Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The PM20D1-NADA pathway protects against Parkinson’s disease

Abstract

Parkinson’s disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression of PM20D1 is decreased during aging and in PD models.
Fig. 2: PM20D1 alleviates α-Syn aggregation and phosphorylation in vivo.
Fig. 3: PM20D1 ameliorates α-Syn pathology and dopaminergic neurodegeneration in a mouse model of synucleinopathy.
Fig. 4: PM20D1 catalyzes the conversion of DA to NADA.
Fig. 5: NADA binds to α-Syn fibrils and alleviates the seeding of α-Syn aggregates.
Fig. 6: NADA attenuates α-Syn PFF-induced TRPV4 activation and calcium overload.
Fig. 7: NADA infusion attenuates α-Syn pathology and motor impairments in vivo.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its supplementary information files (‘Original uncropped membranes’ and ‘supplementary materials’).

References

  1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article  CAS  PubMed  Google Scholar 

  2. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006;5:75–86.

    Article  PubMed  Google Scholar 

  3. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

    Article  CAS  PubMed  Google Scholar 

  4. Di Monte DA. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol. 2003;2:531–8.

    Article  PubMed  Google Scholar 

  5. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565–81.

    Article  PubMed  Google Scholar 

  6. Wong YC, Krainc D. alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3:205–14.

    Article  CAS  PubMed  Google Scholar 

  8. Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357:1255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22:657–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spehlmann R, Stahl SM. Dopamine acetylcholine imbalance in Parkinson’s disease. Possible regenerative overgrowth of cholinergic axon terminals. Lancet. 1976;1:724–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, et al. Trial of Cinpanemab in Early Parkinson’s Disease. N Engl J Med. 2022;387:408–20.

    Article  CAS  PubMed  Google Scholar 

  12. Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al. Trial of Prasinezumab in Early-Stage Parkinson’s Disease. N Engl J Med. 2022;387:421–32.

    Article  CAS  PubMed  Google Scholar 

  13. Smit JW, Basile P, Prato MK, Detalle L, Mathy FX, Schmidt A, et al. Phase 1/1b Studies of UCB0599, an Oral Inhibitor of alpha-Synuclein Misfolding, Including a Randomized Study in Parkinson’s Disease. Mov Disord. 2022;37:2045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levin J, Sing N, Melbourne S, Morgan A, Mariner C, Spillantini MG, et al. Safety, tolerability and pharmacokinetics of the oligomer modulator anle138b with exposure levels sufficient for therapeutic efficacy in a murine Parkinson model: A randomised, double-blind, placebo-controlled phase 1a trial. EBioMedicine. 2022;80:104021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Wang T, Meng L, Jin L, Liu C, Liang Y, et al. Novel naturally occurring autoantibodies attenuate alpha-synuclein pathology in a mouse model of Parkinson’s disease. Neuropathol Appl Neurobiol. 2023;49:e12860.

    Article  CAS  PubMed  Google Scholar 

  16. Soileau MJ, Aldred J, Budur K, Fisseha N, Fung VS, Jeong A, et al. Safety and efficacy of continuous subcutaneous foslevodopa-foscarbidopa in patients with advanced Parkinson’s disease: a randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol. 2022;21:1099–109.

    Article  CAS  PubMed  Google Scholar 

  17. Soares-da-Silva P, Fernandes MH, Pinto-do-O PC. Cell inward transport of L-DOPA and 3-O-methyl-L-DOPA in rat renal tubules. Br J Pharm. 1994;112:611–5.

    Article  CAS  Google Scholar 

  18. Burke WJ, Chung HD, Li SW. Quantitation of 3,4-dihydroxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde, the monoamine oxidase metabolites of dopamine and noradrenaline, in human tissues by microcolumn high-performance liquid chromatography. Anal Biochem. 1999;273:111–6.

    Article  CAS  PubMed  Google Scholar 

  19. Tsunoda M, Takezawa K, Yanagisawa T, Kato M, Imai K. Determination of catecholamines and their 3-O-methyl metabolites in mouse plasma. Biomed Chromatogr. 2001;15:41–4.

    Article  CAS  PubMed  Google Scholar 

  20. Schank JR, Ventura R, Puglisi-Allegra S, Alcaro A, Cole CD, Liles LC, et al. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology. 2006;31:2221–30.

    Article  CAS  PubMed  Google Scholar 

  21. Itäaho K, Alakurtti S, Yli-Kauhaluoma J, Taskinen J, Coughtrie MW, Kostiainen R. Regioselective sulfonation of dopamine by SΜLT1A3 in vitro provides a molecular explanation for the preponderance of dopamine-3-O-sμlfate in human blood circulation. Biochem Pharm. 2007;74:504–10.

