.348-2.156
N stage 0.477
NO Reference
N1 1.029 0.453-2.338
N2 1.689 0.711-4.015
M stage <0.007*** <0.007***
Mo Reference Reference
M1 7.804 3.81-15.998 6.879 3.348-14.137
PTPRO protein expression 0.004** 0.040*
Low Reference Reference
High 0.360 0.174-0.744 0.462 0.222-0.965

*p < 0.05; **p < 0.01; **p < 0.001.

°p value was calculated by log-rank test.

bp value was calculated by Cox-regression test.

Bold values indicates statistically significant p values less than 0.05.

Western blotting (WB)

Protein levels in cells and tissues were measured using WB. Cells or isolated
tissues were lysed with RIPA buffer (Beyotime, Nantong, China) supple-
mented with protease inhibitor cocktail (Roche, Basel, Switzerland) and
PMSF (Roche), and total protein concentrations were determined using the
Bradford strategy. Subsequently, 20-30ug protein was separated by
electrophoresis, followed by membrane transfer, blocking, primary anti-
body incubation, secondary antibody incubation, and immunodetection
[28]. Detailed antibody information was listed in Supplementary Table 2.
Immunoblotting results from three independent repeats were semi-
quantified using ImageJ Plus Software.

2,5-diphenyl-2H-tetrazolium bromide (MTT) assay

The MTT assay was used to evaluate cell proliferation. Briefly, transfected
cells were seeded into 96-well plates at a density of 3000 cells/well. The
cells were then cultured for 1, 2, 3, and 4 days, respectively. At each time
point, 10 yl MTT solution was added to each well to achieve a working
concentration of 0.45mg/ml. Following another 3-h incubation, the
medium was removed and 100 pl solubilization solution was added to
each well to dissolve MTT crystals. Absorbance was recorded at 570 nm
using a microplate reader (SpectraMax iD5). Each experiment was repeated
three times.

Colony formation
Colony formation was performed to assess the survival ability of single
cells. Transfected cells were seeded in 6-well plates at a density of 500

SPRINGER NATURE

cells/well. Cells were cultured for 2 weeks in an 5% CO, incubator at 37 °C,
and subsequently fixed, and stained with crystal violet. Colony numbers
were photographed and counted. Each experiment was repeated
three times.

Flow cytometry

Cells were trypsinized 48 h after transfection and subjected to an Annexin
V/PI assay using a flow cytometric method to evaluate apoptosis, as
previously described [21]. Experiments on apoptosis were conducted in
triplicate.

JC-1 staining

The JC-1 assay kit (Beyotime Biotech, Nantong, China) was used to assess
mitochondrial membrane potential of LUAD cells, following the manufac-
turer’s protocol [29]. Briefly, the JC-1 (1x) working solution was added in the
prepared cells and incubated at 37 degrees for 20min and then
photographed using a fluorescence microscope. The shift in fluorescence
emission from red to green indicated the decline in mitochondrial
membrane potential, a characteristic feature in the early stages of apoptosis.

Mitochondrial permeability transition pore (MPTP) assay

The opening of MPTP is a critical event leading to cell death, which was
assessed using an MPTP kit (Beyotime Biotech, Nantong, China) following
the manufacturer's protocol [29]. Briefly, cells on the coverslip were
washed and labeled for 30 min in a dark room at 37 degrees and examined

Cell Death and Disease (2024)15:11
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Fig. 2 PTPRO overexpression attenuates LUAD growth both in vitro and in vivo. A The transfection efficiency was validated by western
blotting in HCC827, PC9 and H1975 cells, after transfected with vector and PTPRO plasmids. B MTT assay was performed to examine the cell
proliferation abilities of transfected LUAD cell lines. C Colony-formation assays of LUAD cells transfected with vector or PTPRO plasmids. The
colonies were numbered and statistically compared in the right panel. D Stable transfected PC9 cells were subcutaneously injected into nude
mice. After 3 weeks, mice were sacrificed, and xenografts were excised. E Excised tumor weight was measured as mean + SD for all xenografts
in two independently repeated experiments (n =9, the other four paired xenografts are presented in Supplementary Fig. 1). F Tumor volume
was calculated every 5 days to monitor tumor growth (n =9). Data are represented as mean + SD. *p < 0.05, **p < 0.01, ***p < 0.001.

under a Leica Thunder DMi8 microscope. Diminished green fluorescence
indicates increased MPTP opening.

