Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis

Abstract

The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptomics profiling of livers in humans identifies core MASH transcriptional network.
Fig. 2: Transcriptomics profiling of livers in mice identifies core MASH transcriptional network.
Fig. 3: Treatment with FXR agonists alleviates MASH-associated phenotypes.
Fig. 4: FXR activation reverses the dysregulated core MASH transcriptional network.
Fig. 5: Machine learning predicts patients’ response to treatment of FXR agonists.
Fig. 6: Activation of FXR reduces molecular signatures of inflammation and fibrosis.
Fig. 7: Activation of intestinal FXR mitigates MASH through the gut-liver axis.

Similar content being viewed by others

Data availability

The bioProject accession for the hepatic transcriptomic data (Fxrf/f, FxrIE, Fxrf/f + OCA, and FxrIE + OCA mice) and intestinal transcriptomic data (Fxrf/f + OCA and FxrHep + OCA mice) reported in this paper is PRJNA992640. The bioProject accession for the hepatic and intestinal transcriptomic data (FXR agonists treated mice) reported in this paper is PRJNA1030080.

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  2. Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397:2212–24.

    Article  CAS  PubMed  Google Scholar 

  3. Younossi ZM, Henry L. Fatty liver through the ages: nonalcoholic steatohepatitis. Endocr Pract. 2022;28:204–13.

    Article  PubMed  Google Scholar 

  4. Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;22:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saiman Y, Duarte-Rojo A, Rinella ME. Fatty liver disease: diagnosis and stratification. Annu Rev Med. 2022;73:529–44.

    Article  CAS  PubMed  Google Scholar 

  6. Younossi Z, Stepanova M, Ong JP, Jacobson IM, Bugianesi E, Duseja A, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17:748–55.

    Article  PubMed  Google Scholar 

  7. Burra P, Becchetti C, Germani G. NAFLD and liver transplantation: disease burden, current management and future challenges. JHEP Rep. 2020;2:100192.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123–33.

    Article  CAS  PubMed  Google Scholar 

  9. Koo JH, Han CY. Signaling nodes associated with endoplasmic reticulum stress during NAFLD progression. Biomolecules. 2021;11:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48.

    Article  CAS  PubMed  Google Scholar 

  11. Petrescu M, Vlaicu SI, Ciumarnean L, Milaciu MV, Marginean C, Florea M, et al. Chronic inflammation-A link between Nonalcoholic Fatty Liver Disease (NAFLD) and dysfunctional adipose tissue. Medicina. 2022;58:641.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018;68:362–75.

    Article  CAS  PubMed  Google Scholar 

  14. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–85.

    Article  CAS  PubMed  Google Scholar 

  15. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81:687–93.

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Cai J, Gonzalez FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 2021;18:335–47.

    Article  CAS  PubMed  Google Scholar 

  17. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 2011;13:729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapman RW, Lynch KD. Obeticholic acid-a new therapy in PBC and NASH. Br Med Bull. 2020;133:95–104.

    Article  CAS  PubMed  Google Scholar 

  19. Gottlieb A, Canbay A. Why bile acids are so important in Non-Alcoholic Fatty Liver Disease (NAFLD) progression. Cells. 2019;8:1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574–82.

    Article  CAS  PubMed  Google Scholar 

  21. Roy PP, Mahtab MA, Rahim MA, Yesmin SS, Islam SB, Akbar SMF. Treatment of nonalcoholic steatohepatitis by obeticholic acid: current status. Euroasian J Hepatogastroenterol. 2022;12:S46–S50.

    PubMed  PubMed Central  Google Scholar 

  22. Hernandez ED, Zheng L, Kim Y, Fang B, Liu B, Valdez RA, et al. Tropifexor-mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol Commun. 2019;3:1085–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Crittenden DB, Eng C, Zhang Q, Guo P, Chung D, et al. Safety, pharmacokinetics, pharmacodynamics, and formulation of liver-distributed farnesoid X-receptor agonist TERN-101 in healthy volunteers. Clin Pharmacol Drug Dev. 2021;10:1198–208.

    Article  CAS  PubMed  Google Scholar 

  24. Haas JT, Vonghia L, Mogilenko DA, Verrijken A, Molendi-Coste O, Fleury S, et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat Metab. 2019;1:604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vuppalanchi R, Chalasani N. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management. Hepatology. 2009;49:306–17.

