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BACKGROUND: Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer
(CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global
transcription, providing a rationale for its therapeutic targeting in CRPC.
METHODS: The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro
and in xenograft models in vivo. Cell-based assays and transcriptomic analyses of treated xenografts were employed to investigate
the mechanisms driving CT7001 activity, alone and in combination with the antiandrogen enzalutamide.
RESULTS: CT7001 selectively engages with CDK7 in prostate cancer cells, causing inhibition of proliferation and cell cycle arrest.
Activation of p53, induction of apoptosis, and suppression of transcription mediated by full-length and constitutively active AR
splice variants contribute to antitumour efficacy in vitro. Oral administration of CT7001 represses growth of CRPC xenografts and
significantly augments growth inhibition achieved by enzalutamide. Transcriptome analyses of treated xenografts indicate cell cycle
and AR inhibition as the mode of action of CT7001 in vivo.
CONCLUSIONS: This study supports CDK7 inhibition as a strategy to target deregulated cell proliferation and demonstrates CT7001
is a promising CRPC therapeutic, alone or in combination with AR-targeting compounds.
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BACKGROUND
Prostate cancer is the second most common malignancy in men
worldwide and a leading cause of cancer-related death [1]. The
androgen receptor (AR) is a ligand-dependent nuclear receptor that
plays a critical role in prostate cancer initiation and progression [2].
Therapies aiming to ablate AR activity by preventing ligand-
dependent receptor activation are initially effective but circum-
vented following progression to a therapy-resistant stage termed
castration-resistant prostate cancer (CRPC). Commonly, castration
resistance mechanisms facilitate reactivation of the AR signalling
pathway and downstream transcriptional programmes [3–5]. One
phenomenon associated with disease progression, the expression
of AR splice variants (AR-V), has drawn interest as a potential
mechanism mediating androgen independency in CRPC [6–8]. AR-
Vs lack the AR ligand-binding domain (LBD) but retain the
N-terminal activation function, and thereby have the potential to
mediate AR signalling while being insensitive to approved AR-
targeted therapies, all of which target the LBD [9]. Novel therapeutic
approaches are therefore needed for the treatment of CRPC, with
strategies that interfere with oncogenic AR transcription in a LBD-
independent manner being of particular interest [10].

Cyclin-dependent kinase 7 (CDK7) is a recognised anticancer drug
target due to its regulatory roles in cell division and transcription
[11, 12]. As part of the CDK-activating kinase (CAK) complex
together with cyclin H and MAT1, CDK7 phosphorylates the T-loop
of cell cycle CDKs, including CDK1, -2, -4 and -6, stimulating their
activities in a temporal manner to drive progression through the cell
cycle [13–16]. CAK also functions as a component of the general
transcription factor TFIIH, enabling transcription initiation by
phosphorylating serine-5 residues (S5) in the RNA polymerase II
(PolII) C-terminal domain (CTD) [17]. Although phosphorylation of
PolII CTD is essential for mRNA synthesis [18], whether CDK7 activity
is strictly required for basal transcription is still debated [19–22]. It
has previously been shown that CDK7 phosphorylates AR at serine-
515 (S515) to regulate transactivation and proteasomal degradation
of AR, and facilitates assembly of a transcriptionally active AR-
coregulator complex [23–25]. Thus, CDK7 may be promoting
oncogenic AR transcription in CRPC by both AR-specific and more
global transcriptional effects. In line with a tumour-promoting role
in CRPC, high tumour CDK7 protein levels are associated with faster
biochemical recurrence, marked by rises in serum prostate-specific
antigen (PSA) [26].
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The multiple roles of CDK7 commend it as a drug target for
CRPC. However, a fundamental understanding of the mechanistic
effects of selective CDK7 inhibition in CRPC is currently lacking. In
a previous study, the covalent CDK7 inhibitor THZ1 was used [23],
however, this also targets CDK12/13, which substantially obscures
the contribution of CDK7 inhibition to its downstream effects
[21, 22, 27]. CT7001/Samuraciclib (formerly ICEC0942) is a novel,
orally bioavailable, ATP-competitive inhibitor of CDK7 with
preclinical activity in models of breast cancer, colon cancer, and
acute myeloid leukaemia [28–32]. CT7001 is currently in phase I/II
clinical trials for advanced solid malignancies (NCT03363893).
Recently released data from this study demonstrated acceptable
safety profile and evidence of antitumour activity, including PSA
reductions in 4 CRPC patients [33, 34]. As CT7001 is currently
undergoing clinical evaluation, a more comprehensive investiga-
tion of its preclinical activity in prostate cancer is warranted. Here,
we describe the mechanism of tumour inhibition achieved by
CT7001 in prostate cancer models in vitro and in vivo and explore
its efficacy as monotherapy and in combination with the widely
used AR antagonist enzalutamide.

MATERIALS AND METHODS
Chemicals
CT7001 was provided by Carrick Therapeutics. Apalutamide, enzalutamide,
darolutamide and bavdegalutamide were purchased from MedChemEx-
press. Mibolerone was purchased from PerkinElmer.