Transwell assay

Cell migration and invasion potentials were evaluated using the Transwell
assays [30]. Briefly, transfected cells were seeded into the transwell insert
(8 um pore size) at a density of 30,000 cells/well for migration test. The
upper chamber was filled with 2% FBS medium, while the lower chamber
was filled with 15% FBS medium. Cells that migrated to the bottom side of
the insert were fixed and stained for counting after 24 h. The invasion
assay was performed similarly to the migration assay, except that the
seeding density was 80,000 cells/well and the transwell insert was pre-
coated with Matrigel (Cat. 356234, Corning, NY, USA).

Subcutaneous xenograft and tail vein injection mice models
The subcutaneous xenograft model and tail vein injection model were
developed using BALB/c nude male mice (4-5 weeks old), respectively.
Lentivirus-mediated stable transfected cells (~1x 107) were subcuta-
neously injected into nude mice. Tumor length and width were recorded
every 5 days using a vernier caliper. The tumor volume was calculated
using the formula: length x width x width x 0.5. Mice were sacrificed and
xenografts were excised 20 days later.

The same amount of transfected cells was injected into the tail vein to
establish the tail vein injection model, and mice were cultured for 4 weeks

Cell Death and Disease (2024)15:11

before being sacrificed. The lungs of mice were then resected to assess
metastatic tumor.

Statistics

Data were processed using SPSS 22.0, Graphpad Prism 7.0, and R 4.0
Software. Overall survival time was defined as the period between disease
diagnosis and death or the last follow-up date. A Chi-square test was
performed for the difference test. Kaplan-Meier and log-rank tests were
used for survival analysis. The Cox hazard regression model was utilized for
multivariate analysis to identify independent risk factors. Student’s t test
and one-way ANOVA test were used to distinguish differences between
groups. Two-tail p < 0.05 denoted statistical difference.

RESULTS

Low PTPRO expression is associated with advanced TNM stage
and poor prognosis of LUAD patients

Pan-cancer analysis of The Cancer Genome Atlas (TCGA) cohort
revealed distinguished expression of PTPRO in different tumor
types (Fig. 1A). For example, PTPRO was upregulated in
cholangiocarcinoma (CHOL) and colon adenocarcinoma (COAD),
while downregulated in bladder cancer (BLCA) and kidney
chromophobe (KICH). This may be attributed to several factors,

SPRINGER NATURE
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Fig.3 PTPRO induces cells apoptosis in LUAD. A The GSEA enrichment analysis of PTPRO in TCGA-LUAD cohort. B GSEA enrichment analysis
of PTPRO regarding apoptosis pathway in LUAD. C Cell apoptosis was evaluated by flow cytometry strategy in HCC827, PC9 and H1975 cells
between PTPRO-overexpression and vector groups. Statistical analyses were presented in the right panel. *p < 0.05, **p < 0.01.

including the complexity of cancer biology and the unique
characteristics of each tumor type. The tumor microenvironment,
including interactions with immune cells, stromal cells, and the
extracellular matrix, can influence gene expression. The differ-
ential regulation of one gene in different tumor types is a
reflection of the intricate and multifaceted nature of cancer. This
once again underscores the importance of considering the specific
context of each tumor type when studying gene expression
patterns and their functional significance in the context of
tumorigenesis.

Specifically, downregulation of PTPRO was observed in lung
cancer, including adenocarcinoma and squamous cell carcinoma.
TCGA, GSE19188, and GSE19804 were then used to further assess
the expression of PTPRO mRNA in LUAD specimens. In all three
datasets, the mRNA level of PTPRO was significantly lower in LUAD
tissues than in normal or adjacent tissues (Fig. 1B, C). Moreover,
the PTPRO transcript was found to be significantly lower in LUAD
patients with advanced TNM stage or positive lymph node
metastases (Fig. 1D, E). Subsequently, Kaplan-Meier analysis
revealed that low levels of PTPRO mRNA were linked to poor
overall survival in LUAD patients in the TCGA cohort alone (Fig. 1F)
or a mixed cohort including GEO, EGA and TCGA datasets (Fig. 1G).

