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Series Editors' Note

The beauty of science is that all the important things are unpredictable.
Freeman Dyson

In the typescript which follows, Moodie and Krakow tackle the topical issue of precision medicine and statistical methods for estimating
adaptive treatment strategies. This may be the most difficult typescript in our series so far for non-statisticians to understand. It even has
equations! But please bear with the authors and give it a chance. One needs not to understand the equations to get the thrust of the strategy.
Precision medicine as we discuss elsewhere, is misnamed. In statistics and mathematics precision refers to getting the same answer again

and again. It does not mean getting the correct answer, the term for which is accuracy, not precision. However, precision is the current buzz
word so there’s no point trying to get this straight. When we think about precision we need to consider two elements, reproducibility and
replicability. Reproducibility means you give me your data and computer code and I come to the same conclusion you did. Replicability is
another matter. I try to replicate your experiment and hopefully reach the same conclusion. In medicine, replicability is obviously more
important than reproducibility but things which cannot be reproduced are unlikely to be replicated.
As the authors discuss, one can think about precision medicine as one does a family vacation. A best vacation depends on several co-

variates: where you live, your prior travel experiences, advice from family and friends, online reviews, Wikitravel, cost, your travel budget,
if you have kids and many other co-variates. Consequently, there is unlikely to be a best vacation for everyone. Yours might be a week at
the Ritz Carlton Cancun with dinner at Careyes and ours, a week at the Pfister Hotel in Milwaukee with dinner at Mader’s German
Restaurant (bring simvastatin). Similarly, it is unlikely there is a best therapy of acute myeloid leukemia, a best donor, a best conditioning
regimen, a best posttransplant immune suppressive regimen etc. and certainly no best combination of these co-variates for your patient.
The question Moodie and Krakow tackle is how we can determine the best therapy or combination of therapies for someone receiving a

haematopoietic cell transplant. Although the default answer is typically: randomized clinical trials are the gold standard, these inform us of
the outcome of a cohort of subjects, not individuals. In many instances, although a new therapy may be shown to be better than an old one
in a controlled randomized trial the benefit is not uniformly distributed. Some subjects in the experimental cohort may do worse with the
new therapy compared with controls, others better. The question is who are the winners and losers? We cannot do a controlled randomized
trial of one person. Moodie and Krakow discuss statistical tools to help us sort this out.
Again, please do not be put off by the equations; forgetaboutit. The overriding message is not so complex, and important. We are always

standing by on twitter @BMTStats to help. But don’t confuse us with Match.com. And, by the way, Freeman Dyson was a professor at the
Institute for Advanced Studies at Princeton but never got his PhD.

Robert Peter Gale, Imperial College London, and Mei-Jie Zhang, Medical College of Wisconsin, Center for International Blood and
Marrow Research (CIBMTR).

Introduction

When planning a long-awaited vacation, the decision of
where to go to have an “optimal” experience depends on
many factors including the home base (Hawaii may be more
feasible for someone based on the West Coast of North
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America than someone on the East Coast), previous per-
sonal travel experiences, and advice from friends or online
reviews. Similarly, although the primary and most desirable
goal of cancer or graft-versus-host disease (GvHD) treat-
ment is cure, the decision of how to treat someone to
achieve an “optimal” outcome may also depend on
numerous subject-level covariates analogous to those in our
holiday-planning example: where we are presently (general
health and performance status, specific organ function,
disease burden, mutation landscape, and immune profile),
where we have been (response to and adverse effects of
previous treatments, perhaps including molecular and
immune biomarker responses), and where we could realis-
tically go (anticipated performance of future treatment
options, subject to constraints of availability, cost, etc.). The
first and second considerations are based on a person’s
current and prior data. The third consideration requires
considering outcomes of former patients.

Of course, in many people treatment decisions need to be
taken several times in a series of treatment choices using
updated data on the subject’s current condition and prior
experiences. Examples of everyday decisions haemato-
poietic cell transplant physicians and immunotherapists
encounter include:

(1) Treatment of people with acute myeloid leukemia
(AML) posttransplant with measurable residual disease
or relapse. Many receive hypomethylating therapy,
intensive chemotherapy, donor lymphocyte infusions,
and/or second transplants in diverse sequences.

(2) Immune suppression strategies to prevent and treat
acute and chronic GvHD [1–3].

(3) Sequencing autotransplant vs. chimeric antigen receptor
(CAR)-T-cell therapy in persons with advanced lym-
phomas or sequencing new therapies for chronic
lymphocytic leukemia.

