Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ARHGAP26 deficiency drives the oocyte aneuploidy and early embryonic development failure

Abstract

Aneuploidy, the presence of a chromosomal anomaly, is a major cause of spontaneous abortions and recurrent pregnancy loss in humans. However, the underlying molecular mechanisms still remain poorly understood. Here, we report that ARHGAP26, a putative tumor suppressor gene, is a newly identified regulator of oocyte quality to maintain mitochondrial integrity and chromosome euploidy, thus ensuring normal embryonic development and fertility. Taking advantage of knockout mouse model, we revealed that genetic ablation of Arhgap26 caused the oocyte death at GV stage due to the mitochondrial dysfunction-induced ROS accumulation. Lack of Arhgap26 also impaired both in vitro and in vivo maturation of survived oocytes which results in maturation arrest and aneuploidy, and consequently leading to early embryonic development defects and subfertility. These observations were further verified by transcriptome analysis. Mechanistically, we discovered that Arhgap26 interacted with Cofilin1 to maintain the mitochondrial integrity by regulating Drp1 dynamics, and restoration of Arhgap26 protein level recovered the quality of Arhgap26-null oocytes. Importantly, we found an ARHGAP26 mutation in a patient with history of recurrent miscarriage by chromosomal microarray analysis. Altogether, our findings uncover a novel function of ARHGAP26 in the oocyte quality control and prevention of aneuploidy and provide a potential treatment strategy for infertile women caused by ARHGAP26 mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of Arhgap26 deletion on the quality of mouse GV oocytes.
Fig. 2: Effects of Arhgap26 deletion on the mouse oocyte maturation in vitro.
Fig. 3: Effects of Arhgap26 deletion on the quality of mouse ovulated oocytes.
Fig. 4: Effects of heterozygous deletion of Arhgap26 on the quality of mouse GV and ovulated oocytes.
Fig. 5: Effects of Arhgap26 deletion on the transcriptome profiling of mouse GV oocytes.
Fig. 6: Effects of Arhgap26 deletion on the dynamics of Cofilin1 and Drp1 in mouse oocytes.
Fig. 7: Expression of exogenous Arhgap26 restores the quality of Arhgap26-null oocytes.
Fig. 8: Chromosomal microarray analysis of peripheral blood from a patient with recurrent miscarriage.

Similar content being viewed by others

Data availability

All study data are included in the article and Supplementary information. Data supporting the findings of this study are available on reasonable request from the corresponding authors.

References

  1. Robinson GE. Pregnancy loss. Best Pract Res Clin Obstet Gynaecol. 2014;28:169–78.

    Article  PubMed  Google Scholar 

  2. Quenby S, Gallos ID, Dhillon-Smith RK, Podesek M, Stephenson MD, Fisher J, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397:1658–67.

    Article  PubMed  CAS  Google Scholar 

  3. Garrido-Gimenez C, Alijotas-Reig J. Recurrent miscarriage: causes, evaluation and management. Postgrad Med J. 2015;91:151–62.

    Article  PubMed  Google Scholar 

  4. Magnus MC, Wilcox AJ, Morken NH, Weinberg CR, Haberg SE. Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study. BMJ. 2019;364:l869.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Korshunov MN, Korshunova ES, Kastrikin YV, E EA, Darenkov SP. [The role of male factor in pregnancy loss]. Urologiia 2021;4:152–7.

  6. du Fosse NA, van der Hoorn MP, van Lith JMM, le Cessie S, Lashley E. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2020;26:650–69.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Du Y, Chen L, Lin J, Zhu J, Zhang N, Qiu X, et al. Chromosomal karyotype in chorionic villi of recurrent spontaneous abortion patients. Biosci Trends. 2018;12:32–39.

    Article  PubMed  CAS  Google Scholar 

  8. Soler A, Morales C, Mademont-Soler I, Margarit E, Borrell A, Borobio V, et al. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152:81–89.

    Article  PubMed  CAS  Google Scholar 

  9. Sugiura-Ogasawara M, Ozaki Y, Katano K, Suzumori N, Kitaori T, Mizutani E. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod. 2012;27:2297–303.

    Article  PubMed  Google Scholar 

  10. Werner M, Reh A, Grifo J, Perle MA. Characteristics of chromosomal abnormalities diagnosed after spontaneous abortions in an infertile population. J Assist Reprod Genet. 2012;29:817–20.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bolor H, Mori T, Nishiyama S, Ito Y, Hosoba E, Inagaki H, et al. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Am J Hum Genet. 2009;84:14–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Singh P, Fragoza R, Blengini CS, Tran TN, Pannafino G, Al-Sweel N, et al. Human MLH1/3 variants causing aneuploidy, pregnancy loss, and premature reproductive aging. Nat Commun. 2021;12:5005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lv S, Liu M, Xu L, Zhang C. Downregulation of decidual SKP2 is associated with human recurrent miscarriage. Reprod Biol Endocrinol. 2021;19:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hildebrand JD, Taylor JM, Parsons JT. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol. 1996;16:3169–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Taylor JM, Macklem MM, Parsons JT. Cytoskeletal changes induced by GRAF, the GTPase regulator associated with focal adhesion kinase, are mediated by Rho. J Cell Sci. 1999;112:231–42.