Considering that protein level may be different with mRNA
level, we further evaluated PTPRO protein expression using a
tissue microarray containing 90 pairs of primary LUAD and
matched normal tissues. IHC experiments revealed a significant
proportion of patients with lower PTPRO protein levels in tumor
specimens compared with the adjacent non-tumor tissues, and
the overall PTPRO staining scores were remarkably lower in the

SPRINGER NATURE

tumor than in the non-tumorous lung (Fig. 1H). To investigate the
correlation between PTPRO expression, LUAD prognosis, and
clinicopathological features, LUAD cases were separated into the
high expression (staining score >4) and low expression (staining
score <4) groups based on mean PTPRO IHC score (representative
IHC staining was shown in Fig. 11). Chi-square analyses revealed
positive associations of PTPRO protein accumulation with small
tumor size (p <0.05) and early T stage (p < 0.05), indicating that
advanced LUAD patients had relatively low protein expression
levels of PTPRO in cancer tissues (Table 1), which was consistent
with its mRNA levels in Fig. 1D.

Similarly, according to Kaplan-Meier analysis of the microarray
cohort, high PTPRO protein expression predicted favorable
outcomes in LUAD patients (Fig. 1J), which was also consistent
with the predictive role of its mRNA level in Fig. 1F, G.
Furthermore, multivariate analyses demonstrated that low PTPRO
protein level and distant metastasis can both independently
predict a poor overall survival of LUAD (Table 2). These findings
strongly suggested PTPRO as an independent prognostic factor
for LUAD.

PTPRO overexpression attenuates LUAD growth both in vitro
and in vivo

Clinical and dataset analyses revealed that PTPRO was down-
regulated in LUAD; in this view, we employed GV230-PTPRO
plasmid-mediated overexpression to investigate its functional role
in LUAD cells. Western blot analysis revealed a significant increase
following PTPRO plasmid transfection in HCC827, PC9, and H1975
cells (Fig. 2A). In a 4-day MTT assay, PTPRO-overexpression

Cell Death and Disease (2024)15:11
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significantly decreased cell growth rate in the three LUAD cell
lines (p < 0.01, Fig. 2B). The cell growth-inhibitory effect of PTPRO
was further validated by monolayer colony formation in all the
three cell lines with a substantially reduced number and size of
colonies following PTPRO overexpression (Fig. 2C). These results
demonstrated that PTPRO overexpression decreased LUAD cell
proliferation in vitro.

The effect of PTPRO on LUAD growth was then explored in vivo.
PC9 cells stably transfected with GV492-vector and GV492-PTPRO
plasmids were subcutaneously injected into nude mice. Detect-
able tumor volumes were monitored and recorded every 5 days.
The mice were sacrificed and tumor xenografts were isolated
20 days post-inoculation (Fig. 2D and Supplementary Fig. 1, two
independently repeated experiments). As a result, PTPRO over-
expression drastically suppressed tumor growth in nude mice, as
evidenced by significantly lighter tumor weight and smaller tumor
size in the PTPRO group compared with the vector group (Fig. 2E, F).

Cell Death and Disease (2024)15:11

These findings suggested the anti-oncogenic potential of PTPRO
both in vitro and in vivo.

PTPRO induces LUAD cell death via mitochondria-dependent
apoptosis both in vitro and in vivo

We investigated the putative biological function pathways of
PTPRO in the TCGA cohort using GSEA analysis since the previous
data showed a proliferation-suppression function of PTPRO. The
results indicated that PTPRO expression was linked to systemic
lupus erythematosus, phagocytosis, autoimmune thyroid disease,
NK cell-mediated cytotoxicity, and apoptosis (Fig. 3A, B). There-
fore, the PTPRO-transfected LUAD cells were tested for apoptosis
using an Annexin V/Pl assay. The results showed that HCC827,
PC9, and H1975 cells transfected with PTPRO had a much greater
proportion of apoptosis as compared with vector-transfected cells
(Fig. 3C). These findings indicated that elevated PTPRO expression
could induce apoptosis of LUAD cells.
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A network of interrelated signals may induce apoptosis via two
primary pathways: the death receptor pathway (extrinsic pathway)
and the mitochondrial pathway (intrinsic pathway) [31]. To further
illustrate the PTPRO-mediated apoptosis mechanisms, expression
of apoptotic proteins was evaluated by Western blot. As shown in
Fig. 4A, the protein levels of Bcl-2 and caspase 3 significantly
decreased following PTPRO transfection, while the expressions of
proapoptotic proteins Bax, cleaved-caspase 9, cleaved-caspase 3,
cleaved-PARP and Bid markedly increased. Consistently, the gene
expression of Bid substantially increased in PTPRO overexpression
cells (Supplementary Fig. 2). Bcl-2 is an anti-apoptotic protein
which inhibits all mitochondrial apoptogenic alterations, including
mitochondrial membrane potential (MMP, Apm) loss and mito-
chondrial permeability transition pore (MPTP) opening [32].
Consistently, our data showed that overexpression of PTPRO
decreased red JC-1 fluorescence while increasing green JC-1
fluorescence, as well as significantly lowering the red/green ratio,
suggesting AYm loss in LUAD cells (Fig. 4B). The MPTP assay
yielded similar results on that weaker green MPTP fluorescence
was observed in PTPRO-overexpression cells, indicating a higher
proportion of “active” mitochondria with MPTP opening (Fig. 4C).
These findings revealed that mitochondrial dysfunction played a
pivotal role in PTPRO-mediated apoptosis, which were accom-
panied by changes in the expression of Bcl-2 family members.