    Article  PubMed  Google Scholar 

  26. Radun R, Trauner M. Role of FXR in bile acid and metabolic homeostasis in NASH: pathogenetic concepts and therapeutic opportunities. Semin Liver Dis. 2021;41:461–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim SG, Kim BK, Kim K, Fang S. Bile acid nuclear receptor farnesoid X receptor: therapeutic target for nonalcoholic fatty liver disease. Endocrinol Metab. 2016;31:500–4.

    Article  CAS  Google Scholar 

  28. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731–44.

    Article  CAS  PubMed  Google Scholar 

  29. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    Article  PubMed  Google Scholar 

  30. Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.

    Article  CAS  PubMed  Google Scholar 

  31. Hoang SA, Oseini A, Feaver RE, Cole BK, Asgharpour A, Vincent R, et al. Gene expression predicts histological severity and reveals distinct molecular profiles of nonalcoholic fatty liver disease. Sci Rep. 2019;9:12541.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Loft A, Alfaro AJ, Schmidt SF, Pedersen FB, Terkelsen MK, Puglia M, et al. Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metab. 2021;33:1685–700.

    Article  CAS  PubMed  Google Scholar 

  33. Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021;592:450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrow MR, Batchuluun B, Wu J, Ahmadi E, Leroux JM, Mohammadi-Shemirani P, et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab. 2022;34:919–36.

    Article  CAS  PubMed  Google Scholar 

  37. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17:159–62.

    Article  CAS  PubMed  Google Scholar 

  38. Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med. 2020;12:eaba4448.

    Article  CAS  PubMed  Google Scholar 

  39. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2018;76:99–128.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barcena C, Stefanovic M, Tutusaus A, Joannas L, Menendez A, Garcia-Ruiz C, et al. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J Hepatol. 2015;63:670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qing J, Ren Y, Zhang Y, Yan M, Zhang H, Wu D, et al. Dopamine receptor D2 antagonism normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis. J Hepatol. 2022;76:394–406.

    Article  CAS  PubMed  Google Scholar 

  43. Han J, Zhang X, Lau JK, Fu K, Lau HC, Xu W, et al. Bone marrow-derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells. J Pathol. 2019;248:488–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, et al. The polygenic map of keloid fibroblasts reveals fibrosis-associated gene alterations in inflammation and immune responses. Front Immunol. 2021;12:810290.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang J, Ma Y, Liu Y, Lu D, Gao X, Krausz KW, et al. Glycine-beta-muricholic acid antagonizes the intestinal farnesoid X receptor-ceramide axis and ameliorates NASH in mice. Hepatol Commun. 2022;6:3363–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol. 2019;70:531–44.

    Article  PubMed  Google Scholar 

  47. Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol. 2023;79:1317–31.

    Article  CAS  PubMed  Google Scholar 

  48. Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021;33:1671–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol. 2023;79:552–66.

    Article  CAS  PubMed  Google Scholar 

  50. Wu H, Liu G, He Y, Da J, Xie B. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol. 2019;858:172393.

    Article  CAS  PubMed  Google Scholar 

  51. Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun. 2019;10:4971.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166.

    Article  CAS  PubMed  Google Scholar 

  53. Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023;35:1752–66.

    Article  CAS  PubMed  Google Scholar 

  54. Yan Y, Niu Z, Sun C, Li P, Shen S, Liu S, et al. Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism. Nat Commun. 2022;13:6408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanyal AJ, Ratziu V, Loomba R, Anstee QM, Kowdley K, Rinella ME, et al. Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis. J Hepatol. 2023;79:1110–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kang-long Wang, Peng-xiang Mu, and Cui-na Li for their help with animal dissection and sample collection. This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB39020600), National Key Research and Development Program of China (2021YFA1301200), National Natural Science Foundation of China (82222071, 91957116, 82173873), and Project supported by Shanghai Municipal Science and Technology Major Project.

Author information

Authors and Affiliations

Authors

Contributions

YQW, GGZ, MJZ, YXZ, GHW, YYS, JJS, HXW, RYC, DXZ, and XQD performed the experiments. YQW and ZYZ analyzed the RNA-seq data. MJZ helped with luciferase reporter gene experiment. YQW, GGZ, ZYZ, YYW, and CX were responsible for the study concept and design. YQW and CX wrote the manuscript. CX, YML, FJG, and JGF supervised the study.

Corresponding authors

Correspondence to Ya-meng Liu, Jian-gao Fan or Cen Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Yq., Zou, Zy., Zhao, Gg. et al. FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01329-1

Keywords

Search

Quick links