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implications for therapeutic strategies
Chloe Gulliver 1✉, Sebastian Huss2, Axel Semjonow3, George S. Baillie1 and Ralf Hoffmann1,4✉

© The Author(s) 2023

BACKGROUND: Androgen signalling remains the seminal therapeutic approach for the management of advanced prostate cancer.
However, most tumours eventually shift towards an aggressive phenotype, characterised by androgen independence and
treatment resistance. The cyclic adenosine monophosphate (cAMP) pathway plays a crucial role in regulating various cellular
processes, with the phosphodiesterase PDE4D7 being a vital modulator of cAMP signalling in prostate cancer cells.
METHODS: Using shRNA-mediated PDE4D7 knockdown in LNCaP cells and downstream analysis via RNA sequencing and
phenotypic assays, we replicate clinical observations that diminished PDE4D7 expression promotes an aggressive prostate cancer
phenotype.
RESULTS: Our study provides evidence that loss of PDE4D7 expression represents a pivotal switch driving the transition from an
androgen-sensitive state to hormone unresponsiveness and neuroendocrine differentiation. In addition, we demonstrate that
PDE4D7 loss affects DNA repair pathways, conferring resistance to poly ADP ribose polymerase (PARP) inhibitors.
CONCLUSION: Reinstating PDE4D7 expression sensitises prostate cancer cells to anti-androgens, DNA damage response inhibitors,
and cytotoxic therapies. These findings provide significant insight into the regulatory role of PDE4D7 in the development of lethal
prostate cancer and the potential of its modulation as a novel therapeutic strategy.
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INTRODUCTION
In 2020, ~1.4 million men were newly diagnosed with prostate
cancer (PCa) worldwide, leading to 375,000 cancer-induced deaths
[1]. In general, the majority of PCa patients are at low-to-
intermediate risk of developing progressive disease [2], however,
17–31% of patients are clinically high-risk with an elevated
probability of PCa-specific death [3, 4].
In 2012, the U.S. Preventive Services Task Force (USPSTF)

recommended against continuously widespread PSA screening in
the U.S. to avoid overdetection of low-risk diseases [5]. In
following years, the number of newly diagnosed patients declined
across all age groups by an estimated annual percent change of
nearly 20% [6], and the incidence of patients with locally
advanced or metastatic disease at presentation increased [7, 8].
This in turn may promote rising PCa mortality [9].
Despite the shift to a higher grade and advanced stage at

diagnosis, the identified tumours are still heterogeneous concern-
ing their biological and progressive characteristics. The most
frequent molecular alterations in advanced PCa involve signalling
via androgen receptor (AR), WNT, PI3K, DNA repair, and the cell
cycle [10, 11], as well as altered gene expression and epigenetics
[12, 13]. Consequently, it is clinically relevant to accurately risk

stratify patients to apply the most appropriate therapeutic
strategy [14].
Cyclic AMP (cAMP) can modulate AR activity via promoting

phosphorylation of the AR [15] or AR coregulatory proteins [16] by
protein kinase A (PKA). Alternatively, cAMP can activate cAMP
response element-binding protein (CREB) through PKA phosphor-
ylation in the presence of androgens and thus bind to promoter
regions of androgen-regulated genes to enhance their transcrip-
tional activation [17]. Phosphodiesterases (PDEs) are a superfamily
of enzymes [18] that play a fundamental role in hydrolysing cAMP,
leading to its degradation and termination of cell signal
transduction in a spatially compartmentalised manner [19].
Previously, we reported that the expression of PDE4D7 is

increased in TMPRSS2-ERG-positive prostate tumours [20] and is
inversely correlated with the risk of biochemical recurrence (BCR)
after radical prostatectomy (RP). The PDE4D7 score independently
adds value to clinical prognostic variables such as ISUP Gleason
grade or the CAPRA/CAPRA-S risk scores to predict postsurgical
disease progression and poor prognosis [21, 22]. Furthermore, we
showed that PDE4D7 transcription is associated with androgen
resistance and might be involved in the regulation of PCa cell
proliferation [23].
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Here, we present evidence that the PDE4D7 score predicts
survival outcomes in clinically high-risk PCa patients after
postsurgical PSA recurrence followed by salvage radiation therapy
(SRT) with or without androgen-deprivation therapy (ADT). We
replicate in a cellular model the clinical observation that
diminished PDE4D7 expression promotes an aggressive pheno-
type and induces therapeutic resistance, and we suggest the
manipulation of PDE4D7 expression or activity as a novel
therapeutic avenue.

METHODS
Patient samples
Two biopsy punches (~1 ×;2 mm) were collected from 367 PCa patients
operated on between 1994 and 2011. Of those, 363 patients had at least
one adverse pathological feature (PSM: positive surgical margins; SVI:
seminal vesicle invasion; EPE: extra-prostatic extension; LNI: lymph node
invasion; Gleason 4 component) and/or were classified into post-treatment
intermediate- or high risk of disease progression according to the
clinical risk metrics CAPRA-S [24] and/or the EAU-BCR risk model [25],
while four patients demonstrated a post-operatively rising PSA in the
absence of any of the stated adverse features. All patients experienced BCR
and were stratified to SRT. In total, 188 patients also received ADT
(Supplementary Fig. 1). The study was conducted in accordance with the
Declaration of Helsinki and approved by the institutional Ethics Committee
of Westfalian Wilhelms University Münster, Germany (Ethics code 2007-
467-f-S). Informed consent was obtained from all subjects involved in
this study.

Generation of stable PDE4D7-modified LNCaP cells
Stable shRNA-mediated PDE4D7 knockdown in LNCaP cells. LNCaP clone
FGC (ATCC® CRL1740™) cells were cultured in RPMI 1640 medium (Gibco™)
supplemented with 10% (v/v) foetal bovine serum, 1% (v/v) L-glutamine
and 1% (v/v) penicillin/streptomycin. The lentiviral transfer plasmid was
designed to stably express an shRNA hairpin targeting the first coding
exon of the PDE4D7 transcript. As a control, a scrambled nucleotide
sequence of the PDE4D7-targeting shRNA was cloned into the transfer
plasmid. LNCaP FGC cells were infected with lentiviruses at MOI= 10 in the
presence of 10 µg/ml polybrene. Cells were maintained in a puromycin-
supplemented medium prior to selection and clonal expansion of stably
transduced cells (Supplementary Materials).

Inducible PDE4D7 expression in PDE4D7-knockdown LNCaP P1 cells. The
PDE4D7 (GenBank ID AF536976) sequence was first subcloned into
lentivirus vectors with CMV (LVR-1001-pLV-CMV-PGK-Puro) and then into
the Tet-On inducible vector (pLV-tet-on-3G-P2A-Puro).
LNCaP-shRNA P1 cells were cultured in the same conditions to LNCaP

FGC cells, and infected with Tet-On inducible lentivirus at MOI= 5–10 in
the presence of 8 µg/ml polybrene (Supplementary Materials). PDE4D7
expression was induced with 1 µg/ml doxycycline.
For downstream molecular analysis, the following cell lines/clones were

used: LNCaP FCG wild type (WT); LNCaP scrambled shRNA control (clone
SC2); LNCaP PDE4D7-targeting shRNA (clones P1, w5.2 and w6.3), and
LNCaP clone P1 transfected with Tet-On inducible PDE4D7 vector (clone
P1-TET4D7).