To fulfill the goal of precision medicine, adaptive treat-
ment strategies (ATS) use data from observed patient
experiences to develop treatment recommendations tailored
to a given person. In this tutorial, we give an overview of
two specific methods of statistical estimation of ATS, each
from one of two broad classes of approaches. We illustrate
these approaches using recent analyses of data from the
Center for International Blood and Marrow Transplant
Research (CIBMTR) [3].

Two approaches to estimating optimal ATS
for a single treatment decision

Developing an optimal ATS requires several steps. The first
is to clearly define the research question by specifying: (1)

how many treatment decision nodes there are and what
treatment options are available at each; (2) what subject-
level data relevant to the possible decisions are available;
(3) what subject-level data were used to assign treatment
(e.g., was it a randomized trial or were hospital-specific or
country-specific treatment guidelines used); and (4) which
outcome(s) is to be optimized. The latter may be difficult to
specify. For example, targeting cure or maximizing disease-
free survival (DFS) may overlook important considerations
such as adverse effects, quality-of-life (QoL), or cost. A
utility combining several competing outcomes could be
used. However, constructing such a utility requires sub-
stantial input from physicians and patients [4].

There are two broad approaches to estimating ATS: (1)
regression-based (indirect) methods; and (2) value-search
methods. We outline one example of each approach in a
hypothetical simple, one-decision setting for a continuous
outcome. We then discuss how these approaches are
extended to other outcome types and multiple decision
stages. We also discuss a recent application to the two-stage
decision-making approach to preventing and, if needed,
treating GvHD using immune suppressive therapies in the
course of an allotransplant for persons with AML or mye-
lodysplastic syndrome.

We begin with notation for the single decision (or single
stage) case. We consider a binary treatment Z, pre-treatment
covariates X, and a binary outcome Y. For example, we may
wish to decide whether to give someone anti-thymocyte
globulin (ATG) prophylaxis in addition to standard tacro-
limus/methotrexate (ATG is denoted as Z) to maximize
GvHD-free, relapse-free survival (GFRS, our Y) taking into
consideration factors such as sex match, age, pretransplant
conditioning regimen intensity, donor histocompatibility
and relatedness, and type of graft (collectively denoted X).
In fact, much of the statistical literature on ATS focuses on
a continuous outcome, for instance a biological marker or
QoL. However, our focus in this example is on outcomes
relevant to transplant physicians.

Regression-based (indirect) estimation
of a single-stage ATS

One class of estimating approaches to ATS relies on the
familiar method of regression. Specifically, a model is fit for
the probability of observing the outcome, Y, as a function of
the treatment, the covariates, and interactions between
these. In general terms, we write:

logit Pr Y ¼ 1jZ;X; β;φ½ �ð Þ ¼ g X; βð Þ þ γ X; Z;φð Þ:
ð1Þ

It is common to choose both g and γ to be linear functions.
As a trivial example, if we take Z to be 1 when treatment is
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ATG and 0 otherwise, then we may specify:

logit Pr Y ¼ 1jZ;X; β;φ½ �ð Þ ¼ β0 þ β1HLAmismatchð Þ
þ Z φ0 þ φ1HLAmismatchð Þ:

Note that in this equation, g X; βð Þ ¼ β0 þð
β1HLAmismatchÞ describes the impact of an HLA-
mismatched donor (relative to that of an HLA-matched
donor) on GRFS under standard immune suppression
(tacrolimus/methotrexate), i.e., when Z= 0. GRFS (or, more
accurately, the logit of the probability of experience GRFS) is
altered by γ X; Z ¼ 1;φð Þ ¼ φ0 þ φ1HLAmismatchð Þ
when treatment is, instead, ATG. Note that if φ0 þð
φ1HLAmismatchÞ> 0, then the probability of experiencing
GRFS will be higher when ATG therapy is used. Thus, if we
can estimate the parameters φ0 and φ1, then we could
estimate the optimal rule as “treat with ATG when φ0 þð
φ1HLAmismatchÞ> 0”, otherwise, treat with tacrolimus/
methotrexate alone. Returning to the general regression
formulation given in Eq. (1), this suggests that the optimal
rule can be deduced by: (1) estimating regression parameters
of Eq. (1); and (2) specifying the optimal rule to be that which
assigns treatment Z= 1 whenever γ X;Z ¼ 1;φð Þ> 0, assum-
ing that the larger value of Y (in this case, 1) is preferable.