IHC and Western blot were used to further examine the
expression of crucial proteins linked to the mitochondrial
apoptosis pathway in abovementioned isolated xenografts to
validate the proapoptotic effect of PTPRO in LUAD in vivo. Ki-67
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immunoreactivity was decreased in the PTPRO group compared
with the vector group (Fig. 5A), indicating that PTPRO suppressed
LUAD proliferation in xenografts. Bcl-2 expression was also
significantly decreased following PTPRO transfection. In contrast,
IHC assay revealed remarkably increments of Bax, cleaved-caspase
3 and Bid protein levels in tumors with PTPRO overexpression
(Fig. 5A). Consistently, Western blot analysis revealed that PTPRO
overexpression down-regulated anti-apoptotic Bcl-2 and up-
regulated proapoptotic Bax, cleaved-caspase 9, cleaved-caspase
3 and Bid (Fig. 5B). Statistically analyses of western blot results
were shown in Fig. 5C as the mean +SEM (n=9). These data
suggested the involvement of mitochondria-dependent apoptosis
pathway in PTPRO-induced apoptosis.

PTPRO overexpression suppresses LUAD metastasis both in
vitro and in vivo
The capacity of cell migration and invasion was evaluated to
further explore the inhibitory role of PTPRO in LUAD progression.
Transwell assays showed overexpression of PTPRO significantly
decreased the migration and invasion capacities of HCC827, PC9,
and H1975 cells (Fig. 6A, B). Meanwhile, PTPRO significantly
decreased the protein expression of the mesenchymal marker
N-cadherin and the EMT-inducing transcription factor Snail while
increasing epithelial marker E-cadherin’s level (Fig. 6C), which
concur with the transwell assay results.

PC9 cells stably transfected with PTPRO or vector were injected
into the tail vein of immunodeficient mice to determine whether
PTPRO inhibited tumor metastasis in vivo. As a result, PTPRO
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group had a substantially lower number of metastatic nodules
than the vector group (Fig. 6D, two independent replicated
experiments). Moreover, H&E staining of mice lung slices revealed
that PTPRO overexpression decreased the size and number of the
metastatic nodules (Fig. 6E), as illustrated by quantifying meta-
static lesions on lung sections (Fig. 6F). These results indicated that
PTPRO not only reduced cancer growth viability but also
suppressed the metastatic potential, highlighting its potential as
an effective LUAD treatment target.
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JAK2/STAT3 signaling pathway is potentially involved in
PTPRO anti-tumor activity in LUAD

To explore the molecular mechanism of the tumor-suppression
role of PTPRO in LUAD, we retrieved the PTPRO correlation genes
from TCGA database for pathway enrichment analysis. KEGG
pathway analysis implied the involvement of JAK/STAT signaling
pathway (Fig. 7A). JAK2/STAT3 signaling has been widely
implicated in mitochondria-dependent apoptosis and cancer
metastasis [33, 34], thus attracted our attentions and western
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blotting was applied to compare JAK2/STAT3 pathway activity in
PTPRO-overexpressing and control groups. According to our data,
PTPRO significantly decreased phosphorylation-mediated activa-
tion of JAK2/STAT3 signaling by dephosphorylating JAK2-pY1007
and subsequent STAT3-pY705 residues in LUAD cell lines (Fig. 7B).
Furthermore, decreased JAK2-pY1007 and STAT3-pY705 levels
were also identified in LUAD xenografts by western blotting in the
PTPRO overexpression group in vivo (Fig. 7C). Meanwhile, IHC
analysis was conducted to assess the protein expressions of p-
JAK2, p-STAT3, Bcl-2, Snail, and PTPRO in tissue sections obtained
from ten cases of clinical lung adenocarcinoma specimens
(Fig. 7D). Subsequently, Spearman’s rank correlation analysis was
employed to determine the associations between these proteins.
The analysis revealed significant negative correlations
between PTPRO and p-JAK2, p-STAT3, Bcl-2, as well as Snail
(Fig. 7E). These findings suggested a potential association of
PTPRO with JAK2/STAT3 signaling pathway and its downstream
molecules.