Cell lines
LNCaP, C4-2, VCaP, DU145, PC3, PNT1A, BPH-1 cell lines were obtained
from the ATCC as frozen stocks. 22Rv1 and 22Rv1 FL-AR KO were a
gift from Dr Luke Gaughan (Newcastle University) [35]. C4-2B cells were a
gift from Prof Ian Mills (Oxford University) [36]. LNCaP/Luc cells are stably
transfected with an AR-specific luciferase reporter construct [37] and
selection was maintained with 500 µg/mL G418 (Sigma) and 10 µg/mL
blasticidin (Melford Biolaboratories). All cell lines were cultured according
to ATCC recommendations in growth medium with 10% fetal calf serum
(FCS) and 2mM L-glutamine at 37 °C in humidified incubators maintained
at 5% CO2. Cell line authenticity was confirmed using short tandem repeat
analysis performed through the MWG Eurofins Human Cell Line
Authentication service. All cell lines were regularly tested for Mycoplasma
infection using the MycoAlert Detection Kit (Lonza).

Cellular thermal shift assay (CeTSA) in intact LNCaP cells
The melting temperatures (Tm) of CDK targets were determined using a
Boltzmann sigmoidal curve (least squares fit) fitted through the average
normalised data points from all human lines available in the Meltome Atlas
[38]. The melt curve for CDK7 was generated as previously described [39].
Isothermal dose-response fingerprints were generated at 54 °C as
previously described [39] from intact LNCaP cells treated with dimethyl-
sulfoxide (DMSO) or CT7001 (concentrations range 0.078–20 μM) for 3 h.

Protein extraction
Following incubation with fresh growth medium containing CT7001, cells
were harvested and lysed as previously described [37]. Protein content was
measured using the Pierce BCA Protein Assay Kit (ThermoFisher).

Immunoblotting
Immunoblotting was carried out as previously described [40] using the
following primary antibodies: CDK7 (Cell Signaling Technology, 2916),
CDK1 (Cell Signaling Technology, 9116), CDK2 (Cell Signaling Technology,
2546), CDK4 (Cell Signaling Technology, 12790), CDK9 (Cell Signaling
Technology, 2316), β-actin (Abcam, ab6276), GAPDH (Cell Signaling
Technology, 2118), P-S5 PolII (Abcam, ab5401), P-S2 PolII (Abcam,
ab5095), PolII (Abcam, ab817), P-S780 Rb (Abcam, ab47763), P-S807/811
Rb (Cell Signaling Technology, 8516), Rb (Abcam, ab6075), cyclin H (Abcam,
ab54903), MAT1 (Santa Cruz Biotechnology, sc135981), P-S15 p53 (Cell
Signaling Technology, 9284), p53 (Santa Cruz Biotechnology, sc-126), P-
T161/T160 CDK1/CDK2 (Abcam, ab201008), P-S10 Histone H3 (Abcam,
ab139417), AR (MilliporeSigma, 06-680), P-T1457 MED1 (Abcam, ab60950),

MED1 (Bethyl Laboratories, A300-793A), cleaved PARP1 (Abcam, ab4830),
p21 (Santa Cruz Biotechnology, sc-817).

Cell growth and drug synergy assays
Cell number was assayed using the Sulforhodamine B (SRB) assay as
previously described [41]. To determine growth rate (GR) values for each
treatment and derive GR metrics, a file containing cell number data from
day 0 and day 3 was uploaded on the GRcalculator platform
(www.grcalculator.org/grcalculator) [42].
CT7001 combinations with AR-targeted therapies were tested in a 6 × 5

matrix in LNCaP, C4-2B, and PC3 cells. Cell numbers on days 0 and 3 were
assayed using the SRB assay. Percent growth inhibition was calculated
relative to vehicle control using day 3 values corrected by subtracting day
0 values. A file containing growth inhibition (%) data for each cell line was
uploaded on the SynergyFinder 2.0 web application (synergyfinder.fimm.fi)
[43]. Bliss independence scores were calculated using default parameters.

Caspase 3/7 assay
Caspase 3/7 activation assays were performed using the Caspase-Glo 3/7
Assay System (Promega), 72 h after treatment with CT7001. Luminescence
was measured using the VICTOR Light luminometer (PerkinElmer). Signal
was normalised to cell number on day 3 measured by SRB assay.

RT-qPCR and TaqMan Low Density Array
Total RNA was extracted from treated cells using the RNeasy Mini kit
(QIAGEN). cDNA was synthesised from 1 µg of RNA with oligo-dT primers
using RevertAid First Strand cDNA Synthesis Kit (ThermoFisher). Quanti-
tative Polymerase Chain Reaction (qPCR) was performed in a QuantStudio
7 Flex Real-Time PCR System (Applied Biosystems) using SYBR Green Real-
Time PCR Master mix (Invitrogen) and primers designed using Primer-
BLAST (listed in Additional File 2, Supplementary Table 1). Specificity was
validated using melt curve analysis. Gene expression was normalised to
RPL19, GAPDH and BACTIN and data were analysed using the ΔΔCt
method. TaqMan Low-Density Array microfluidic cards were used to
assay the expression of 32 AR targets (a list of the TaqMan qPCR assays is
provided in Additional File 2, Supplementary Table 2). 22Rv1 FL-AR KO
cells were treated 1 µM CT7001 in androgen-depleted medium (phenol
red-free RPMI-1640 with 5% charcoal-stripped FCS). LNCaP and VCaP
cells were treated with 1 µM CT7001 in androgen-repleted medium
(androgen-depleted medium supplemented with 10 nM mibolerone).
Total RNA was extracted after 24 h, and cDNA was synthesised as above.
cDNA was mixed with TaqMan Gene Expression Master Mix (Thermo-
Fisher) and loaded on the microfluidic card. Gene expression was
normalised to GAPDH, RPLP0, TBP, and 18S and the data were analysed
using the ΔΔCt method.