This regression-based approach has the advantage of
relying on a familiar statistical tool accompanied by standard
approaches to covariate selection, model diagnostics, and so
on. This straightforward approach, whether in the single- or
multiple-stage setting, is known as Q-learning. However, the
approach relies on assuming the model designated to describe
Eq. (1) is correctly specified. This implies that all confounders
[5] have been measured. Regression-based methods can be
made more robust by specifying a very flexible functional
form for the regression equation, for example by using splines
[6], nonlinear models, or even nonparametric machine learn-
ing approaches [7], though the latter may lose some of the
interpretability of a more traditional regression model.
Regression-based methods can also be made more robust by
specifying a propensity score model—i.e., a model for the
treatment assignment mechanism—and using this to adjust
for confounding so that even if the g(X; β) is not correctly
specified, the estimated treatment rule will be consistent for
the truth in large samples—provided the propensity score
model and the component of the model that specifies the
treatment rule, γ(X, Z; φ), are correctly specified. These so-
called doubly robust methods include g-estimation [8] and
dynamic weighted ordinary least squares [9] although neither
of these are well-developed for binary outcomes.

Value-search (direct) estimation of a single-stage ATS

In the ATS literature the expected outcome is sometimes
known as the value function. We may consider the

value function under a treatment strategy. E.g., V1 ¼
E Y Z ¼ 1ð Þ½ � represents the value under the treatment strat-
egy “give everyone ATG”, whereas Vd ¼ E Y Z ¼ d Xð Þð Þ½ �
where d Xð Þ ¼ I φ0 þ φ1HLAmismatchð Þ> 0ð Þ is the
probability GRFS if all patients were treated according to the
rule “treat with ATG when φ0 þ φ1HLAmismatchð Þ> 0”.
Value-search methods aim to estimate the value function
directly under a series of candidate treatment strategies, d.
These strategies could be linear decision rules such as “treat
with ATG when φ0 þ φ1HLAmismatchð Þ> 0”, or could
involve nonlinear treatment rules such as “treat with ATG
when ϑ0 þ 1:2Age�ϑ1

� �
> 0” where the latter cannot easily be

estimated with traditional regression-based methods.
A classic value-search method relies on inverse prob-

ability of treatment weighting (IPTW). In this approach, the
propensity score is used to construct weights that are used to
remove confounding, which may exist when treatment is
not randomly assigned. The analyst first estimates the pro-
pensity score model, constructs inverse probability of
treatment weights and then computes a weighted average of
the outcomes Y for those individuals who followed a given
treatment rule, d. Using the same propensity score model
and weights, weighted averages are computed for each
candidate treatment rule and the resulting estimates are
compared with see which candidate rule returns the greatest
expected outcome.

Value-search approaches have the advantage of more
easily accommodating rules of any form, not simply linear
decision rules. However, more sophisticated approaches
than IPTW are generally recommended as IPTW estima-
tors of the value (expected outcome) often have large
standard errors making it difficult to distinguish the rela-
tive benefit of the candidate rules. These approaches
include augmented IPTW [10], residual weighted learning
[11], and others (e.g., [12]). Value-search methods do not
require the true best adaptive decision rule to be among
the candidate rules. The approach will, in large samples,
simply select the treatment strategy, which results in
the best outcome among the candidate strategies being
considered.

Two approaches to estimating optimal ATS
for a sequence of several treatment
decisions

Consider now, a setting where we have to make multiple
treatment decisions. Recall, for example, setting (2) above
where interest lies in devising the best strategy to prevent
and/or treat acute and chronic GvHD. Interest may lie in
maximizing the binary outcome of 2-year DFS [3] or
maximizing DFS time without restriction to 2 years and
allowing censoring [2].
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We must now extend notation to accommodate two stages
of decision-making, wishing to individualize treatment
decisions, considering a binary treatment Z1 indicating use
of ATG given pretransplant to prevent GvHD. Pre-
treatment covariates X1 are measured and may include
recipient-, donor- and disease-related variables. In subjects
developing GvHD, further interventions of different
intensities will be offered. This second stage of treatment
is denoted Z2. Pre-treatment covariates, denoted X2, are
again measured before giving GvHD therapy, which may
include all or some subset of X1, as well as post-Z1 vari-
ables such as time to develop GvHD, current health,
investigational biomarkers of GvHD severity and/or
functional measures such as the Karnofsky Performance
Status score. Again, we consider a binary outcome Y such
as 2-year GRFS.

A key concern with multistage interventions is that a
treatment may have delayed effects. For example, an
intensive therapy may elicit a good short-term response but
may compromise subsequent therapy(ies) resulting in a
lower long-term success rate [13, 14]. Estimation must
therefore proceed either sequentially backwards for
regression-based estimators or by considering the ATS for
value-search methods.