PTPRO exerts slight anti-tumor effects in STAT3-deficient
LUAD cells

CRISPR/Cas9-mediated STAT3 knockout was employed to evaluate
the anti-tumor effects of PTPRO in STAT3-deficient cells. Western
blot analysis confirmed the successful depletion of STAT3 using
CRISPR/Cas9 in PC9 cells (Fig. 8A). Subsequently, MTT assay was
conducted, revealing that PTPRO overexpression can still lead to a
reduction in cell viability at 48 and 72 h in STAT3-deficient cells
(Fig. 8B). Nevertheless, the inhibitory effect of PTPRO on cell
proliferation was compromised following STAT3 knockout, in
contrast to the results observed in MTT assay presented in
Fig. 2B. The Annexin V/PI assay revealed that STAT3-deficient PC9
cells transfected with PTPRO exhibited a marginally higher
proportion of apoptotic cells when compared to vector-
transfected cells (16.6 + 1.99 vs. 12.9 + 1.28, Fig. 8C). While PTPRO
induced a greater degree of apoptosis in original PC9 cells
(15.59+£1.70 vs. 6.7 £ 2.71, Fig. 3C). Consistently, although PTPRO
was demonstrated to exert inhibitory effects on invasion and
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metastasis in STAT3-deficient PC9 cells, its inhibitory efficacy was
compromised comparing to the non-STAT3-deficient PC9 cells
(Figs. 6A, B and 8D).

STAT3 is a signal transducer and transcription activator that
dimerized and translocated to the nucleus upon phosphorylation,
regulates tumor-related genes (such as Bcl-2 and Snail) involved in
cell growth, apoptosis, and migration [35]. According to published
studies [34, 36], JAK2 is a well-known upstream regulator of STAT3.
Taken together, PTPRO can downregulate JAK2/STAT3 phosphor-
ylation, and inhibit oncogenic signals by suppressing expressions
of Bcl-2 and Snail; these events may subsequently induce
mitochondria-dependent apoptosis and suppress tumor metas-
tasis (Fig. 8E).

DISCUSSION

PTPs are critical in counteracting the activity of tyrosine kinases,
which are speculated to block oncogenic transformation and
function as tumor suppressors. Recent evidence shows that PTPs
are potential targets for cancer therapy; they play a role in cancer
development and progression by dephosphorylation of tumor-
related proteins and regulating signaling pathways [37]. PTPRO
decrease has been linked to promoter hypermethylation in several
cancer types [38-40]. Several pieces of research have suggested
the potential growth-suppressor and anti-tumorigenesis proper-
ties of PTPRO, notably in hepatocellular carcinoma [18, 41], breast
cancer [9, 42, 43] and colorectal tumor [44]. However, the
comprehensive functions and mechanisms of PTPRO in lung
adenocarcinoma (LUAD) progression are poorly understood.
According to public datasets and LUAD specimens, we found
that PTPRO is downregulated in LUAD, and its expression is
negatively correlated with tumor size and TNM stage. Further
clinical survival and multivariate analyses demonstrated that low
PTPRO expression predicted a poor prognosis in LUAD patients
and that it can serve as an independent risk factor in LUAD
progression. Moreover, both in vitro and in vivo tests proved that
PTPRO overexpression slowed the progression of LUAD and
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triggered cell death by the mitochondria-dependent apoptosis
pathway.