    Article  PubMed  CAS  Google Scholar 

  16. Francis MK, Holst MR, Vidal-Quadras M, Henriksson S, Santarella-Mellwig R, Sandblad L, et al. Endocytic membrane turnover at the leading edge is driven by a transient interaction between Cdc42 and GRAF1. J Cell Sci. 2015;128:4183–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Doherty GJ, Ahlund MK, Howes MT, Moren B, Parton RG, McMahon HT, et al. The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Mol Biol Cell. 2011;22:4380–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, et al. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol. 2008;18:1802–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe. 2011;10:563–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol. 2008;10:1027–38.

    Article  PubMed  CAS  Google Scholar 

  21. Stergiou L, Bauer M, Mair W, Bausch-Fluck D, Drayman N, Wollscheid B, et al. Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane. PLoS ONE. 2013;8:e55799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 regulates brown and beige adipose differentiation and function. Res Sq. 2023:rs.3.rs-3740465. https://doi.org/10.21203/rs.3.rs-3740465/v1.

  23. Lucken-Ardjomande Hasler S, Vallis Y, Jolin HE, McKenzie AN, McMahon HT. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602–19.

    PubMed  PubMed Central  Google Scholar 

  24. Lenhart KC, Becherer AL, Li J, Xiao X, McNally EM, Mack CP, et al. GRAF1 promotes ferlin-dependent myoblast fusion. Dev Biol. 2014;393:298–311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhu Q, Combs ME, Liu J, Bai X, Wang WB, Herring LE, et al. GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis. Nat Commun. 2023;14:8187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhu Q, Combs ME, Bowles DE, Gross RT, Mendiola Pla M, Mack CP, et al. GRAF1 acts as a downstream mediator of parkin to regulate mitophagy in cardiomyocytes. Cells. 2024;13:448.

  27. Aly RM, Ghazy HF. High expression of GTPase regulator associated with the focal adhesion kinase (GRAF) is a favorable prognostic factor in acute myeloid leukemia. Blood Cells Mol Dis. 2014;53:185–8.

    Article  PubMed  CAS  Google Scholar 

  28. Borkhardt A, Bojesen S, Haas OA, Fuchs U, Bartelheimer D, Loncarevic IF, et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci USA. 2000;97:9168–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zohrabian VM, Nandu H, Gulati N, Khitrov G, Zhao C, Mohan A, et al. Gene expression profiling of metastatic brain cancer. Oncol Rep. 2007;18:321–8.

    PubMed  CAS  Google Scholar 

  30. Li J, Zheng X, Jia J, Xie B, Zhang C, Wang H, et al. CLDN18-ARHGAP26 function in gastric cancer and be a new therapeutic target by ABCG2 and ABCB1 pathway. Food Sci Tech. 2022;42:e54821.

  31. Xu G, Zhao L, Hua Q, Wang L, Liu H, Lin Z, et al. CEMIP, acting as a scaffold protein for bridging GRAF1 and MIB1, promotes colorectal cancer metastasis via activating CDC42/MAPK pathway. Cell Death Dis. 2023;14:167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chen X, Chen S, Li Y, Gao Y, Huang S, Li H, et al. SMURF1-mediated ubiquitination of ARHGAP26 promotes ovarian cancer cell invasion and migration. Exp Mol Med. 2019;51:1–12.

    PubMed  PubMed Central  Google Scholar 

  33. Xiong B, Li S, Ai JS, Yin S, Ouyang YC, Sun SC, et al. BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol Reprod. 2008;79:718–26.

    Article  PubMed  CAS  Google Scholar 

  34. Winship AL, Alesi LR, Stringer JM, Cao Y, Lewis YM, Tu L, et al. Conditional loss of Brca1 in oocytes causes reduced litter size, ovarian reserve depletion and impaired oocyte in vitro maturation with advanced reproductive age in mice. EBioMedicine. 2024;106:105262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bai L, Li P, Xiang Y, Jiao X, Chen J, Song L, et al. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci USA. 2024;121:e2401386121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Miao Y, Wang P, Xie B, Yang M, Li S, Cui Z, et al. BRCA2 deficiency is a potential driver for human primary ovarian insufficiency. Cell Death Dis. 2019;10:474.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Weinberg-Shukron A, Rachmiel M, Renbaum P, Gulsuner S, Walsh T, Lobel O, et al. Essential role of BRCA2 in ovarian development and function. N Engl J Med. 2018;379:1042–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC. Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science. 2014;343:533–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tuppi M, Kehrloesser S, Coutandin DW, Rossi V, Luh LM, Strubel A, et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol. 2018;25:261–9.