Regression-based (indirect) estimation of a
multistage ATS

Implementation of Q-learning in a multistage decision
analysis proceeds by following a general sequential algo-
rithm for a two-stage case:

1. Propose a model for the final outcome as a function of
the second stage of treatment, Z2, and any elements of
X*

2= (X1, Z1, X2) that (i) may be potential tailoring
variables for stage 2 treatment or (ii) may be important
predictors of the outcome Y. To be more concise, we
can let denote (X1, Z1, X2):

logit Pr Y ¼ 1jZ2;X�
2 ; β2;φ2

� �� �

¼ g2 X�
2 ; β2

� � þ γ2 Z2;X
�
2 ;φ2

� � ð2Þ

where the functions g2() and γ2() are analogous to
those defined in Eq. (1). More specifically, the
contrast function γ2() is used to define a (possi-
bly linear) decision rule at the second decision-
stage.

2. Estimate the parameters in Eq. (2) and use these to
define the optimal (estimated) stage 2 decision rule
as “treat with Z2 = 1 whenever γ2 Z2 ¼ 1;X�

2 ; φ̂2

� �
>

γ2 Z2 ¼ 0;X�
2 ; φ̂2

� �
”, or equivalently “treat with Z2

= 1 whenever γ2 Z2 ¼ 1;X�
2 ; φ̂2

� �
> 0”. Through

X*
2 = (X1, Z1, X2) this rule may account for previous

(stage 1) treatment, Z1 and responses to the
treatment, contained in X2.

3. We now wish to estimate the optimal first-stage
decision. However, using principles much like those
in traditional randomized clinical trials, we do not
wish to condition on or adjust for any post-(stage 1)
treatment variables. We do not wish to condition on
the second stage treatment and yet we must ensure
that comparisons between the two stage 1 treatment
options are “fair” and not simply a reflection of
later, downstream treatments. We accomplish this
by creating a new, pseudo-outcome we denote ~Y1
which we generate for each individual in the sample
according to:

~Y1 ¼ max Pr Y ¼ 1jZ2 ¼ 0;X�
2 ; β̂2; φ̂2

� �
;

�

Pr Y ¼ 1jZ2 ¼ 1;X�
2 ; β̂2; φ̂2

� ��
:

That is, the pseudo-outcome is the estimated “best
possible” probability of the outcome an individual
could have based on the estimates for the outcome
model specified in Eq. (2). Using this pseudo-
outcome is equivalent to performing a stage 1
analysis in a world where all individuals in the
sample were treated optimally at the second stage.
Note that in this “optimal treatment world”, not
everyone would receive the same treatment (ATG
or standard), but all would be treated according to
the same rule (“treat with Z2 = 1 whenever
γ2 Z2 ¼ 1;X�

2 ;φ2

� �
> 0”).

4. Propose a model for the pseudo-outcome as a
function of first stage of treatment, Z1, and X1:

logit Pr ~Y1 ¼ 1jZ1;X1; β1;φ1

� �� �

¼ g1 X1; β1ð Þ þ γ1 Z1;X1;φ1ð Þ ð3Þ

where again g1() and γ1() are analogous to the
functions in Eq. (1).1

5. Estimate the parameters in Eq. (3), and use
these to define the optimal (estimated) stage 1
decision rule as “treat with Z2= 1 whenever
γ1 Z1 ¼ 1;X1; φ̂1ð Þ> 0”.

The above algorithm can be adapted to more than two
stages simply by computing a new pseudo-outcome for all
stages other than the final stage. The final sequence
of treatment rules is made up of a sequence with

1 Note that many regression packages will yield a warning in
attempting to fit Eq. (3) as ~Y1 is not binary (although it does lie in the
interval [0,1]). This warning may safely be disregarded.
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components consisting of “treat with Zj= 1 whenever
γjðZj ¼ 1;X�

j ; φ̂jÞ> 0” for each treatment stage j. Other
regression-based forms of estimation vary in how the
pseudo-outcome is constructed. However, the basic princi-
ples of the backwards inductive approach remain.

Value-search estimation of a multistage ATS

The extension of the simple, inverse probability of
treatment-weighted estimator to multiple stages is straight-
forward. As in the single-stage setting, a set of candidate
treatment strategies must be posited by the analyst. Pro-
pensity score models are fit—now at each decision stage—
and inverse probability of treatment weights are constructed
at each interval and then multiplied together. As in the
single-stage setting, for each candidate strategy of interest,
those individuals in the sample who were observed to fol-
low the treatment strategy under investigation are used to
compute a weighted average of the outcomes Y, thus
yielding an estimate of the value function for that strategy.
The resulting estimates of the value functions for each
candidate strategy are compared to see which returns the
greatest expected outcome.