RT-qPCR
To account for potential tumour heterogeneity, the two tissue punches of
the RP cohort were combined before RNA extraction as previously
described [21]. RNA was extracted from LNCaP cell lines using the RNeasy
Mini Kit (QIAGEN). RT-qPCR, oligonucleotide primers/probes (Supplemen-
tary Table 7) and statistical analysis were performed as previously
described [21]. Details on the calculation of clinical and genomic risk
scores can be found in Supplementary Materials.

RNA sequencing
Total RNA (100 ng) was used as input to remove ribosomal RNA using the
Ribo-Zero Gold (Human/Mouse/Rat) rRNA Removal Kit (Illumina Inc.)
according to the manufacturer’s instructions. The total of the depleted RNA
was used as input into the Scriptseq V2 RNA-Seq Library Preparation Kit
(Epicentre/Illumina Inc.). Prepared RNAseq libraries were sequenced using

a NextSeq 500 sequencing system (paired-end; 2 × 75 bp read length;
~80 million total reads per sample for human tissue and ~20 million reads
per sample for the sequenced cell lines). Details on RNAseq data
processing can be found in the Supplementary Materials.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed as described here
(https://www.gsea-msigdb.org/gsea/index.jsp). The feature count matrices
of the gene expression derived from RNAseq were used as GSEA input.

Whole-genome sequencing
Genomic DNA (100 ng) was fragmented at 350 bp by ultrasonication.
Libraries were constructed following the TruSeq DNA Nano protocol
(Illumina). In brief, sheared gDNA was end-prepped, dA-tailed and enriched
for fragments of ~350 bp through size selection with AMPure XP beads
(Beckman Coulter). Indexing PCR for a total of eight cycles was performed
for the size-selected fragments, and the products were purified with
AMPure XP beads. The quality of the final libraries was checked on the
LabChip GX Nucleic Acid Analyzer (PerkinElmer). High-coverage sequen-
cing was performed on the Illumina NovaSeq 6000 system with the S4 flow
cell and PE150 configuration. Further details can be found in the Supple-
mentary Materials.

Plasmid DNA transfection
LNCaP cells were transfected with pcDNA3.1-PDE4D7-VSV plasmid DNA
using Lipofectamine LTX with Plus Reagent (Thermo Fisher Scientific)
according to the manufacturer’s protocol.

xCELLigence real-time cell analysis
Real-time cell growth was analysed using the xCELLigence RTCA system
(Agilent). Cellular adhesion influences electrical impedance, which is
converted into the cell index (CI) via RTCA software. Cells were treated
~24 h post-seeding (10,000 cells/well). Negative controls (0.1% DMSO or
untreated) were also included. CI was transformed into normalised CI to
timepoint of treatment.

Western blotting
Cells were lysed in 3T3 buffer (50mM NaCl, 50 mM NaF, 30 mM sodium
pyrophosphate, 25mM HEPES, 2.5 mM EDTA, 10% (v/v) glycerol, 1% (v/v)
Triton X-100; pH 7.5). Equal protein concentrations were separated via SDS-
PAGE and transferred onto nitrocellulose membranes. Membranes were
blocked in 5% (w/v) milk powder in TBS-T for 1 h prior to primary and
secondary antibody (Supplementary Materials) incubations and imaged via
Odyssey DLx (LICOR).

Immunofluorescence
Cells were seeded onto 13-mm glass coverslips. Twenty-four hours post-
transfection coverslips were fixed with 4% (v/v) paraformaldehyde, prior to
blocking and permeabilization (10% donkey serum, 0.5% BSA and 0.2%
Triton-X in PBS). Coverslips were incubated overnight with anti-PDE4D7
primary (1:200, Baillie Lab) and Alexa-Fluor 488 Donkey-anti-Goat
secondary (1:500, Thermo Fisher Scientific #A-11055), or anti-γH2AX
primary (1:500, Sigma-Aldrich #05-636) and Alexa-Fluor 488 Donkey-anti-
Mouse secondary (1:500, Thermo Fisher Scientific #A-21200) antibodies.
Coverslips were mounted with Duolink In Situ Mounting Medium with
DAPI (Sigma-Aldrich) and imaged via ZEISS LSM 880 laser scanning
microscope with a ×63 oil immersion objective.

Statistical analysis
MedCalc (MedCalc Software v2.20 BVBA, Ostend, Belgium) was used for
statistical analysis of patient sample data. For LNCaP data normality was
assessed via QQ plot, and all data are expressed as mean +/− standard
error of the mean (SEM). For statistical analysis of three or more groups
with one independent variable, a one-way ANOVA with Dunnet post hoc
test or Welch and Brown–Forsythe ANOVA (for data with significant
standard deviation) were used. A two-way ANOVA with the Sidak post hoc
test was used for analysis of two independent variables. Comparison
between the two groups was performed via unpaired Student’s t test.
Statistical analyses were performed via GraphPad Prism Version 9
(*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001).
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RESULTS
The PDE4D7 score is associated with survival outcomes in
high-risk patients
All subjects enrolled in this study experienced postsurgical PSA
relapse and were subsequently stratified to SRT. Pathological
analysis revealed pT3a or higher in nearly 80% of patients
(Table 1). Most patients (85%) were classified as intermediate-risk
(41.1%; CAPRA-S scores 2–5) or high-risk (44.1%; CAPRA-S scores
>5) for postsurgical disease progression [24]. Over half of the
patients (188/367) received ADT during the study period. During a
median follow-up of 103 months post prostatectomy, 11.7% died
from prostate cancer-specific mortality (PCSM) and 17.4% from all-
cause mortality (ACM) (Table 1).
We observed a strong inverse association between the PDE4D7

score and PCSM after SRT in multivariable analysis (HR= 0.37; 95%
CI 0.23–0.58; P < 0.0001) (Table 2). We then sought to determine
whether the PDE4D7 score provided independent prognostic
information in the context of genomic GPS (Genomic Prostate
Score [26]) or CCP (Cell Cycle Progression [26]) signatures (see
also Supplementary Materials for details on the calculation of the
respective score). Interestingly, only the Genomic Prostate Score
signature demonstrated a significant association with PCSM
(HR= 1.3; 95% CI 1.0–1.6; P= 0.03). In both analyses, the
PDE4D7 score remained a significant variable (P= 0.01 and
P= 0.007; Supplementary Table 1A and 1B, respectively). Addi-
tionally, the PDE4D7 score was tested in in combination with the
CAPRA-S and EAU-BCR risk scores [24, 25], and remained the most
significant predictor for PCSM after SRT in both models (HR= 0.36,
P < 0.0001; HR= 0.31, P < 0.0001, respectively; Supplementary
Table 1C).
Kaplan–Meier (KM) analysis of pPDE4D7 percentile scores

stratified patients into three sub-cohorts with significantly
different survival rates post-SRT (HR intermediate–high: NA; HR
low–intermediate: 4.9; 95% CI 2.1–11.3; log-rank P < 0.0001;
Fig. 1a). Patients with high pPDE4D7 score had a 100% 10-year
survival rate, while those with intermediate and low scores had 10-
year survival rates of ~90% and <50%, respectively (Fig. 1a). ACM

Table 1. Aggregated summary of the characteristics of the studied
patient cohort.