Apoptosis is a well-known type of programmed cell death that
plays a crucial role in the development and treatment of
malignant tumors. It is activated by different extrinsic and intrinsic
stimuli via two major mechanisms: the extrinsic pathway via death
receptors and the intrinsic pathway via mitochondrial pathways
[45]. The mitochondria-dependent apoptosis pathway is critical for
tissue homeostasis and a variety of human pathologies, including
tumorigenesis and cancer progression [31]. The mitochondria, as a
typical executing organelle of programmed cell death, contain a
variety of cell death-promoting and inhibiting factors. The
mitochondria apoptosis pathway is primarily mediated by two
factors following activation by various apoptotic stimuli. On the
one hand, decreased Bcl-2 and increased Bax proteins integrate
within the outer mitochondrial membrane (OMM), allowing for
mitochondrial outer membrane permeabilization (MOMP) and the
release of cytochrome c from the mitochondrial matrix into the
cytoplasm. In addition, Bid accelerates mitochondrial permeabili-
zation through the activation of Bax and inhibition of anti-
apoptotic BCL-2 members [46]. Following that, the initiator
caspase, procaspase-9, is activated into cleaved-caspase 9,
culminating in the development of an apoptosome. The apopto-
some stimulates the cleavage and activation of executioner
caspases, such as caspase-3 and -7, which then react on various
downstream effectors, eventually causing cell apoptosis [47, 48].
On the other hand, the opening of the mitochondrial permeability
transition pore (MPTP) results in the shuttling of metabolic
products such as ATP, ROS, and Ca®", as well as matrix
enlargement and rupture of the outer membrane [49, 50]. In the
present investigation, protein analysis demonstrated that PTPRO
downregulated anti-apoptotic Bcl-2 and upregulated pro-
apoptotic Bax, resulting in mitochondria-mediated apoptosis and
LUAD cell death.
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STAT3 (Signal transducer and activator of transcription 3), a
DNA-binding transcription factor and a site of convergence for the
majority of initiated oncogenic pathways, plays a role in the
pathogenesis of cancers, including apoptosis and metastasis [34].
STAT3 is activated transiently and tightly regulated in normal cells.
Nonetheless, abnormal JAK2-mediated STAT3 activation has been
identified in the onset and progression of various tumors [51]. B6,
for example, induced apoptosis in breast cancer cells by
constitutively inhibiting STAT3 phosphorylation through allosteric
interaction with JAK2, implying that JAK2 is essential for STAT3
activation [52]. Inhibiting JAK2/STAT3 signaling pathway activation
was found to decrease pancreatic cancer growth and induce
apoptosis both in vivo and in vitro [53]. A previous study found
that acylglycerol kinase overexpression augmented JAK2/
STAT3 sustained activation, promoting tumorigenicity of esopha-
geal squamous cell carcinoma (ESCC) [54]. Moreover, PTPRO
dephosphorylated JAK2 and downregulated JAK2/STAT3 signaling
in hepatocellular carcinoma [41]. Our study confirmed that the
inhibitory efficacy of PTPRO on LUAD growth and metastasis were
compromised in STAT3-deficient LUAD cells, unlike the strong
inhibitory effects observed in non-STAT3-deficient cells. These
results suggested that the depletion of STAT3 might partially
counteract the anti-tumor effect of PTPRO, providing valuable
insights into the interplay between PTPRO and JAK2/STAT3
pathway in cancer progression. Besides, these results indicate
the existence of other possible mechanisms contributing to
PTPRO'’s anti-tumor role. Based on our results and prior research,
we concluded the mechanism as followings: PTPRO suppresses
the phosphorylation and activation of JAK2/STAT3 signaling
pathway, inducing LUAD apoptosis by modulating the Bcl-2
family and boosting mitochondrial membrane potential (Apm)
loss as well as MPTP opening.

Aside from rapid proliferation and decreased apoptosis,
metastasis is also a vital life-threatening component in the
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progression of LUAD. Recent findings have emphasized the potent
oncogenic function of JAK2/STAT3 signaling in tumor invasion and
metastasis, emphasizing the inhibition of JAK2/STAT3 pathway as
a potential therapy in malignancies [55]. For example, colorectal
cancer-derived mesenchymal stem cells promoted EMT and
increased the migration and invasion of colorectal cancer by
activating IL-6/JAK2/STAT3 signaling [56]. Brusatol inhibited
human laryngeal squamous carcinoma migration and invasion
presumably by blocking JAK2/STAT3 signaling [57]. In gastric
cancer cells, single stranded interacting protein 1 (RBMS1) was
discovered to activate the JAK2/STAT3 downstream signaling
pathway after binding to the transcription factor MYC, subse-
quently increasing cancer migration and invasion [58]. Moreover,
Snail was confirmed to be one of the downstream molecules of
JAK2/STAT3 in promoting tumor metastasis [59, 60]. In this study,
protein tyrosine phosphatase PTPRO consistently decreased JAK2/
STAT3 tyrosine dephosphorylation and blocked downstream
signaling, reducing LUAD migration and invasion. Although the
above events may be independent instead of subsequent, our
data suggest that PTPRO may be a viable therapeutic target
for LUAD.
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