Cell cycle analysis
Asynchronous cells treated with DMSO or CT7001 for 72 h were harvested
and fixed in 70% ice-cold ethanol overnight. Fixed cells were washed twice
with PBS, stained with the Muse Cell Cycle Reagent (Luminex), and
analysed using the Guava Muse Cell Analyser (Luminex).

Plasmids and site-directed mutagenesis
The following plasmids have been previously described: pSV-AR encoding
human AR, TAT-GRE-E1B-LUC encoding AR-responsive luciferase reporter,
and BOS-β-galactosidase encoding a constitutive reporter [44]. Plasmid
constructs harbouring AR splice variants (pCMV5-CE1 encoding AR-V1,
pCMV5-CE2 encoding AR-V6, pCMV5-CE3 encoding AR-V7, pCMV5-1/2/2b
encoding AR-V3, pCMV5-1/2/3b encoding AR-V4, and pCMV5-v567es
encoding AR-V567ES/AR-V12) were provided by Prof Scott Dehm (The
University of Minnesota) [45]. pCMV5-hAR encoding full-length AR (FL-AR)
was acquired from Addgene (plasmid #89078). The pSV-S515A-AR, pSV-
S515E-AR, pSV-S515D-AR plasmids were synthesised from the pSV-AR
template using the QuikChange Lightning Multi Site-directed mutagenesis
kit (Agilent Technologies). Mutations were introduced using the following
primers: 5’-GCAGAGTGCCCTATCCCGCTCCCACTTGTGTCAAAA-3’ for pSV-
S515A-AR, 5’-GCAGAGTGCCCTATCCCGAGCCCACTTGTGTCAAAA-3’ for
pSV-S515E-AR, and 5’-GCAGAGTGCCCTATCCCGATCCCACTTGTGTCAAAA-3’
for pSV-S515D-AR. Competent DH5α E. coli cells were transformed with the
plasmids, plasmid DNAs were purified using QIAprep Spin Miniprep Kit
(QIAGEN) and subjected to Sanger sequencing (GeneWiz) to confirm the
presence of the expected mutations.
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Calcium phosphate-mediated transfections
COS-1 cells were transfected as previously described [44] with 1 μg
luciferase reporter (TAT-GRE-E1B-LUC), 50 ng AR expression vector or
empty vector and 50 ng BOS-β-galactosidase per well. Cells were
incubated for 24 h in medium containing drug treatments.

Luciferase and β-galactosidase assays
LNCaP/Luc or transfected COS-1 cells were lysed with Reporter Lysis Buffer
(Promega). Luciferase activity was assayed using the Steadylite Plus kit
(PerkinElmer). β-galactosidase activity was assayed using the Galacto-Light
Plus system (Invitrogen). Light emission was measured using a VICTOR
Light luminometer (PerkinElmer). For LNCaP/Luc lysates, luciferase activity
was normalised to protein concentration. For COS-1 lysates, luciferase
activity was normalised to β-galactosidase activity.

C4-2B human CRPC xenografts
C4-2B cells were expanded by passaging twice weekly and harvested
during the exponential growth phase. Cells were counted and viability was
assessed using the trypan blue exclusion assay before implantation. Based
on a priori sample size calculation using G*Power 3 software, a total of 40
male NSG mice (6-8-week-old) were purchased from Charles River (UK) and
allowed to acclimatise for 1 week. Mice were injected subcutaneously with
2.5 × 106 C4-2B cells resuspended in a volume of 100 µL serum-free media
and Matrigel Basement Membrane Matrix High Concentration (Corning) in
a 1:1 ratio. Animals were randomised into treatment groups (n= 10 per
group) when tumour volume reached 90mm3. Mice initiated on specific
treatments were housed in separate cages. Individual mice were treated at
4 mL/kg body weight with vehicle (5% DMSO and 30% SBE-β-CD dissolved
in distilled water), 50 mg/kg CT7001, 25 mg/kg enzalutamide, or
50+ 25mg/kg CT7001+ enzalutamide (combination). Treatments were
administered orally once daily for 21 days by two unblinded investigators.
Tumour size was measured every 3–4 days using digital calipers by two
unblinded investigators, and tumour volumes were calculated using the
formula: length × width × height × π/6. Mice were sacrificed on the last day
of treatment, 2 h after administration of the final dose.

Mouse plasma assays
Whole blood was collected via cardiac puncture in EDTA-coated tubes and
spun immediately at 7500 rpm for 5min in a benchtop centrifuge. Plasma
was collected, snap frozen in liquid nitrogen and sent to the Cambridge
Biochemistry Assay Lab (Cambridge University Hospitals NHS Foundation
Trust) for analysis. Mouse aspartate transaminase (AST), mouse urea, and
human free PSA levels were measured using a Siemens Dimension EXL
analyser.

Immunohistochemistry
Dissected tumours were fixed in 4% paraformaldehyde for 48 h and
embedded in paraffin blocks. Sections of 4 µm were stained with the
following antibodies: Ki67 (Cell Signaling Technology, 12202), P-S5 PolII
(Abcam, ab193467), P-S2 PolII (Abcam, ab5095), and P-T161/T160 CDK1/
CDK2 (Abcam, ab201008). Staining was visualised using Dako REAL
DAB+ Chromogen (Agilent Technologies). Slides were counterstained
with haematoxylin. Staining was quantified in a blinded fashion in two
different fields of view per tumour in three animals per group.

