Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery and pharmacological characterization of 1,2,3,4-tetrahydroquinoline derivatives as RORγ inverse agonists against prostate cancer

Abstract

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of representative RORγ inverse agonists.
Fig. 2: 3D presentation of binding modes of ligands with RORγ LBD (PDB code: 4QM0).
Scheme 1
Fig. 3: Cocrystal structure of compound 13e in complex with the RORγ LDB (PDB code: 7XQE).
Fig. 4: Predicted binding mode of compound 14a (yellow) in complex with RORγ LBD (PDB code: 4QM0).
Fig. 5: Compound 13e suppressed colony formation and expression of AR, AR-regulated gene and protein.
Fig. 6: Compounds 13e and 14a inhibited the migration of 22Rv1 cells.
Fig. 7: Compounds 13e and 14a induced apoptosis in 22Rv1 cells.
Fig. 8: In vivo effect of compounds 13e and 14a on tumor volume, tumor weight, and body weight in xenograft model of 22Rv1.

Similar content being viewed by others

References

  1. Jetten AM, Ueda E. Retinoid-related orphan receptors (RORs): roles in cell survival, differentiation and disease. Cell Death Differ. 2002;9:1167–71.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Luo XY, Wu DH, Xu Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol Sin. 2015;36:71–87.

    Article  PubMed  Google Scholar 

  3. Fauber BP, Magnuson S. Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-γ (RORγ or RORc). J Med Chem. 2014;57:5871–92.

    Article  CAS  PubMed  Google Scholar 

  4. Huang M, Bolin S, Miller H, Ng HL. RORγ structural plasticity and druggability. Int J Mol Sci. 2020;21:5329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ivanov I, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  6. Huang ZF, Xie HM, Wang RQ, Sun ZM. Retinoid-related orphan receptor γt is a potential therapeutic target for controlling inflammatory autoimmunity. Expert Opin Ther Tar. 2007;11:737–43.

    Article  CAS  Google Scholar 

  7. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12:560–67.

    Article  CAS  PubMed  Google Scholar 

  8. Wang JJ, Zou JX, Xue XQ, Cai D, Zhang Y, Duan ZJ, et al. ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med. 2016;22:488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai D, Wang JJ, Gao B, Li J, Wu F, Zou JX, et al. RORγ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nat Commun. 2019;10:4621.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong Y, Chen CC, Chen C, Zhang CX, Zhang L, Zhang Y, et al. Stigmasterol inhibits the progression of lung cancer by regulating retinoic acid-related orphan receptor C. Histol Histopathol. 2021;36:1285–99.

    CAS  PubMed  Google Scholar 

  11. Zhang X, Huang ZH, Wang JJ, Ma Z, Yang J, Corey E, et al. Targeting feedforward loops formed by nuclear receptor RORγ and kinase PBK in mCRPC with hyperactive AR signaling. Cancers. 2021;13:1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang N, Yang Y, Huang Z, Chen HW. Deregulation of cholesterol homeostasis by a nuclear hormone receptor crosstalk in advanced prostate cancer. Cancers. 2022;14:3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen JH, Hu YW, Zhang J, Wang QY, Wu XZ, Huang WY, et al. Therapeutic targeting RORγ with natural product N-hydroxyapiosporamide for small cell lung cancer by reprogramming neuroendocrine fate. Pharmacol Res. 2022;178:106160.

    Article  CAS  PubMed  Google Scholar 

  14. Pan XF, Li B, Zhang G, Gong YY, Liu R, Chen BX, et al. Identification of RORγ as a favorable biomarker for colon cancer. J Int Med Res. 2022;49:1–12.

    Google Scholar 

  15. Kamenecka TM, Lyda B, Chang MR, Griffin PR. Synthetic modulators of the retinoic acid receptor-related orphan receptors. Med Chem Comm. 2013;4:764–76.

    Article  CAS  Google Scholar 

  16. Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 2014;13:197–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cyr P, Bronner SM, Crawford JJ. Recent progress on nuclear receptor RORγ modulators. Bioorg Med Chem Lett. 2016;26:4387–93.

    Article  CAS  PubMed  Google Scholar 

  18. Bronner SM, Zbieg JR, Crawford JJ. RORγ antagonists and inverse agonists: a patent review. Expert Opin Ther Pat. 2017;27:101–12.

    Article  CAS  PubMed  Google Scholar 

  19. Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating autoimmune diseases with retinoic acid receptor-related orphan receptor-γ (RORγ or RORc) inhibitors: hits and misses. J Med Chem. 2018;61:10976–95.

    Article  CAS  PubMed  Google Scholar 

  20. Jetten AM, Cook DN. (Inverse) agonists of retinoic acid-related orphan receptor γ: regulation of immune responses, inflammation, and autoimmune disease. Annu Rev Pharmacol Toxicol. 2020;60:371–90.