# Patients N= 367

Age range [years] 45.3–79.2 (median: 62.5;
IQR: 8.1)

preoperative PSA [ng/ml] 0.3–168 (median: 10.0;
IQR: 9.3)

pT stage N %

pT2 78 21.3%

pT3a 131 35.7%

pT3b 103 28.1%

pT3c 44 12.0%

pT4 11 3.0%

ISUP Gleason

Grade Group 1 36 9.8%

Grade Group 2 147 40.1%

Grade Group 3 109 29.7%

Grade Group 4 19 5.2%

Grade Group 5 55 15.0%

Not available 1 0.3%

CAPRA-S score

CAPRA-S <= 2 39 10.6%

CAPRA-S 3–5 151 41.1%

CAPRA-S >= 6 162 44.1%

Not available 15 4.1%

EAU-BCR risk score

EAU-BCR Risk 0 185 50.4%

EAU-BCR Risk 1 163 44.4%

Not available 19 5.2%

Surgical margin status

Negative 100 27.2%

Positive 265 72.2%

Not available 2 0.5%

Extra-prostatic extension

Absent 135 36.8%

Present 229 62.4%

Not available 3 0.8%

Seminal vesicle invasion

Absent 244 66.5%

Present 123 33.5%

Lymph node invasion

Absent 334 91.0%

Present 33 9.0%

Clinical metastasis

No event 182 49.6%

Event 128 34.9%

Unknown 57 15.5%

Salvage radiation

Not administered 0 0%

Administered 367 100%

Androgen-deprivation therapy

Not administered 162 44.1%

Administered 188 51.2%

Unknown 17 4.6%

Table 1. continued

# Patients N= 367

Age range [years] 45.3–79.2 (median: 62.5;
IQR: 8.1)

preoperative PSA [ng/ml] 0.3–168 (median: 10.0;
IQR: 9.3)

pT stage N %

Prostate cancer-specific mortality

No event 324 88.3%

Event 43 11.7%

All-cause mortality

No event 303 82.6%

Event 64 17.4%

Median Follow-Up [post-RP]

103 months

ADT androgen-deprivation therapy, CR clinical metastases, PCSM prostate
cancer-specific mortality, ACM all-cause mortality, N/A not available, RP
radical prostatectomy, SRT salvage radiation therapy.
Demographics of the RP patient cohort including the N= 367 patients
eligible for statistical data analysis. For patient age and preoperative PSA, the
min and max values in the cohort are shown; median and IQR are shown in
parentheses. Postsurgical pathology is given (note: extracapsular extension
was derived from pathology-stage information). The outcome category
illustrates the cumulative events in terms of recurrence to CR, SRT or ADT
after surgery. Mortality is shown as PCSM as well as overall ACM; N/A.
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exhibited similar trends in this patient cohort (Fig. 1b). The EAU-
BCR stratified low-risk group had a significantly better survival rate
at 10 years post-SRT (greater than 90%) compared to the high-risk
group (~72%) (HR= 3.7; 95% CI 2.0–6.8; log-rank P < 0.0001;
Fig. 1c).
We compared the PDE4D7 score to individual clinical para-

meters and clinical models, as well as combination models
incorporating the PDE4D7 score with the EAU-BCR risk score and
additional clinical variables, to assess the predictive ability of the
PDE4D7 score for 5-year PCSM after SRT. The individual clinical
parameters and models demonstrated AUCs below 0.7, while the
PDE4D7 & clinical combination models exhibited AUCs of 0.81
(PDE4D7_EAU-BCR) and 0.88 (full risk model) (P < 0.0001). These
results suggest that the PDE4D7 & clinical combination models
have superior predictive ability for 5-year PCSM (Supplementary
Table 1D).
Finally, KM survival analysis revealed a statistically significant

difference in survival outcomes between pPDE4D7 score classes
(HR intermediate–high: NA; HR low–intermediate: 4.3; 95% CI
1.9–9.6; log-rank P < 0.0001; Fig. 1d) in patients receiving both ADT
and SRT. Specifically, patients with low pPDE4D7 score had a
median survival of 89.6 months and an overall cancer-specific
survival rate of 30%, while those with intermediate and high
pPDE4D7 scores had not reached median survival. A similar
pattern was observed for ACM (Fig. 1e). In contrast, none of the
other studied risk classification models were able to significantly
stratify patients (Supplementary Fig. 2A–C).
Our data demonstrate that the PDE4D7 score is a significant

predictor of PCSM and ACM in patients with recurrent and
progressive PCa following primary surgical resection. Patients with
higher PDE4D7 scores had a more favourable long-term survival
rate, while those with lower scores exhibited a poorer survival
prognosis following postsurgical treatments. These findings
suggest that the PDE4D7 score may be a useful predictor of
outcomes in this patient population.

PDE4D7 knockdown is associated with loss of AR signalling,
enrichment of EMT and NED
To further investigate the biological significance of PDE4D7 in PCa
development and progression, we generated a derivative of the

LNCaP (clone FCG) cell line with selective knockdown of PDE4D7
expression using lentivirus-mediated shRNA (Supplementary
Fig. 3A). Among several PDE4D-knockdown LNCaP clones,
LNCaP_P1 cells exhibited the most significant downregulation of
PDE4D7 mRNA expression, with no decrease observed in scrambled
shRNA control (LNCaP_SC2) cells (Fig. 2a). Western blot analysis and
confocal microscopy further confirmed the reduction in PDE4D7
protein expression in LNCaP_P1, LNCaP_w5.2 and LNCaP_w6.3 cells
compared to wild type (LNCaP_WT) (Fig. 2b, c and Supplementary
Fig. 4C). Importantly, neither PDE4D5 nor PDE4D9 were inadver-
tently knocked down in the shRNA-PDE4D7 clones (Supplementary
Fig. 4A, B). These findings demonstrate the successful generation of
a selective PDE4D7-knockdown model in LNCaP cells.
We performed next-generation sequencing (NGS) RNA sequen-