Statistical analyses
Statistical analyses were carried out using GraphPad Prism v9.0. Pairwise
comparisons were performed using the Student’s t test. Multiple comparisons
were carried out using one-way or two-way analysis of variance followed by
Dunnett’s or Šídák’s multiple comparisons test unless otherwise stated. In vivo
tumour growth rate was defined as the slope of the linear regression
described by tumour volume data points over time. All experiments were
conducted with at least two biological repeats. Significant p values are
displayed as follows: *p< 0.05, **p < 0.01, ***p< 0.001, ****p< 0.0001. Where
no asterisks are displayed, no significant differences were found.

RNA-sequencing and analysis
Total RNA was extracted from 30mg frozen tumour using the Monarch Total
RNA Miniprep Kit (NEB). RNA library preparation and sequencing was
performed by Novogene (UK) using 1 µg total RNA. Briefly, sequencing
libraries were generated using NEBNext Ultra RNA Library Prep Kit for
Illumina (NEB). Library quality was assessed using the Ilumina Bioanalyser

2100 system (Agilent Technologies). The library preparations were
sequenced on a NovaSeq 6000 System (Illumina) and paired-end reads
were generated. Clean reads were obtained from raw reads in FASTQ format
by removing adaptors, poly-N sequences, and low-quality reads. Paired-end
clean reads were aligned to the reference genome (GRCh38) using STAR
v2.5 software. HTSeq v0.6.1 was used to count the read numbers mapped of
each gene. Raw sequencing data and a matrix containing raw counts were
submitted to the GEO repository (accession number GSE198488).

Differential gene expression analysis
Differential expression analysis was performed using the DESeq2 R
package (v1.28.1) [46]. Statistical significance was computed using the
likelihood ratio test and the resulting P values were adjusted using the
Benjamini and Hochberg’s approach. Genes with an adjusted p value (padj)
<0.05 were assigned as differentially expressed. Gene clustering was
performed using the degPatterns clustering tool from the DEGreport
package (v1.24.1) [47].

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed using GSEA
4.1.0 software (Broad Institute) using the normalised counts table
estimated by DESeq2 for all genes and the Hallmark collection of gene
sets (Molecular Signatures Database) [48]. Statistical significance was
computed using 10,000 gene set permutations and the analysis was run
using default parameters. The gene sets with false discovery rate
(FDR) < 0.1 were considered statistically significantly enriched.

RESULTS
CT7001 target engagement in LNCaP prostate cells
Previous in vitro kinase assays showed CT7001 selectively targets
CDK7, although higher concentrations additionally inhibited the
activities of other CDKs [30]. Transitioning from biochemical to
cellular environments may alter target activity and selectivity (e.g.
due to differences in protein structure and accessibility or due to
off-target binding). Therefore, we carried out cellular thermal shift
assays (CeTSA) in intact LNCaP cells to investigate which CDK
targets are engaged by CT7001 in a cellular model with relevance
to prostate cancer. In this assay, binding of a drug to a target leads
to formation of a drug–target complex with shifted heat-stability
relative to the unbound target; as a result, the amount of soluble
target increases in a dose-dependent manner following heat
shock and can be determined by immunoblotting [39, 49].
To determine the melting characteristics for putative human CDK

targets of CT7001, thermal proteome stability data for human cell
lines were downloaded from the Meltome atlas [38]. The thermal
profiles of CDK1, -2, -4, -7, and -9 were used to interpolate melting
temperatures, Tm, defined as the temperature which aggregates
50% soluble protein. The Tm of the different CDKs ranged between
~47 and 53 °C (Fig. 1a). The Meltome data for CDK7 were validated
in LNCaP cells (Fig. 1b(i)). We next confirmed that heating of live
LNCaP prostate cells at 54 °C for 3min decreases soluble CDK levels
sufficiently to allow exploration of target engagement within the
same cell suspension (Fig. 1b(ii)). CeTSA isothermal dose-response
fingerprints were then generated at 54 °C using intact LNCaP cells
treated with increasing concentrations of CT7001 (0–20 μM) for 3 h.
Stabilisation of CDK7, CDK2, and CDK9, but not of CDK4 or CDK1,
was observed, as illustrated by increased protein levels compared
with DMSO treatment (Fig. 1c(i)). Additionally, we noted earlier
engagement with CDK7, consistent with the compound’s reported
selectivity (Fig. 1c(ii)) [30]. Overall, these data suggest that CT7001
can bind preferentially to CDK7 but has a degree of engagement
also with CDK2 and CDK9 at higher concentrations, which could
contribute to efficacy in preclinical models.

CT7001 inhibits cell growth and promotes cell cycle arrest
in vitro
The ability of CT7001 to inhibit growth of prostate cancer cell
lines was evaluated using growth rate (GR) inhibition studies. GR
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curves and associated GR metrics are not confounded by the
number of cell divisions taking place over the course of the
experiment (as opposed to percent viability curves and
traditional drug sensitivity metrics) [42], and thus represent an
improved methodology to measure drug sensitivity and have
been proposed as replacements for conventional metrics [50].
Dose-dependent GR inhibition was observed in all cell lines
treated with CT7001 over 72 h (Supplementary Fig. S1A). We
calculated the drug concentration that reduces GR by 50% (GR50,
the primary GR metric for drug potency) as well as the maximal
measured GR value (GRMax, the primary GR metric for drug
efficacy), and summarised these values for each prostate line
tested in Fig. 2a. GR50 ranged between 0.08 and 0.65 µM for
malignant prostate cell lines, suggesting potent growth inhibi-
tion consistent with selective engagement with CDK7 based on
CeTSA (Fig. 1), while negative GRMax values were indicative of
cytotoxicity in all lines except PC3 and DU145. GR50 concentra-
tions for the two non-malignant cell lines (BPH-1 and PNT1A)
were respectively 3.5-fold and 1.7-fold higher than the average
GR50 for malignant lines. In LNCaP cells, inhibition of CDK7
activity was associated with markedly reduced retinoblastoma
(Rb) phosphorylation, a downstream target of cell cycle CDKs,
while levels of CDK7, cyclin H and MAT1 were unaffected
(Fig. 2b). In contrast, decreased PolII CTD phosphorylation at S5