    Article  PubMed  Google Scholar 

  22. Uutela P, Karhu L, Piepponen P, Käenmäki M, Ketola RA, Kostiainen R. Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry. Anal Chem. 2009;81:427–34.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Q, Chen L, Hu LJ, Liu WY, Feng F, Qu W. Two new ortho benzoquinones from Uncaria rhynchophylla. Chin J Nat Med. 2016;14:232–5.

    CAS  PubMed  Google Scholar 

  24. Lindholm P, Voutilainen MH, Laurén J, Peränen J, Leppänen VM, Andressoo JO, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448:73–7.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res. 2010;20:345–56.

    Article  CAS  PubMed  Google Scholar 

  26. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14:35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahmadi FA, Grammatopoulos TN, Poczobutt AM, Jones SM, Snell LD, Das M, et al. Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis. Neurochem Res. 2008;33:886–901.

    Article  CAS  PubMed  Google Scholar 

  28. Masato A, Bubacco L, Greggio E. Too much for your own good: Excessive dopamine damages neurons and contributes to Parkinson’s disease: An Editorial Highlight for “Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo”. J Neurochem. 2021;158:833–6.

    Article  CAS  PubMed  Google Scholar 

  29. Werner-Allen JW, DuMond JF, Levine RL, Bax A. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of alpha-Synuclein. Angew Chem Int Ed Engl. 2016;55:7374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384:1196–205.

    Article  Google Scholar 

  31. Gray R, Patel S, Ives N, Rick C, Woolley R, Muzerengi S, et al. Long-term Effectiveness of Adjuvant Treatment With Catechol-O-Methyltransferase or Monoamine Oxidase B Inhibitors Compared With Dopamine Agonists Among Patients With Parkinson Disease Uncontrolled by Levodopa Therapy: The PD MED Randomized Clinical Trial. JAMA Neurol. 2022;79:131–40.

    Article  PubMed  Google Scholar 

  32. Sukhanova IA, Sebentsova EA, Khukhareva DD, Vysokikh MY, Bezuglov VV, Bobrov MY, et al. Early-life N-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats. Int J Dev Neurosci. 2019;78:7–18.

    Article  CAS  PubMed  Google Scholar 

  33. Kudo E, Fujii Y. Dopamine: functions, regulation, and health effects. New York: Nova Science Publishers; 2012.306.

  34. Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharm Ther. 2007;114:13–33.

    Article  CAS  Google Scholar 

  35. Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci. 2018;11:487.

    Article  CAS  PubMed  Google Scholar 

  36. Redmond WJ, Cawston EE, Grimsey NL, Stuart J, Edington AR, Glass M, et al. Identification of N-arachidonoyl dopamine as a highly biased ligand at cannabinoid CB1 receptors. Br J Pharm. 2016;173:115–27.

    Article  CAS  Google Scholar 

  37. Hsu CC, Bien MY, Huang YT, Ruan T, Kou YR, Lin YS. N-arachidonyl dopamine sensitizes rat capsaicin-sensitive lung vagal afferents via activation of TRPV1 receptors. Respir Physiol Neurobiol. 2009;167:323–32.

    Article  CAS  PubMed  Google Scholar 

  38. Bisogno T, Melck D, Gretskaya NM, Bezuglov VV, De Petrocellis L, Di Marzo V. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351:817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Novosadova E, Antonov S, Arsenyeva E, Kobylanskiy A, Vanyushina Y, Malova T, et al. Neuroprotective and neurotoxic effects of endocannabinoid-like compounds, N-arachidonoyl dopamine and N-docosahexaenoyl dopamine in differentiated cultures of induced pluripotent stem cells derived from patients with Parkinson’s disease. Neurotoxicology. 2021;82:108–18.

    Article  CAS  PubMed  Google Scholar 

  40. Novosadova EV, Arsenyeva EL, Manuilova ES, Khaspekov LG, Bobrov MY, Bezuglov VV. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells. Biochemistry. 2017;82:1367–72.

    CAS  PubMed  Google Scholar 

  41. Bobrov MY, Lizhin AA, Andrianova EL, Gretskaya NM, Frumkina LE, Khaspekov LG, et al. Antioxidant and neuroprotective properties of N-arachidonoyldopamine. Neurosci Lett. 2008;431:6–11.