cing of the two control cell lines (LNCaP_WT and LNCaP_SC2) as
well as three PDE4D7-knockdown clones (LNCaP_P1, LNCaP_w5.2
and LNCaP_w6.3) and analysed the 50 GSEA hallmark pathways
(gsea-msigdb.org). We identified the AR response pathway as the
most significantly depleted gene set in the PDE4D7-knockdown
cell lines (false discovery rate (FDR) q value < 0.001; normalised
enrichment score −2.1; Fig. 2d, e and Supplementary Table 2). To
confirm that genomic changes were reflected at the protein level,
western blotting for selected PCa-related proteins was performed,
with significant downregulation observed in the P1 cell line
compared to LNCaP WT (Fig. 2f). Importantly, the scrambled
shRNA cell line (SC2) did not show notable differences in the
expression of these genes (Supplementary Fig. 5). Among the
most downregulated genes in the three PDE4D7-knockdown cell
lines were the known AR-regulated kallikrein-related peptidases
KLK2 and KLK3, transmembrane serine protease 2 (TMPRSS2), and
the transcription factor NK3 homeobox-1 (NKX3–1). In addition,
the AR itself was significantly downregulated in LNCaP P1 cells
(Fig. 2f). Loss of GRK2 has been associated with non-AR-driven PCa
expression. Whilst the expression of this GPCR was significantly
downregulated on the transcript level between the WT and
knockdown cell lines, the expression seemingly remained
unchanged on the protein level (Supplementary Fig. 12). The
described findings indicate that the selective depletion of PDE4D7
leads to an androgen-insensitive cellular phenotype reflecting
progressive PCa.
In contrast, we identified multiple hallmark pathways signifi-

cantly enriched in the PDE4D7-knockdown LNCaPs. Of those, the
EMT pathway demonstrated the highest level of enrichment (FDR
q value < 0.001; normalised enrichment score 1.9; Fig. 2g–i and
Supplementary Table 3). Other clinically relevant hallmark path-
ways with FDR q values < 0.1 are WNT beta-catenin and hedgehog
signalling, both of which have been linked to PCa progression
after the development of hormone resistance [27, 28].
Neuroendocrine differentiation (NED) is a hallmark of aggres-

sive, AR-independent and treatment-resistant PCa, and can occur
in both primary and metastatic disease [29, 30]. NED is
characterised by decreased AR expression and increased expres-
sion of neuroendocrine markers [31]. Analysis of our LNCaP
models revealed that many genes with previously reported
induced expression levels in neuroendocrine prostate cancer
(NEPC) were upregulated in the PDE4D7-knockdown LNCaPs
(Supplementary Table 4), including classical NED markers such as
ENO2, SYP, AURKA and NCAM1 (Fig. 2j).
To explore the potential clinical relevance of these findings, we

also analysed the expression of hallmark AR response genes and
key markers for NED in RNAseq data of 533 human patient
samples described previously [32] and found that all tested AR
response genes were downregulated alongside reduced PDE4D7
expression in these patient tumours, while the expression of AR
itself did not change (Supplementary Fig. 6A). Similarly, we found
altered expression of several NED markers between low vs high
PDE4D7 tumours (Supplementary Fig. 6B), consistent with
previously reported alterations in NEPC [29, 33].

Table 2. Multivariable Cox regression analysis of the PDE4D7 score
with the clinical prognostic parameters in a N= 342 clinical high-risk
prostate cancer patient cohort.

N= 342 patients Multivariable

Variable HR 95% CI P

PDE4D7 score 0.37 0.23–0.58 <0.0001

ISUP pGleason Grade Group 1.8 1.4–2.4 <0.0001

pT_stage= “pT3a” 0.45 0.14–1.4 0.19

pT_stage= “pT3b” 0.1 0.01–0.9 0.04

pT_stage= “pT3c” 0.01 0–0.28 0.006

pT_stage= “pT4” 0.36 0.04– 3.3 0.36

Extra-prostatic extension 1.6 0.3–5.9 0.63

Seminal vesicle invasion 17.1 1.4–205 0.02

Surgical margin status 0.45 0.23–0.93 0.03

Lymph node invasion 2.2 1.0–4.8 0.04

EPE extra-prostatic extension, CI confidence interval, SVI seminal vesicle
invasion, SMS surgical margin status, LNI lymph node invasion, HR hazard ratio.
The tested endpoint was time to prostate cancer-specific mortality (N= 42
events). The PDE4D7 score and the ISUP Gleason grade group were used as
continuous variables; the pathology-stage pT was used as a categorical
variable with pT2 as a reference. EPE, SVI, SMS and LNI were used as binary
variables (0=’no’; 1=’yes’). The HR, 95% CI of the HR, and P values are indicated.
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Fig. 1 Survival analysis of the PDE4D7 score and prostate cancer-specific mortality (PCSM) after the start of salvage radiation therapy
(SRT). Two cut-offs for the pPDE4D7 score were defined by AUROC (area under the ROC curve) analysis with 5-year prostate cancer-specific
death after the start of salvage radiation therapy (SRT) as the dependent variable and the pPDE4D7 score as the independent variable. One
cut-off (pPDE4D7 > 0.2) was defined as the point in the AUROC with maximum sensitivity and specificity. The cut-off was defined as max
sensitivity (pPDE4D7 > 0.87). Consequently, the pPDE4D7 score classes stratified patients into three sub-cohorts (pPDE4D7 scores >0.87: ‘high’;
pPDE4D7 scores >0.2 and <=0.87: ‘intermediate’, and pPDE4D7 scores <=0.2: ‘low’). a Kaplan–Meier survival analysis of the time to prostate
cancer-specific mortality (PCSM) after the start of SRT in the N= 348 clinical high-risk prostate cancer patient cohort. Patient groups are
stratified according to their PDE4D7 score, with high scores being associated with a lower risk of death due to prostate cancer than low
PDE4D7 scores. b Kaplan–Meier survival analysis of the time to all-cause mortality (ACM) after the start of SRT in the N= 348 clinical high-risk
prostate cancer patient cohort. c Kaplan–Meier survival analysis of the time to PCSM after the start of SRT in the N= 348 clinical high-risk
prostate cancer patient cohort. Patient groups are stratified according to the EAU-BCR Risk Score, which stratifies patients into a low- vs. a
high-risk class. d Kaplan–Meier survival analysis post-SRT of the time to PCSM after the start of ADT in a N= 179 prostate cancer patient
cohort. e Kaplan–Meier survival analysis post-SRT of the time to ACM after the start of ADT in a N= 179 prostate cancer patient cohort. Log-
rank P values are indicated.
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PDE4D7 knockdown reflects aggressive phenotype and
confers resistance to AR inhibition
Knockdown of PDE4D7 resulted in increased growth character-
istics in comparison to WT and SC2 LNCaP cells (Fig. 3a).
Importantly, no significant difference in growth was found
between the WT and SC2 cells. In addition, we have been able

to correlate level of PDE4D7 knockdown to proliferative capacity
of LNCaP cells, whereby the w5.2 clone showed slightly reduced
growth to P1 (Supplementary Fig. 4D) whilst the w6.3 clone
revealed slightly enhanced growth (Supplementary Fig. 4E),
correlating with slightly enhanced PDE4D7 knockdown in w6.3,
and weakest level of PDE4D7 knockdown in w5.2, in comparison
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to the P1 LNCaP clone (Fig. 2a, b). These data may be consistent
with the concept of clonal differences represented by clinically
relevant tumour heterogeneity.
Enzalutamide, an AR inhibitor used to treat advanced PCa [34],

was utilised to investigate the effects on the growth of PDE4D7-
knockdown LNCaPs. Dose-response experiments showed a
significant decrease in WT proliferation at all concentrations
tested (0.1–30 µM) (Fig. 3b). In contrast, P1 LNCaPs showed
minimal reduction in proliferation and even exhibited enhanced
growth at higher doses (Fig. 3c). Induced re-expression of PDE4D7
in P1 LNCaPs (Supplementary Fig. 3B) rescued the growth
phenotype and restored sensitivity to enzalutamide (Fig. 3d, e).
These findings strongly highlight that low PDE4D7 expression in
PCa cells confers resistance to anti-androgens such as
enzalutamide.
MR-L2 is a PDE4 longform activator that binds allosterically to

the PDE4 enzyme to mimic PKA phosphorylation in the UCR1
domain [35]. Activation of PDE4 in P1 LNCaPs rescued the
enhanced growth phenotype caused by PDE4D7 knockdown,
whilst having no effect on the proliferation of WT LNCaPs (Fig. 3f).
These data again highlight the importance of PDE4D7 in driving
PCa proliferation.