(a direct substrate of CDK7) and at S2 (phosphorylation
mediated by CDK9) was only observed at concentrations above
the GR50 of prostate cell lines and above the CDK7 CeTSA EC50,
respectively (Fig. 2c). This indicates that low but growth-
inhibitory concentrations of CT7001 are sufficient to suppress
the Rb-pathway and prohibit cell proliferation but are likely
insufficient to cause global PolII transcription inhibition. Cell
cycle analysis of asynchronous cell populations treated with
CT7001 and stained with propidium iodide showed significant
reduction of cells in S phase, concomitantly with an increase in
diploid (G0/G1) cells in LNCaP, C4-2B, and, to a lesser extent,
in DU145 cells, consistent with Rb inhibition, and an increase in
tetraploid (G2/M) cells in PC3 cells (Fig. 2d and Supplementary
Fig. S1C). The G2/M arrest observed in PC3 cells after CT7001
treatment suggests this line carries defects in G1/S or S phase
checkpoints which alter response to treatment, while a
dampened response in DU145 cells might be related to the
Rb-deficiency reported for this cell line [51]. Despite these
differences, all four cell lines showed a decrease in the
proportion of cells in the S phase. Mitosis markers (phosphory-
lated Rb, CDK1/CDK2, and histone H3) were decreased in LNCaP
and PC3 cells, confirming a reduction in the fraction of
proliferative cells (Supplementary Fig. S1B). These effects on
cell cycle and proliferation are similar to those reported for the
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covalent CDK7-selective inhibitor YKL-5-124 [21]. Collectively,
these data support that prostate cancer cell growth and cell
cycle progression are substantially disrupted by CT7001
treatment.

CT7001 triggers activation of the p53 tumour suppressor
pathway
A cytotoxic tendency was observed in GR studies in most prostate
lines except DU145 and PC3 cells, which are p53-deficient. This
prompted us to investigate whether CT7001 causes activation of
the p53 pathway. Indeed, accumulation of p53 protein and
increased serine-15 (S15) phosphorylation occurred in p53-intact
LNCaP and C4-2B cells after 48 h of treatment, but not in loss-of-
function p53-mutant DU145 cells or PC3 cells (Fig. 3a). Activation
of p53 was most obvious following treatment with CT7001
concentrations over 1 µM and was concomitant with increased
levels of cleaved PARP1, a marker of apoptosis, and of p21, a CDK
inhibitor which promotes cell cycle arrest. Further, transcriptional
activation of known p53 target genes was confirmed in LNCaP
cells but not in PC3 or DU145 cells (Fig. 3b) and caspase 3/7 assays
confirmed a significant increase in apoptosis in LNCaP cells, but

not in PC3 cells, upon treatment with CT7001 concentrations up to
10 µM (Fig. 3c). These data indicate activation of p53 signalling
contributes to cell cycle arrest and apoptosis in response to
CT7001 treatment.

CT7001 impairs androgen-induced transactivation of AR
in vitro
Given previous reports suggesting a coactivator role of CDK7 in AR-
dependent transcription [23, 25], we sought to explore the ability of
CT7001 to inhibit AR transactivation. We used the LNCaP/Luc cell
line, which has endogenous expression of an active mutant (T877A)
form of AR, and an integrated androgen-responsive luciferase
reporter [37]. Androgen treatment (mibolerone) induced AR
reporter activity, which was suppressed in a concentration-
dependent manner by CT7001 (Fig. 4a). Furthermore, mRNA
expression of the endogenous AR target gene PSA also decreased
in response to CT7001 treatment (Fig. 4b). This effect was not due to
reduced AR levels (Supplementary Fig. S2A), impaired AR nuclear
translocation in response to ligand (Supplementary Fig. S2B, C), or
reduced AR chromatin binding at well-characterised androgen
response elements (Supplementary Fig. S2D).
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Fig. 2 CT7001 inhibits proliferation of prostate cell lines and disrupts cell cycle progression. a Table summarising growth rate (GR) metrics
in prostate lines treated with CT7001 for 72 h (n= 3–4 per cell line). b Immunoblots from LNCaP cells treated with CT7001 showing effect on
Rb phosphorylation and CAK expression (representative of n= 3). c Immunoblots from LNCaP cells treated with CT7001 showing effect on
PolII phosphorylation (representative of n= 3). Numbers underneath blots represent relative band density quantified across 3 independent
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To investigate whether the mechanism of AR repression
involves the reported phosphorylation of AR by CDK7 at S515,
we employed AR luciferase reporter assays in COS-1 cells
transfected with expression vector encoding either wild-type AR
or AR in which S515 was replaced either by non-phosphorylatable
alanine (S515A-AR), or by the phosphomimetic aspartic acid
(S515D-AR) or glutamic acid (S515E-AR). Cells were co-transfected
with an androgen-responsive luciferase reporter and β-
galactosidase reporter as internal transfection efficiency control.
Androgen treatment stimulated the transcriptional activity of wild-
type AR and mutant AR proteins in a concentration-dependent
manner (Fig. 4c). Relative transcriptional activity was lower than
wild-type AR for the S515A-AR mutant and greater for the S515E-
AR and S515D-AR mutants, consistent with previous reports
[24, 25, 52]. We reasoned that if decreased phosphorylation of AR
at S515 is essential for the inhibitory activity of CT7001, then the
S515E and S515D substitutions would abrogate its effect.
However, treatment with CT7001 suppressed transactivation of
wild-type and S515 AR mutants with similar potency and efficacy
(Fig. 4d), suggesting CT7001 suppresses AR-driven transcription
via a different mechanism.
We also sought to investigate whether AR repression in