    Article  CAS  PubMed  Google Scholar 

  42. Wojtalla A, Herweck F, Granzow M, Klein S, Trebicka J, Huss S, et al. The endocannabinoid N-arachidonoyl dopamine (NADA) selectively induces oxidative stress-mediated cell death in hepatic stellate cells but not in hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2012;302:G873–87.

    Article  CAS  PubMed  Google Scholar 

  43. Hu SS, Bradshaw HB, Benton VM, Chen JS, Huang SM, Minassi A, et al. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot Ess Fat Acids. 2009;81:291–301.

    Article  CAS  Google Scholar 

  44. Kim JT, Terrell SM, Li VL, Wei W, Fischer CR, Long JZ. Cooperative enzymatic control of N-acyl amino acids by PM20D1 and FAAH. Elife. 2020;9:e55211.

  45. Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, et al. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell. 2016;166:424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li D, Liu Y, Gao W, Han J, Yuan R, Zhang M, et al. Inhibition of miR-324-5p increases PM20D1-mediated white and brown adipose loss and reduces body weight in juvenile mice. Eur J Pharm. 2019;863:172708.

    Article  CAS  Google Scholar 

  47. Benson KK, Hu W, Weller AH, Bennett AH, Chen ER, Khetarpal SA, et al. PM20D1 Natural human genetic variation determines basal and inducible expression of PM20D1, an obesity-associated gene. Proc Natl Acad Sci USA. 2019;116:23232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Svensson KJ, et al. Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc Natl Acad Sci USA. 2018;115:E6937–E6945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song N, Fang Y, Zhu H, Liu J, Jiang S, Sun S, et al. Kir6.2 is essential to maintain neurite features by modulating PM20D1-reduced mitochondrial ATP generation. Redox Biol. 2021;47:102168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang W, Meng X, Yang C, Fang D, Wang X, An J, et al. Brown adipose tissue activation in a rat model of Parkinson’s disease. Am J Physiol Endocrinol Metab. 2017;313:E731–E736.

    Article  PubMed  Google Scholar 

  51. Larrick JW, Larrick JW, Mendelsohn AR. Uncoupling Mitochondrial Respiration for Diabesity. Rejuvenation Res. 2016;19:337–40.

    Article  CAS  PubMed  Google Scholar 

  52. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.

    Article  CAS  PubMed  Google Scholar 

  53. Cibulka M, Brodnanova M, Grendar M, Necpal J, Benetin J, Han V, et al. Alzheimer’s Disease-Associated SNP rs708727 in SLC41A1 May Increase Risk for Parkinson’s Disease: Report from Enlarged Slovak Study. Int J Mol Sci. 2022;23:1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanchez-Mut JV, Glauser L, Monk D, Gräff J. Comprehensive analysis of PM20D1 QTL in Alzheimer’s disease. Clin Epigenetics. 2020;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rudakou U, Yu E, Krohn L, Ruskey JA, Asayesh F, Dauvilliers Y, et al. Targeted sequencing of Parkinson’s disease loci genes highlights SYT11, FGF20 and other associations. Brain. 2021;144:462–72.

    Article  PubMed  Google Scholar 

  56. Paul KC, Kusters C, Furlong M, Zhang K, Yu Y, Folle AD, et al. Immune system disruptions implicated in whole blood epigenome-wide association study of depression among Parkinson’s disease patients. Brain Behav Immun Health. 2022;26:100530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-Mut JV, Heyn H, Silva BA, Dixsaut L, Garcia-Esparcia P, Vidal E, et al. PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat Med. 2018;24:598–603.

    Article  CAS  PubMed  Google Scholar 

  58. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, et al. alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012;287:15345–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. John R. Crowther, Methods in Molecular Biology, the ELISA Guidebook, 2nd ed. Humana Press, a part of Springer Science + Business Media, LLC 2009.

  60. Butler JE. The Behavior of Antigens and Antibodies Immobilized on a Solid Phase. In: Van Regenmortel MHV, editor. Structure of Antigens. Boca Raton, FL: CRC Press, 1992. 209-59. Vol. 1.

  61. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51:2415–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Balvers MG, Verhoeckx KC, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:1583–90.

    Article  CAS  Google Scholar 

  65. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA. 2002;99:8400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zajac D, Matysiak Z, Czarnocki Z, Pokorski M, et al. Membrane association of N-oleoyl-dopamine in rat brain. J Physiol Pharm. 2006;57:403–8.