PDE4D7 knockdown is associated with alterations in DNA
damage repair genes
Genomic alterations in DNA damage repair (DDR) genes are
prevalent in both primary and metastatic PCa tissue [36], leading
to the clinical utilisation of PARP inhibitors (PARPi) in patients with
DDR deficiencies, however, the emergence of PARPi resistance has
been observed [37, 38]. To investigate the potential impact of
PDE4D7 knockdown on DNA repair mechanisms, we used the
REACTOME homology-directed repair (HDR) of the DNA double-
strand breaks gene set (reactome.org: R-HSA-5693538) and
expanded it with additional genes from other DDR pathways
previously reported to be altered in PCa (Supplementary Table 5)
[36]. Our analysis revealed alterations in the expression of a subset
of DDR genes in PDE4D7-knockdown cells, particularly those
commonly mutated in PCa. Many of these genes were significantly
upregulated in PDE4D7-knockdown cells (Fig. 2k), while we did
not identify significant differences in single nucleotide variants

between the parent and knockdown cell lines (Supplementary
Fig. 7A, B, respectively).
We then reanalysed RNAseq data from 533 clinical samples

[32] focusing on the expression of PCa-relevant DDR genes,
revealing the most significant increase in BRCA2 expression with
decreasing PDE4D7 expression (P < 0.0001), along with a range
of other DDR-related genes (Fig. 2l and Supplementary Fig. 8).
BRCA1, ATM and BRIP1 were also upregulated, although non-
significantly. Based on these findings, we posit that the altered
expression of DDR genes with downregulated PDE4D7 may
contribute resistance to DDR-targeting therapies, therefore
PDE4D7-knockdown LNCaPs may exhibit resistance to PARPi
compounds such as olaparib.

PDE4D7 re-expression in PDE4D7-knockdown LNCaPs leads to
molecular changes reflecting a less aggressive phenotype
RNA sequencing of PDE4D7 re-expressing LNCaP P1 cells led to
significant downregulation of MYC (Fig. 4a), a frequently
overexpressed gene and a critical driver of progression in PCa
[39]. This downregulation was confirmed by GSEA using MYC
targets hallmark gene sets (Fig. 4b, c and Supplementary
Table 6). MYC overexpression has been shown to reduce the
transcriptional activities of the AR and may cause treatment
resistance and disease progression [39]. The significant down-
regulation of MYC in LNCaP P1 upon PDE4D7 re-expression
(logFC=0.45; P≪0.0001) may reprogramme the cell line to AR
transcription and subsequently re-sensitise to AR inhibitors.
In addition, the EMT hallmark gene set, which was highly

enriched in PDE4D7-knockdown LNCaPs compared to WT, was
significantly depleted after PDE4D7 re-expression (Fig. 4d).
This finding suggests that PDE4D7 plays a crucial role in regulating
the EMT pathway, a hallmark of cancer progression and
metastasis.
Interestingly, PDE4D7 re-expression also significantly upregu-

lated several mitochondrial genes (Fig. 4a). This finding is
noteworthy because progressively growing cancer cells typically
rely on glycolysis leading to decreased ATP generation [40, 41].
This is supported by the significant depletion of the oxidative
phosphorylation hallmark gene set after PDE4D7 knockdown
(Supplementary Table 2) while the hypoxia hallmark gene set is

Fig. 2 Generation of PDE4D7-knockdown LNCaP cell lines and differences in PCa-related genes. a PDE4D7 mRNA expression via qRT-PCR.
Fold change relative to LNCaP WT (2-ΔΔCt) for shRNA-scrambled (SC2) and shRNA-PDE4D7 (P1, w5.2 and w6.3). b PDE4D7 protein expression in
LNCaP WT and shRNA-PDE4D7 (P1, w5.2 and w6.3). c Immunocytochemistry staining of PDE4D7 protein expression (yellow) in WT and P1
LNCaPs. d Heatmap of gene set enrichment analysis (GSEA) hallmark androgen response in LNCaP knockdown cell lines (P1, w5.2, w6.3) vs
LNCaP WT and scrambled shRNA control (SC2) based on RNAseq expression data. For all heatmaps, each RNAseq experiment was performed
in multiple replicates as indicated (Rx). Gene expression TPM values were transformed to z-scores before calculating the heatmap (https://
software.broadinstitute.org/morpheus). Hierarchical clustering was used to order the analysed genes and cell line samples of the gene
expression matrix (metric: Euclidean distance; linkage method: average). e Enrichment plot GSEA hallmark androgen response in LNCaP
knockdown (‘LNCaP_KD’) cell lines (P1, w5.2, w6.3) vs control LNCaP cell lines (WT and SC2; together ‘LNCaP_WT’). The enrichment score (ES)
is indicated by the green line demonstrating enrichment of expression of androgen response genes in the LNCaP WT cell lines vs. a depletion
of expression in the three PDE4D7-knockdown cell lines clones P1, w5.2, w6.3; NES (Normalised Enrichment Score)=-2.1; FDR q value < 0.001.
f Western blot and quantification of the protein expression of prostate cancer-related RNAseq identified genes in WT and P1 LNCaPs.
g Heatmap of GSEA hallmark epithelial–mesenchymal transition (EMT) in LNCaP knockdown cell lines (P1, w5.2, w6.3) vs LNCaP WT and SC2.
h Enrichment plot GSEA hallmark epithelial–mesenchymal transition (EMT) in LNCaP knockdown (‘LNCaP_KD’) cell lines (P1, w5.2, w6.3) vs
LNCaP control cell lines (WT and SC2; together ‘LNCaP_WT’). The enrichment score (ES) is indicated by the green line demonstrating
enrichment of expression of EMT genes in the three PDE4D7-knockdown cell line clones P1, w5.2, and w6.3 vs. LNCaP WT and LNCaP SC2; NES
(Normalised Enrichment Score)=1.9; FDR q value < 0.001. i Western blot and quantification of the protein expression of EMT-related RNAseq
identified genes in WT and P1 LNCaPs. j Heatmap of neuroendocrine differentiation (NED) involved genes in LNCaP knockdown cell lines (P1,
w5.2, w6.3) vs LNCaP WT and SC2. k Heatmap of genes involved in homology-directed DNA repair pathways (Supplementary Table 5) in
LNCaP knockdown cell lines (P1, w5.2, w6.3) vs LNCaP wild-type (WT) and scrambled shRNA control (SC2). l Expression boxplot of the BRCA2
gene in PDE4D7 expression score classes in human clinical patient samples. The expression of each gene is provided after TPM calculation
based on the RNAseq count data. The PDE4D7 classes represent different categories of PDE4D7 expression based on the PDE4D7 score (see
references), where PDE4D7_class1 (most left-hand box) represents the lowest PDE4D7 scores (i.e., lowest PDE4D7 expression), while
PDE4D7_class4 (most right-hand box) represents the highest PDE4D7 scores (i.e., highest PDE4D7 expression). The number of patients per
class are as follows: PDE4D7_class1 (N= 13); PDE4D7_class2 (N= 134); PDE4D7_class3 (N= 301); PDE4D7_class4 (N= 85). The median of the
expression per group is indicated by the bar within each box. The red cross represents the mean expression value per group. The circles
represent outlier expression values. The P values were calculated by use of ANOVA Kruskal–Wallis test and represent a significant change in
expression over the four PDE4D7 classes.
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enriched (Supplementary Table 3) which has been reported to
increase glycolysis [42]. In contrast, upon PDE4D7 re-expression,
P1 LNCaPs significantly downregulated HK2 (logFC=0.63;
P«0.0001; Fig. 4a) and depleted the glycolysis and hypoxia
hallmark gene sets (Fig. 4e, f). HK2 is a key glycolytic enzyme
and a key regulator of switching the energy metabolism of tumour
cells from glycolysis back to mitochondrial respiration [43]. In