response to CT7001 treatment requires a functional AR LDB.
Similar reporter assays were carried out in COS-1 cells using
plasmids encoding full-length AR (FL-AR) or constitutively active
AR-Vs that lack the LBD (depicted in Supplementary Fig. S2E)
which are insensitive to androgen treatment (Supplementary
Fig. S2F), and for which there are no approved inhibitory

compounds. Treatment with CT7001 repressed transcription
mediated by FL-AR with EC50 of 0.68 µM, and by all AR-Vs tested,
with EC50 ranging between 0.42 and 1.07 µM (Fig. 4e). To validate
our findings from AR luciferase reporter assays and investigate
transcriptional effects in further prostate cancer cell lines, we
measured transcript levels of 32 known AR target genes,
comprising an AR activity signature (a list of TaqMan qPCR assays
is provided in Additional File 2, Supplementary Table 2). In LNCaP
cells, which express FL-AR, and VCaP cells, which express both FL-
AR and AR-V, treatment with 1 µM CT7001 repressed expression of
most AR targets (Fig. 4f). We repeated this experiment in the
22Rv1 FL-AR KO cell line, which completely lacks FL-AR and in
which expression of AR targets is maintained solely by constitu-
tively active AR-Vs [35]. As in the other cell lines, treatment with
1 µM CT7001 was sufficient to decrease the expression of most AR
target genes measured (Fig. 4f). The results from AR reporter
assays and gene expression analyses of AR target genes in
prostate cancer cell lines support the hypothesis that CT7001
represses transcription mediated by both full-length AR and
truncated, constitutively active AR-Vs in vitro. Collectively, these
indicate AR pathway suppression as a secondary mode of action
of CT7001 in prostate cancer cells, in addition to cell cycle
inhibition. Thus, we next explored potential synergistic effects on
cell growth between CT7001 and four AR-targeted compounds:
the second-generation antiandrogens apalutamide, darolutamide,
and enzalutamide, and the AR-specific protein degrader bavde-
galutamide/ARV-110. Co-treatment with CT7001 and AR-targeted
therapies resulted in additive-to-synergistic growth inhibition in
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T.A. Constantin et al.

2331

British Journal of Cancer (2023) 128:2326 – 2337



the AR-positive hormone-dependent LNCaP and CRPC C4-2B cell
lines, as indicated by positive Bliss independence scores (Fig. 4g
and Supplementary Figs. S3 and S4). The combinations were, as
expected, not synergistic in the AR-negative CRPC PC3 cell line.

CT7001 and enzalutamide suppress tumour growth in vivo in
an additive manner
To assess tumour growth inhibition of CT7001 alone or in
combination with enzalutamide, a widely used antiandrogen,
immunocompromised (NSG) male mice with established sub-
cutaneous C4-2B xenografts were assigned into 4 treatment
groups: vehicle, CT7001 (50 mg/kg) alone, enzalutamide (25 mg/
kg) alone, or a combination of enzalutamide and CT7001. On day
21 of daily oral treatment, CT7001 and enzalutamide monotherapy