As in the single-stage setting, there are numerous alter-
natives to the simple IPTW approach, many of which
include some form of outcome modeling and consequently
offer greater precision in the estimated value function and
thus the choice of preferred treatment strategy.

Further extensions

The methods we describe along with related methods have
been extended in several ways. Beyond two treatment
options, one can consider multiple distinct treatments or
even continuous treatment [15, 16]. Censored continuous
outcomes—e.g., “survival time”—can also be accom-
modated with censoring handled by assuming independent
censoring or by using inverse probability of censoring

weights [17–20]. Within regression-based approaches this is
done by assuming appropriate models in Eqs. (2) and (3).
For example, a Cox model could be assumed for a survival
outcome. Except for a few instances (e.g., [3, 21]), other
outcome types such as counts or binary outcomes have
rarely been considered. We are unaware of any analyses or
methods that have aimed to optimize a binary outcome over
more than two stages of intervention.

The form of the outcome model can be very general,
particularly for Q-learning. For example, we considered a
parametric model for DFS time that allowed for a fraction of
individuals to be cured [2]. This model allowed for treatment
to interact with covariates differently in the cure and the
survival components of the model. This flexible approach
revealed that although on average ATG therapy is not a
preferred treatment choice for either GvHD prevention or
treatment (see Fig. 1) when the outcome being considered is
DFS, significant numbers of people may benefit from pre-
transplant ATG and a much smaller fraction of patients with
GvHD may benefit from ATG treatment (Fig. 2).

Algorithm validation

Oncologists are already familiar with trials that aim to eval-
uate two treatments, using either factorial designs [22] or
using sequential randomizations where nonresponders are
randomized to different salvage therapies or responders are
randomized to different consolidation or maintenance treat-
ments or to maintenance vs. no intervention (e.g., [23, 24]).
Unfortunately, results of first and second randomizations are
often published in separate articles (for example [25–28]).
Consequently, insights which might emerge by considering
the trajectories as a whole are lost. The implication is that the
infrastructure for conducting trials with multiple treatment
assignments and sequential randomizations already exists.

The Sequential Multiple-Assignment Randomized Trial
(SMART) is the preferred trial design to develop ATS that
could serve as decision support tools and practice guidelines.
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Fig. 1 Survival comparison for
ATG vs. standard GvHD
prophylaxis and treatment.
Kaplan–Meier curves show clear
overall benefit to standard
therapy over ATG at both the
first treatment stage (left panel,
GvHD prophylaxis) and
second treatment stage (right
panel, treatment of
established GvHD).
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Compared with developing ATS through retrospective ana-
lysis of medical records and registry data, prospective
development of ATS through SMART clinical trials has the
advantage that randomization reduces selection bias and
confounding-by-indication along with reducing the risk of
unmeasured confounders. In a SMART, participants are
randomized to one of a pre-defined list of treatment options at
each critical decision node. This approach allows discovery
and testing of tailoring variables while also assessing com-
parative efficacy of different treatments. SMARTs are used to
identify which subset of X1 and X2 predicts a good or poor
response to a given treatment at the respective decision stage.

To validate an ATS, whether it was developed in a
SMART or through retrospective analyses, would require a
subsequent conventional randomized trial. For example,
subjects could be randomized between the ATS and a dif-
ferent “standard-of-care” treatment sequence. Alternatively,
the ATS could be tested in “ecological studies” where it is
implemented in some hospitals or over some period, and
the outcome of subjects treated under the ATS compared with
the outcome of contemporaneous subjects treated in different
hospitals that did not use the ATS or to a historical cohort.

Conclusion

In this brief review, we introduced two simple forms of
analysis for estimating optimal ATS. These methods can be
applied to nonexperimental data such as those arising from
clinical practice or registries or can be applied to rando-
mized trials. In particular, the SMART design is specifically
targeted at designing treatment algorithms for tailored
interventions with multiple decision points [29–31].

An important point to keep in mind is that, in general,
analyses aimed at uncovering ATS are exploratory rather

than confirmatory in nature. SMARTs may be confirmatory
in nature but are typically powered for tailoring only on a
very small number of covariates such as response to first-
stage treatment. Nevertheless, these methods can identify
candidate strategies and tailoring variables that appear
promising and discard other clearly suboptimal strategies.
As big data, expanded access to anonymized electronic
medical records and incorporation of novel biomarkers into
clinical decision making become the norm, ATS approaches
to developing decision support tools are becoming
increasingly feasible and potentially useful, both for ‘sim-
ple’ decisions and complex ones.
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