addition, all 13 protein-coding mitochondrial genes which all
encode protein subunits of the enzyme complexes of the
oxidative phosphorylation system are strongly upregulated upon
PDE4D7 doxycycline-driven induction (Fig. 4a, j), suggesting that
PDE4D7 re-expression promotes switching from glycolysis to
oxidative phosphorylation as the main metabolic pathway to
process glucose.
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Metformin is a type II diabetes drug known to inhibit complex I
of the mitochondrial respiratory oxidative phosphorylation
chain [44]. Interestingly, metformin had a significant anti-
proliferative effect on WT LNCaPs, but not on P1 LNCaPs unless
treated with supra-physiological concentrations (Fig. 4g, h), which
may be due to the enhanced oxidative phosphorylation in
WT cells. Additionally, complex I inhibition leads to AMPK
activation and inhibition of the mTOR pathway which is known
to play a key role in tumour development and progression

[44, 45]. The hallmark gene set MTORC1 was significantly
depleted in LNCaP P1 cells (FDR q value= 0.006; normalised
enrichment score=−1.6; Fig. 4i), which may indicate that the
susceptibility of WT LNCaPs to metformin is based on inhibition of
mTOR signalling. Downregulated mTOR signalling upon PDE4D7
knockdown may subsequently lead to metformin resistance. It is
of note though that PDE4D7 re-expression does not lead to re-
activation of the MTORC1 pathway in LNCaP P1 cells (Supple-
mentary Table 6).
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Taken together, this data provides important insights into the
regulatory role of PDE4D7 in MYC regulation, energy metabolism,
and EMT, culminating in a less aggressive phenotype.

PDE4D7 knockdown confers resistance to PARP inhibition and
PDE4D7 re-expression enhances sensitivity to olaparib and
docetaxel
Given the alterations in DDR genes between WT and P1 LNCaPs,
these cells were tested in response to olaparib (PARPi) and
ceralasertib (ATR inhibitor), both of which have been shown
effective as PCa treatments [46, 47]. LNCaP WT proliferation
showed significant reductions at 3, 10 and 30 µM olaparib (Fig. 5a),
whereas the effect on LNCaP P1 was minimal yet with unexpected
reduction at low concentrations (Fig. 5b). It is notable however,
that cells with reduced PDE4D7 expression were resistant to
olaparib at 10 and 30 µM (Fig. 5b). Furthermore, as with the TET-
On induction of PDE4D7, transiently transfected PDE4D7 into P1
LNCaPs (P1-PDE4D7+) significantly downregulated growth (Fig. 5c)
and re-sensitised cells to 10 µM olaparib (Fig. 5d). These data
reconfirm the role of PDE4D7 in blunting PCa cell growth and
promoting susceptibility to clinically relevant therapeutics.
While PDE4D7 knockdown conferred resistance to 10–30 µM

olaparib, these cells were extremely sensitive to ceralasertib at
these concentrations with similar responses between WT and P1
LNCaPs (Fig. 5e, f). Similarly, docetaxel significantly reduced
growth of both WT and P1 LNCaPs (Supplementary Fig. 9A, B,
respectively), however, P1 LNCaPs began to regain their pro-
liferative potential ~36 h post treatment, particularly with higher
docetaxel concentrations, suggesting that these cells may be able
to ameliorate docetaxel-mediated DNA damage and regrow.
Consistent with these findings, analysis of the cleaved PARP:PARP
ratio revealed induction of apoptosis in WT LNCaPs in response to
both olaparib and docetaxel, whereas no influence on apoptosis
was observed in P1 LNCaPs (Fig. 5g). Given that cells were treated
for 48 h prior to analysis of cPARP:PARP, and that P1 LNCaP
growth began to steadily rise, it appears that the initial docetaxel-
mediated reduction in growth of these cells did not lead to
induction of late stage apoptosis-like in the WT LNCaPs,
suggesting a level of resistance to docetaxel upon PDE4D7
knockdown in LNCaPs.
Furthermore, as with olaparib, reintroduction of PDE4D7 into P1

LNCaPs further enhanced sensitivity to docetaxel (Supplementary
Fig. 9C). In correlation with this, γ-H2AX assay revealed an
upregulation in DSBs as measured by number of γ-H2AX foci upon
docetaxel treatment in WT LNCaPs compared to P1 LNCaPs (Fig. 5h).

Overall, these findings suggest that a paucity of PDE4D7
promotes the ability to repair associated DNA damage and
protects against the induction of cell death.

DISCUSSION
PDE4D7 score predicts PSA relapse, mortality and therapy
response
Patients with PCa rely on treatment stratification to receive the
most efficacious therapy for their specific disease presentation.
SRT remains a commonly utilised treatment modality for PSA
recurrent disease, however, reported 5-year biochemical failure
rates range between 25 and 70% [48]. Further disease progression
after SRT failure is driven by AR signalling [49], hence ADT has
remained a mainstay treatment for advanced disease for several
decades [50]. While initially responsive to ADT, it may select for
cellular clones that evade the selection pressure via androgen-
independent survival mechanisms, inevitably leading to the
development of ADT-resistant CRPC [51]. Therefore, it is impera-
tive to identify early emerging treatment resistance to select
alternative treatment regimens and improve survival outcomes.
This may include combination therapies such as ADT in
conjunction with second-generation anti-androgens or docetaxel
[52–54].
Prognostic genomic biomarkers that objectively assess the risk

of death from advanced PCa may aid in the selection of patients
for treatment de-escalation (those at virtually no risk of PCSM)
versus treatment intensification (those with poor prognosis).
Clinical trials are currently evaluating molecular stratification and
prognostic tools in determining the optimal treatment approach
for high-risk/recurrent PCa patients [55–57], while the PREDICT-RT
trial (NCT04513717) examines the feasibility of less intense
treatment for genomic low-risk patients.
This study demonstrates that individuals with low PDE4D7

expression exhibit a substantially elevated risk of PCSM. Altera-
tions in PDE expression result in dysregulated cAMP/PKA
signalling which has been extensively linked to PCa and therapy
resistance. PDE4 is one of the most highly expressed PDE families
in the human prostate [58], consistent with our previous studies
[20]. Baca et al. proposed that PCa progresses through clonal and
punctuated events rather than gradual or catastrophic evolution,
and identified the loss of PDE4D as an early, clonal event in cancer
development [59]. In addition, a study that employed whole-
genome sequencing of 112 primary and metastatic PCa samples
identified PDE4D as a potential driver gene of the disease [60]. The