reduced final tumour volume by 52% and 50% respectively, while
combination therapy reduced final tumour volume by 73%,
compared to vehicle treatment (Fig. 5a). A significant reduction
in the weights of excised tumours was also evident for all
treatments (Fig. 5b). Regression analysis using longitudinal tumour
volume data showed a significant reduction in growth rate in all
treatment groups compared to vehicle (vehicle vs. CT7001
p= 0.0006; vehicle vs. enzalutamide p < 0.0001; vehicle vs.
combination p < 0.0001) and, additionally, a significant reduction
in tumour growth rate in the combination arm compared to
enzalutamide alone (p= 0.0156) but no significant difference
between the growth-rates of CT7001-treated and combination-
treated tumours (p= 0.3145) (Fig. 5c). Mean tumour doubling time
was 8 days for vehicle-treated mice, 12 days for CT7001-treated
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Fig. 4 CT7001 interferes with AR transactivation. a Luciferase assay in LNCaP/Luc cells treated with CT7001 in the presence of 1 nM
mibolerone (MIB) for 24 h (n= 6). Data are presented as fold change relative to no androgen control. b PSA mRNA expression in LNCaP/Luc
cells treated as in a (n= 3). c AR reporter activity in COS-1 cells transfected with wild-type or S515 mutant AR plasmids. Cells were treated for
24 h. Responses were normalised to β-galactosidase for transfection efficiency. Data are presented as % activity relative to wild-type AR, with
the highest response representing 100% activity (n= 4–5). d AR reporter activity in COS-1 cells transfected as in c and treated with CT7001 for
24 h in the presence of 1 nM MIB (n= 3–4). e (i) AR reporter activity in COS-1 cells transfected with full-length AR (FL-AR) or AR variants (AR-V)
plasmids. Transcriptional repression by CT7001 was assessed after 24 h in the presence of 1 nM MIB (n= 3–4). (ii) Table summarising AR
reporter activity IC50 for CT7001 treatment of FL-AR and AR-V. f Gene expression (RT-qPCR) of 32 AR targets in prostate lines. Cells in presence
of androgen were treated ±1 µM CT7001 for 24 h, the colour represents fold change in presence vs absence of CT7001 (n= 2). g Bliss synergy
scores for CT7001 combinations with AR-targeting compounds (n= 4). Data are presented as mean ± SEM. p values in a–c were determined
using one-way ANOVA followed by Dunnett’s multiple comparisons test.
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mice, 11 days for enzalutamide-treated mice, and 21 days for mice
treated with both CT7001 and enzalutamide (Fig. 5d). Tumour
growth inhibition was also associated with significantly reduced
plasma free PSA in enzalutamide- and combination-treated mice
relative to vehicle controls, and with a similar trend in CT7001-
treated mice (Fig. 5e). All treatments were generally well-tolerated,
with less than 5% body weight loss on average in all treatment
arms, which was comparable to the weight loss observed in
vehicle controls (Fig. 5f). Additionally, plasma AST and urea levels
appeared unchanged, except for a small reduction in plasma urea
concentration in enzalutamide-treated mice relative to vehicle
controls (Supplementary Fig. S5A, B). There were no obvious
histopathological changes in the liver of treated animals

(Supplementary Fig. S5C). Immunohistochemistry of resected
tumours showed CT7001 monotherapy reduced Ki67 expression,
with further decrease observed in tumours treated with a
combination of enzalutamide and CT7001 (Fig. 5g and Supple-
mentary Fig. S5D). In addition, T-loop phosphorylation of CDK1/
CDK2 was additively decreased by CT7001 and enzalutamide
treatments, and a decrease in PolII phosphorylation was detected
in tumours treated with CT7001 alone or in combination with
enzalutamide.
Finally, we sought to identify drug-induced transcriptome

changes and biological pathways associated with treatment
response by carrying out RNA-seq analysis of the treated C4-2B
xenografts (n= 3–4 per group). Unsupervised principal
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component analysis (PCA) captures 28.94% of the gene expression
variance in the first two PCs and shows separation of the different
groups, with the enzalutamide and combination groups clustering
furthest from the vehicle group (Fig. 6a). We performed
differential gene expression analysis using DESeq2 [46] and
computed statistical significance using a likelihood ratio test. This
analysis identified 1915 differentially expressed genes that
showed significant changes in expression across the four different
groups (padj<0.05). Clustering analysis performed using the
DEGreport package [47] identified 6 major differential gene
expression clusters (Fig. 6b, c). Clusters 1-4, representing a large
majority of 1612 genes, showed altered expression in response to
enzalutamide and combination treatment, while treatment with
CT7001 alone led to only small changes in expression. This
pointed to enzalutamide as the major driver of transcriptional

effects in response to combination therapy. We performed gene
set enrichment analysis (GSEA) using a matrix containing DESeq2-
normalised counts for all detectable genes in the different groups
and calculated enrichment scores, relative to vehicle, for the
Hallmark gene sets collection [48] (Fig. 6d). With respect to CT7001
treatment alone, the results of the GSEA are consistent with the
effects of CT7001 treatment observed in vitro. Negative enrich-
ment for several cell cycle-related gene sets (e.g. G2M checkpoint,
E2F targets, and mitotic spindle) and the hallmark androgen
response, and positive enrichment for the hallmark p53 pathway
were noted (Supplementary Figs. S6 and S7). In tumours treated
with enzalutamide alone or with a combination of enzalutamide
and CT7001, GSEA identified negative enrichment of several gene
sets, including the hallmark androgen response, MYC targets,
reactive oxygen species and fatty acid metabolism (Fig. 6d).
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Reassuringly, the top negatively regulated gene set for enzaluta-
mide and combination treatments was the hallmark androgen
response; interestingly, this was also the case for CT7001 alone. A
few hallmark gene sets were exclusively negatively enriched in the
combination group (e.g. oxidative phosphorylation, glycolysis,
oestrogen responses, DNA repair). However, the top gene sets
enriched in the combination group substantially overlapped with
those enriched in the enzalutamide group (Fig. 6e). This indicates
that addition of CT7001 to enzalutamide at therapeutic doses
contributes little to the transcriptional effect of enzalutamide and
suggests cell cycle inhibition by CT7001 as the primary mechan-
ism underpinning the additional growth repression observed in
response to combination therapy.