    Article  PubMed  CAS  Google Scholar 

  40. Dai XX, Duan X, Liu HL, Cui XS, Kim NH, Sun SC. Chk2 regulates cell cycle progression during mouse oocyte maturation and early embryo development. Mol Cells. 2014;37:126–32.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Luan Y, Yu SY, Abazarikia A, Dong R, Kim SY. TAp63 determines the fate of oocytes against DNA damage. Sci Adv. 2022;8:eade1846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Huang C, Zhao S, Yang Y, Guo T, Ke H, Mi X, et al. TP63 gain-of-function mutations cause premature ovarian insufficiency by inducing oocyte apoptosis. J Clin Invest. 2023;133:e162315.

  43. Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, et al. p63 protects the female germ line during meiotic arrest. Nature. 2006;444:624–8.

    Article  PubMed  CAS  Google Scholar 

  44. Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol. 2007;77:21–49.

    Article  PubMed  CAS  Google Scholar 

  45. Wang LY, Wang DH, Zou XY, Xu CM. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B. 2009;10:483–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Miao Y, Cui Z, Gao Q, Rui R, Xiong B. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32:107987.

    Article  PubMed  CAS  Google Scholar 

  47. Wang W, Liu H, Liu S, Hao T, Wei Y, Wei H, et al. Oocyte-specific deletion of eukaryotic translation initiation factor 5 causes apoptosis of mouse oocytes within the early-growing follicles by mitochondrial fission defect-reactive oxygen species-DNA damage. Clin Transl Med. 2024;14:e1791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang H, Pan Z, Ju J, Xing C, Li X, Shan M, et al. DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J Anim Sci Biotechnol. 2020;11:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rehklau K, Hoffmann L, Gurniak CB, Ott M, Witke W, Scorrano L, et al. Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis. 2017;8:e3063.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Papas RS, Kutteh WH. Genetic testing for aneuploidy in patients who have had multiple miscarriages: a review of current literature. Appl Clin Genet. 2021;14:321–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang K, Lu Y, Morrow DF, Xiao D, Xu C. Alzheimer’s disease neuroimaging I. Associations of ARHGAP26 polymorphisms with Alzheimer’s disease and cardiovascular disease. J Mol Neurosci. 2022;72:1085–97.

    Article  PubMed  CAS  Google Scholar 

  52. Wang Q, Stringer JM, Liu J, Hutt KJ. Evaluation of mitochondria in oocytes following gamma-irradiation. Sci Rep. 2019;9:19941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhang D, Keilty D, Zhang ZF, Chian RC. Mitochondria in oocyte aging: current understanding. Facts Views Vis Obgyn. 2017;9:29–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Colley E, Hamilton S, Smith P, Morgan NV, Coomarasamy A, Allen S. Potential genetic causes of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update. 2019;25:452–72.

    Article  PubMed  CAS  Google Scholar 

  55. Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial dynamics: shaping and remodeling an organelle network. Curr Opin Cell Biol. 2021;68:28–36.

    Article  PubMed  CAS  Google Scholar 

  56. Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020;15:235–59.

    Article  PubMed  CAS  Google Scholar 

  57. Wakai T, Harada Y, Miyado K, Kono T. Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation. Mol Hum Reprod. 2014;20:1090–1100.

    Article  PubMed  CAS  Google Scholar 

  58. Hoffmann L, Rust MB, Culmsee C. Actin(g) on mitochondria - a role for cofilin1 in neuronal cell death pathways. Biol Chem. 2019;400:1089–97.

    Article  PubMed  CAS  Google Scholar 

  59. Hoffmann L, Waclawczyk MS, Tang S, Hanschmann EM, Gellert M, Rust MB, et al. Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell Death Dis. 2021;12:953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang Y, Bai J, Cui Z, Li Y, Gao Q, Miao Y, et al. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging. Nat Aging. 2023;3:1372–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFC2700100) and the National Natural Science Foundation of China (32070836).

Author information

Authors and Affiliations

Authors

Contributions

BX and XO conceived and designed the research; SL, YZ, RY, SZ, JB and YM performed the experiments; SL, YZ, XO, QW and BX analyzed the data; SL, XO, QW and BX wrote the manuscript.

Corresponding authors

Correspondence to Xianghong Ou, Qiang Wang or Bo Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Institutional Review Board (IRB) of Guangdong Second Provincial General Hospital (2018-SZYX-013), China. The peripheral blood sample was donated by the patient after signing the informed consent at the Center for Reproductive Medicine in Guangdong Second Provincial General Hospital. The patient was informed that her peripheral blood would be used for chromosomal microarray. All mouse experiments were performed in accordance with the Animal Research Institute Committee guidelines of Nanjing Agricultural University, China.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, Y., Yuan, R. et al. ARHGAP26 deficiency drives the oocyte aneuploidy and early embryonic development failure. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01384-5

Search

Quick links