Fig. 4 Re-expression of PDE4D7 rescues many hallmark pathways previously enriched in PDE4D7-knockdown LNCaPs. a Volcano plot of
differentially expressed genes (DEGs) in LNCaP P1, PDE4D7 Tet inducible cell lines; ‘LNCaP_P14D7Tet_min’ (without doxycycline stimulation)
vs ‘LNCaP_P14D7Tet_plus’ (with doxycycline stimulation). DEGs are shown in red (up in ‘LNCaP_P14D7Tet_plus’) or blue (down in
‘LNCaP_P14D7Tet_plus’) if the log2-fold change (logFC) change in expression was >1.5 or <−1.5 and the the adjusted P value > 0.05. All other
genes are represented as grey dots. The top 25 significant DEGs are annotated with their gene symbols. Note: the plot only includes protein-
coding genes. b, c Enrichment plot GSEA hallmark MYC targets V1 (b) and V2 (c) in ‘LNCaP_P14D7Tet_min’ vs ‘LNCaP_P14D7Tet_plus’. The
enrichment scores (ES) are indicated by the green line demonstrating enrichment of expression of MYC target genes in the
‘LNCaP_P14D7Tet_min’ vs ‘LNCaP_P14D7Tet_plus’ cell line; NES (Normalised Enrichment Score)=1.5; FDR q value= 0.03, and 1.5; FDR q
value= 0.003 for hallmark MYC targets V1, and V2, respectively. d Enrichment plot GSEA hallmark epithelial–mesenchymal transition (EMT).
The enrichment score (ES) demonstrates an enrichment of expression of EMT genes in the ‘LNCaP_P14D7Tet_min’ vs ‘LNCaP_P14D7Tet_plus’
cell line; NES (Normalised Enrichment Score)=1.5; FDR q value= 0.03. e Enrichment plot GSEA hallmark Glycolysis. The enrichment score (ES)
demonstrates an enrichment of expression of glycolysis involved genes in the ‘LNCaP_P14D7Tet_min’ vs ‘LNCaP_P14D7Tet_plus’ cell line; NES
(Normalised Enrichment Score)=1.4; FDR q value= 0.04. f Enrichment plot GSEA hallmark Hypoxia. The enrichment score (ES) demonstrates
an enrichment of expression of hypoxia-involved genes in the ‘LNCaP_P14D7Tet_min’ vs ‘LNCaP_P14D7Tet_plus’ cell line; NES (Normalised
Enrichment Score)=1.75; FDR q value= 0.004. g, h Real-time growth analysis of WT (g) and PDE4D7-knockdown P1 (H) LNCaPs upon
treatment with 0.3–25mM metformin or 0.1% DMSO. Normalised cell index to treatment timepoint. Slope analysis 0–48 h post treatment.
Statistical analysis via one-way ANOVA (mean +/− SEM, N= 3, ****P < 0.0001). i Enrichment plot GSEA hallmark MTORC1 signalling. The
enrichment score (ES) demonstrates an enrichment of expression of mTORC signalling involved genes in the ‘LNCaP_P14D7Tet_min’ vs
‘LNCaP_P14D7Tet_plus’ cell line; NES (Normalised Enrichment Score)=1.24; FDR q value= 0.179. j Heatmap of mitochondrial protein-coding
genes in PDE4D7 inducible LNCaP P1 knockdown cell line TET4D7 (TET4D7-Dox: -doxycycline; TET4D7+Dox: +doxycycline). For all heatmaps,
each RNAseq experiment was performed in multiple replicates. Gene expression TPM values were transformed to z-scores before calculating
the heatmap (https://software.broadinstitute.org/morpheus). Hierarchical clustering was used to order the analysed genes and cell line
samples of the gene expression matrix (metric: Euclidean distance; linkage method: average).
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Fig. 5 PDE4D7 knockdown in LNCaP cells enhances resistance to olaparib. a, b Real-time proliferation of LNCaP WT (a) and shRNA-PDE4D7
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PDE4D gene was often impacted by chromosomal rearrange-
ments and regions of loss of heterozygosity, particularly in the
part encoding the long PDE4D transcripts such as PDE4D7. The
study demonstrated that homozygous deletions on chromosome
5 occur more frequently and earlier in the disease course in ETS
fusion-negative tumours compared to ETS fusion-positive. In
addition, our previous study reported that TMPRSS2-ERG fusion
impacts progression-free survival as determined by PDE4D7
expression [32]. Intriguingly, our data here show that low
expression of PDE4D7 is associated with a strongly elevated risk
of death in ETS fusion-negative tumours (Supplementary Fig. 10A,
B). Taken together, these findings suggest that loss of PDE4D7
may represent an early, clonal event in ETS fusion-negative PCa
and provides significant evidence that PDE4D7 expression is
involved in PCa progression and is inversely associated with
progression-free and disease-specific survival after prostate-
specific antigen relapse.
Therapy resistance in PCa may be attributed to the intrinsic

biology of the tumour or may develop upon therapeutic
interventions. One potential mechanism of resistance is the
development of a neuroendocrine phenotype via NED in primary
adenocarcinoma, which is the most common histopathology of
primary PCa. This phenomenon has been observed to occur both in
treatment-naive tumours and in tumours that have undergone ADT
[61]. In untreated tumours, cells that stain positively for neuroendo-
crine markers are referred to as NE-like [62]. However, it is well
established that PCa cells in culture can undergo NED in vitro
through exposure to various stimuli, such as increases in cAMP and/
or PKA activation [63]. In treated tumours, it is believed that NED is
driven by selection pressure induced by treatment [64, 65]
associated with reduced AR activity or expression [66]. It has been
postulated that differentiated NE-like cells may progress to small-
cell prostate carcinoma (SCPC) through the accumulation of
additional genetic alterations, such as loss of RB1, MYCN, and

AURKA amplification [61]. These cells are characterised by rapid
proliferation, loss of AR and PSA expression, enhanced transcription
of neuroendocrine markers, and further therapeutic resistance [29].
Our findings demonstrate that targeted disruption of the

PDE4D7 transcript results in the emergence of a phenotype that
mimics SCPC. Notably, AR and its associated response genes are
downregulated, while cells exhibit accelerated proliferation and
resistance to a broad range of therapeutic compounds, as
schematically outlined in Fig. 6. These transcriptomic alterations
are partially replicated in patient samples with low PDE4D7
expression. We postulate that the reduction in PDE4D7 transcrip-
tion results in a pre-differentiation state to NEPC, which can
subsequently progress to SCPC under conditions of hormone
deprivation. This could contribute to treatment resistance and poor
prognosis, as demonstrated in patients with diminished PDE4D7
expression in their primary tumours. Based on these findings, we
propose that PDE4D7 may serve as a biomarker for the early
identification of NEPC. In addition, we suggest close monitoring of
patients with low PDE4D7 expression who are treated with potent
anti-androgens, as these tumours may rapidly progress to a state
where further treatment options become limited.