DISCUSSION
In this report, we present a systematic assessment of the
mechanism of action and preclinical efficacy of CT7001 as a
single agent or combined with the second-generation antiandro-
gen enzalutamide in established preclinical models of CRPC. Using
CeTSA in LNCaP cells, we show CT7001 preferentially targets CDK7
over CDK2 and CDK9. This complements published studies using
cell-free in vitro kinase assays [30] and confirms CT7001’s potent
and selective pharmacology against CDK7 in living prostate cancer
cells. In contrast to one report suggesting CDK4 as a target of
CT7001 [53], we found no evidence of direct engagement with
CDK4 or with CDK1 at concentrations up to 20 µM.
Treatment with CT7001 induces potent growth inhibition and

promotes cell cycle arrest in prostate cancer lines with sub-
micromolar potency, while higher drug concentrations can induce
activation of the p53 pathway and promote apoptosis. Our results
show that CT7001 also inhibits the transcriptional activity of AR, a
key transcription factor and oncogenic driver in prostate cancer.
Increased sensitivity of AR-positive (compared to AR-negative)
prostate cancer cell lines to THZ1, an inhibitor of CDK7/CDK12/
CDK13, has been previously reported [23]. With respect to CT7001,
potent growth inhibition was achieved in both AR-positive
(LNCaP, C4-2, C4-2B, VCaP and 22Rv1) and AR-negative (DU145,
PC3) lines.
Notwithstanding, complete loss of AR expression is rare in CRPC,

where reactivation of AR signalling drives resistance to androgen
deprivation therapy. This frequently involves mutation or loss of
the AR LBD. In this report, we demonstrate that CT7001 treatment
successfully inhibits growth and AR-dependent transcriptomes of
cell lines modelling these scenarios: LNCaP cells carry a point
mutation in the AR LBD (T877A) which confers promiscuous
activation by alternative ligands, VCaP cells display AR gene
amplification in addition to expressing constitutively active AR-Vs,
while the engineered 22Rv1 FL-AR KO line displays ligand-
independent AR transcriptome driven by AR-Vs and intrinsic
resistance to AR-targeting therapies. Direct inhibition of ectopi-
cally expressed AR-Vs was also demonstrated. As CT7001
mechanistically functions independently of the AR LBD, unlike
all approved AR-targeted compounds, it is a good therapeutic
candidate for CRPC tumours with AR reactivation. We also
explored the therapeutic potential of combining CDK7 inhibition
with the widely prescribed antiandrogen enzalutamide and found
additive tumour growth repression in vivo, likely mediated largely
through CT7001’s potent repression of cell cycle progression.
Further research is warranted to determine whether, in models
displaying resistance to antiandrogens, AR pathway suppression
by CT7001 becomes essential for therapeutic efficacy.
Considering the more widespread effects of CDK7 on PolII-

dependent transcription, mounting evidence suggests targeting
transcriptional kinases using selective inhibitors could provide a
sufficient therapeutic window to be effective without the initially
feared toxicity [54, 55]. Our data indicate that, while CT7001
treatment can reduce PolII phosphorylation, this effect only

occurred at concentrations >10-fold greater than the GR50 in
LNCaP prostate cancer cells. Therefore, inhibition of the Rb and AR
pathways may be sufficient to explain the growth inhibition
observed at lower concentrations. This is in line with recent work
using the CDK7-selective covalent inhibitor YKL-5-124, which
caused no change in PolII phosphorylation at growth-inhibitory
doses [21, 22], while the CDK7/12/13 inhibitor THZ1 decreases
PolII phosphorylation at nanomolar concentrations [56]. However,
it is worth mentioning that a reduction in PolII phosphorylation
occurred in vivo following treatment with CT7001 and that a
change in the steady-state mRNA levels resulting from global
repression of transcription would not be evident in the generated
RNA-seq dataset. Therefore, we cannot rule out the possibility that
inhibition of PolII transcription contributed to the efficacy
observed in vivo.
Several questions remain regarding the mechanism of action of

CT7001 in prostate cancer. Firstly, activation of p53 presumably
contributes to CT7001-induced apoptosis. The highly metastatic
PC3 cell line, which does not express p53 protein, appears
resistant to apoptosis in response to CT7001 treatment. In
addition, activation of p53 transcriptional programme has been
demonstrated to sensitise some cancer cells to CDK7 inhibition by
promoting pro-apoptotic pathways [57]. As the p53 tumour
suppressor is frequently mutated in prostate cancer and has
prognostic significance [4, 58], future studies should explore
whether enhanced sensitivity or/and induction of apoptosis in
response to CT7001 treatment is dependent on an intact p53
pathway. Indeed, preliminary data from the clinical trial strongly
indicate that TP53 status is associated with response to CT7001
therapy in patients with metastatic hormone receptor-positive/
HER2-negative breast cancer [34]. Secondly, in addition to
suppressing cell proliferation, CDK7 inhibition by YLK-5-124 was
found to induce interferon gamma signalling along with other
inflammatory response pathways in models of small cell lung
cancer [22]. This, in turn, triggered robust immune cell signalling,
which potentiated the antitumour immune response and
enhanced response to anti-PD-1 immunotherapy. Whether
CT7001 treatment can provoke similar antitumour immune
responses in immunocompetent murine models of prostate
cancer remains to be explored.
In summary, the data presented here demonstrate that the

orally bioavailable CDK7 inhibitor CT7001 impedes malignant cell
growth by targeting proliferation pathways and, in addition,
downregulates oncogenic AR signalling and induces apoptosis in
CRPC models. This multifaceted mechanism of action drives
additive combinatorial activity with the antiandrogen enzaluta-
mide in the C4-2B xenograft model of advanced CRPC. Therefore,
this study supports CDK7 inhibition as a therapeutic strategy for
CRPC and provides a rationale for new combination regimens
consisting of CDK7 inhibitors and antiandrogen therapy, all the
more so as CT7001 demonstrated acceptable safety profile with
evidence of target engagement in clinical trials.
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