    Google Scholar 

  67. Butler YR, Liu Y, Kumbhar R, Zhao P, Gadhave K, Wang N, et al. alpha-Synuclein fibril-specific nanobody reduces prion-like alpha-synuclein spreading in mice. Nat Commun. 2022;13:4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, et al. LRRK2 modifies alpha-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bera K, Kiepas A, Godet I, Li Y, Mehta P, Ifemembi B, et al. Extracellular fluid viscosity enhances cell migration and cancer disSDination. Nature. 2022;611:365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, et al. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep. 2021;37:110133.

    Article  CAS  PubMed  Google Scholar 

  71. Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19:101–6.

    Article  CAS  PubMed  Google Scholar 

  72. Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regμlated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics. 2020;10:10154–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takahashi M, Uchikado H, Caprotti D, Weidenheim KM, Dickson DW, Ksiezak-Reding H, et al. Identification of G-protein coupled receptor kinase 2 in paired helical filaments and neurofibrillary tangles. J Neuropathol Exp Neurol. 2006;65:1157–69.

    Article  CAS  PubMed  Google Scholar 

  74. Shin WH, Chung KC. Death-associated Protein Kinase 1 Phosphorylates alpha-Synuclein at Ser129 and Exacerbates Rotenone-induced Toxic Aggregation of alpha-Synuclein in Dopaminergic SH-SY5Y Cells. Exp Neurobiol. 2020;29:207–18.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yuan YH, Yan WF, Sun JD, Huang JY, Mu Z, Chen NH. The molecular mechanism of rotenone-induced alpha-synuclein aggregation: emphasizing the role of the calcium/GSK3beta pathway. Toxicol Lett. 2015;233:163–71.

    Article  CAS  PubMed  Google Scholar 

  76. White JP, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev. 2016;96:911–73.

    Article  CAS  PubMed  Google Scholar 

  77. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    Article  CAS  PubMed  Google Scholar 

  78. You H, Mariani LL, Mangone G, Le Febvre de Nailly D, Charbonnier-Beaupel F, Corvol JC. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell Tissue Res. 2018;373:111–35.

    Article  CAS  PubMed  Google Scholar 

  79. Friedman JH. Early- vs late-start levodopa relieved symptoms but did not affect disease progression in Parkinson disease. Ann Intern Med. 2019;170:JC56.

    Article  PubMed  Google Scholar 

  80. Verschuur CVM, Suwijn SR, Boel JA, Post B, Bloem BR, van Hilten JJ, et al. Randomized Delayed-Start Trial of Levodopa in Parkinson’s Disease. N Engl J Med. 2019;380:315–24.

    Article  CAS  PubMed  Google Scholar 

  81. Yamamoto BK, Novotney S. Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem. 1998;71:274–80.

    Article  CAS  PubMed  Google Scholar 

  82. Morón JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–95.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Strauss M, O’Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, et al. [3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther. 2020;374:241–51.

  84. Clauss NJ, Mayer FP, Owens WA, Vitela M, Clarke KM, Bowman MA, et al. Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse. Mol Psychiatry. 2023;28:2934–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pihlstrøm L, Rengmark A, Bjørnarå KA, Dizdar N, Fardell C, Forsgren L, et al. Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease. J Hum Genet. 2015;60:357–62.

    Article  PubMed  Google Scholar 

  86. Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, et al. Pathological structural conversion of alpha-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci. 2022;25:1134–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Park Jae-Hyeon, Burgess JeremyD, Faroqi AymanH, DeMeo NatashaN, Fiesel FabienneC, Springer Wolfdieter, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener. 2020;15:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82271447, 81771382, China), the National Key Research and Development Program of China (2019YFE0115900, China), the Innovative Research Groups of Hubei Province (2022CFA026, China), and the ‘New 20 Terms of Universities in Jinan’ grant (No. 202228022).

Author information

Authors and Affiliations

Authors

Contributions

Professor Zhentao Zhang performed conceptualization and funding acquisition, provided supervision and managed the project; Dr. Yunying Yang, Li Zhang and Sichun Chen designed and conducted the experiments and wrote the paper; Dr. Sichun Chen, Professor Hua Hou, Dr. Guoxin Zhang, Yan Liu, Yiming Li, Li Zou, Ye Tian, Lijun Dai, Min Xiong and Lina Pan contributed to the development of the methodology, data curation and visualization; Professor Lanxia Meng, Jing Xiong, Liam Chen and Zhui Yu performed the data analysis, manuscript review and editing.

Corresponding author

Correspondence to Zhentao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All animal experiments were ethically approved by the Institutional Animal Care and Use Committee (IACUC) of Renmin Hospital of Wuhan University (Approval No. 20210712).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, S., Zhang, L. et al. The PM20D1-NADA pathway protects against Parkinson’s disease. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01356-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01356-9

Search

Quick links