PDE4D7 expression influences the DNA damage response
An important aspect of treatment resistance that we investigated
is the alteration of DDR pathways. Inhibition of PARP1/2 activity
has become a cornerstone of treatment for advanced cancers with
DDR deficiencies and has been extensively studied in the literature
[67]. However, it has also been reported that an increase in the
gene expression level of DDR genes may lead to resistance to
cisplatin chemotherapy [68], while the overexpression of BRCA1,
BRCA2, RAD51 and RPA1 has been observed in hypopharyngeal
and nasopharyngeal carcinoma cells resistant to radiotherapy [69].
We present evidence that the selective suppression of PDE4D7

in LNCaP cells results in the transcriptional induction of various
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DDR-related genes, which is replicated to some extent in patient
samples with low PDE4D7 expression. This may explain the
resistance of PDE4D7-knockdown LNCaPs to the olaparib and
decreased sensitivity to docetaxel. Interestingly, the PARPi-
resistant PDE4D7 knockdown cells were substantially susceptible
to ATR inhibition, which could provide a potential future
therapeutic option for PARPi-resistant tumours.
A recent publication showed that oncogene-driven activation of

cAMP signalling in pituitary somatotroph adenomas induces
double-strand break DNA damage. The DNA damage may be
further augmented by the reported downregulation of the PDE4D
gene in these tumours [70]. Furthermore, somatotroph tumours
are characterised by widespread chromosomal copy number
abnormalities, which may be related to the observation of
extensive copy number variations in the PDE4D7-knockdown
LNCaPs in comparison to WT (Supplementary Fig. 11A–D).
Interestingly, we recently reported a protein–protein interaction
between PDE4D7 and the helicase DHX9. This enzyme is involved
in multiple functional processes, including the resolution of R-loop
DNA–RNA hybrids which are an important source of replication
stress and genomic instability [71]. The downregulation of PDE4D7
may impact the capacity of DHX9 to resolve these hybrid
structures which may in turn be the result of cAMP pathway-
driven DNA damage in PCa cells.

PDE4D7 re-expression impacts the cancer cell-specific
metabolic reprogramming (Warburg effect)
The Warburg effect, named after Otto Warburg, refers to the
observation that cancer cells often exhibit distinct metabolic
behaviour compared to normal cells [40]. Specifically, cancer cells
tend to rely heavily on glycolysis, a process that breaks down
glucose to produce energy, even in the presence of adequate
oxygen (aerobic glycolysis) [72].
The Warburg effect is characterised by increased glucose

uptake and lactate production, even in the presence of sufficient
oxygen. This metabolic shift allows cancer cells to meet their high
energy demands and support rapid proliferation [72]. In addition
to increased glucose consumption, cancer cells also show altered
metabolism of other nutrients, including amino acids and lipids, to
support cell growth and survival [73].
Furthermore, signalling pathways such as the MYC pathway,

which are commonly dysregulated in cancer, play crucial roles in
promoting the Warburg effect. These pathways stimulate glucose
uptake, increase the expression of glycolytic enzymes, and enhance
the synthesis of macromolecules required for cancer cell growth [74].
The Warburg effect not only provides cancer cells with energy and

building blocks for growth but also contributes to other hallmarks of
cancer, including immune evasion and angiogenesis. The high
lactate production in cancer cells creates an acidic microenviron-
ment that suppresses immune responses. In addition, the Warburg
effect induces angiogenesis, the formation of new blood vessels, to
supply nutrients and oxygen to rapidly dividing cancer cells [75].
In summary, the Warburg effect describes the metabolic

reprogramming observed in cancer cells, characterised by
enhanced glycolysis and lactate production, even in the presence
of oxygen. This metabolic shift is driven by genetic and signalling
alterations and provides cancer cells with energy and molecular
building blocks for growth.
There is an ongoing debate though why cancer cells switch

their use of glucose as an energy resource from oxidative
phosphorylation to glycolysis under aerobic conditions despite
the significant reduction of around 18x loss of ATP generation. It
was recently suggested that the level of cellular uptake of glucose
and the initial generation of pyruvate as the main glycolytic
metabolite that enters the oxidative phosphorylation process in
mitochondria would lead to a saturation of mitochondrial activity
[42]. So rather than suppression of oxidative phosphorylation the
process of glycolysis would become the primary source of glucose

breakdown due to mitochondrial overload. The data presented
here indicates that upon PDE4D7 knockdown the process of
oxidative phosphorylation is diminished by depletion of the
respective hallmark genes and enrichment of the hypoxia
hallmark which has been reported to turn on the glycolysis
pathway (Fig. 6). The re-expression of PDE4D7 reverses this effect
by depletion of the glycolysis hallmark gene set (Fig. 6) and
induction of expression of all mitochondrial protein-coding genes.
Therefore, we hypothesize that the level of PDE4D7 expression
and activity provides a switch in prostate cancer cells to
reprogramming energy metabolism that today has been recog-
nised as one of the hallmarks of cancer [75].

PDE4D7 re-expression or activation as a therapeutic avenue
We have shown through re-expression of PDE4D7 in the knock-
down LNCaP cells via either transient DNA transfection or an
inducible Tet-On system that we can not only restore a reduced
growth phenotype but also re-sensitise cells to treatments such as
enzalutamide and olaparib, highlighting the potential for manip-
ulating PDE4D7 gene expression as a novel therapeutic avenue for
PCa, independent of AR-targeting treatments.
In addition, using a PDE4 long-form activating compound which

mimics PKA phosphorylation within the UCR1 domain [35], we can
reactivate the residual PDE4D7 in PCa cells and hinder prolifera-
tion. Ultimately, our findings support the feasibility of either re-
activation of PDE4D7 via compounds, or enhanced expression of
PDE4D7 transcripts such as via gene therapy, as a new treatment
for high-risk PCa patients to reduce tumour growth and overcome
therapeutic resistance in the treatment of advanced PCa.

CONCLUSION
This study suggests that decreased PDE4D7 expression is
associated with an aggressive PCa phenotype characterised by
enhanced proliferation and therapeutic resistance. Knockdown of
PDE4D7 in LNCaP cells led to reduced AR signalling, increased
EMT, NED and DDR pathway alterations, partially replicating
clinical findings. Tumours with low PDE4D7 expression may be at
high risk for progressing towards NEPC and therapeutic resistance,
suggesting caution in using potent androgen inhibitors. Targeting
PDE4D7 or its downstream pathways may maintain cAMP
signalling during ADT and provide a novel strategy for extending
the period of androgen response in advanced PCa.
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