    Article  CAS  PubMed  Google Scholar 

  21. Fauber BP, Gobbi A, Savy P, Burton B, Deng YZ, Everett C, et al. Identification of N-sulfonyl-tetrahydroquinolines as RORc inverse agonists. Bioorg Med Chem Lett. 2015;25:4109–13.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar N, Lyda B, Chang MR, Lauer JL, Solt LA, Burris TP, et al. Identification of SR2211: a potent synthetic RORγ-selective modulator. ACS Chem Biol. 2012;7:672–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang YH, Cai W, Cheng YB, Yang T, Liu Q, Zhang GF, et al. Discovery of biaryl amides as potent, orally bioavailable, and CNS penetrant RORγt inhibitors. ACS Med Chem Lett. 2015;6:787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 2016. https://www.clinicaltrials.gov/study/NCT03237832?term=ARN-6039&rank=1 A phase 1 study of ARN-6039. Clinical Trials May 16, 2016 Accessed 16 Jan 2024.

  25. A study to test how well patients with plaque psoriasis tolerate BI 730357 over a longer period and how effective it is. Clinical Trials Mar 18, 2019: https://www.clinicaltrials.gov/study/NCT03835481?term=BI%20730357&rank=9 (2019). Accessed 16 Jan 2024.

  26. An Ascending Multiple Dose Study With VTP-43742 in Healthy Volunteers. Clinical Trials Aug 1, 2015: https://clinicaltrials.gov/study/NCT03724292?cond=VTP-43742&rank=1 (2015). Accessed 16 Jan 2024.

  27. Safety and PK/PD of RTA 1701 in healthy adults. Clinical Trials Jun 20, 2018: https://www.clinicaltrials.gov/study/NCT03579030?term=1701%20&rank=1 (2018). Accessed 16 Jan 2024.

  28. Study to evaluate the efficacy and safety of JTE-451 in subjects with moderate to severe plaque psoriasis (IMPACT-PS). Clinical Trials Jan 17, 2019: https://clinicaltrials.gov/study/NCT03832738?term=JTE-451%20&rank=2 (2019). Accessed 16 Jan 2024.

  29. Polasek TM, Leelasena I, Betscheider I, Marolt M, Kohlhof H, Vitt D, et al. Safety, tolerability, and pharmacokinetics of IMU-935, a novel inverse agonist of retinoic acid receptor-related orphan nuclear receptor gammat: results from a double-blind, placebo-controlled, first-in-human phase 1 study. Clin Pharmacol Drug Dev. 2023;12:525–34.

    Article  CAS  PubMed  Google Scholar 

  30. Butler W, Huang J. Glycosylation changes in prostate cancer progression. Front Oncol. 2021;11:809170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  32. Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002;168:9–12.

    Article  PubMed  Google Scholar 

  33. Stein MN, Goodin S, Dipaola RS. Abiraterone in prostate cancer: a new angle to an old problem. Clin Cancer Res. 2012;18:1848–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mukherji D, Pezaro CJ, De-Bono JS. MDV3100 for the treatment of prostate cancer. Expert Opin Inv Drug. 2012;21:227–33.

    Article  CAS  Google Scholar 

  35. Chowdhury S, Oudard S, Uemura H, Joniau S, Dearden L, Capone C, et al. Apalutamide compared with darolutamide for the treatment of non-metastatic castration-resistant prostate cancer: efficacy and tolerability in a matching-adjusted indirect comparison. Adv Ther. 2022;39:518–31.

    Article  CAS  PubMed  Google Scholar 

  36. Feng Q, He B. Androgen receptor signaling in the development of castration-resistant prostate cancer. Front Oncol. 2019;9:858.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174:758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grasso CS, Wu YM, Robinson DR, Cao XH, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Wu XS, Xue XQ, Li CC, Wang JJ, Wang R, et al. Discovery and characterization of XY101, a potent, selective, and orally bioavailable RORγ inverse agonist for treatment of castration-resistant prostate cancer. J Med Chem. 2019;62:4716–30.

    Article  CAS  PubMed  Google Scholar 

  40. Wu XS, Shen H, Zhang Y, Wang C, Li Q, Zhang C, et al. Discovery and characterization of benzimidazole derivative XY123 as a potent, selective, and orally available RORγ inverse agonist. J Med Chem. 2021;64:8775–97.

    Article  CAS  PubMed  Google Scholar 

  41. 2021. https://clinicaltrials.gov/study/NCT05124795?term=IMU-935&rank=1 IMU-935 in patients with progressive, metastatic castration resistant prostate cancer. Clinical Trials Dec 9, 2021Accessed 16 Jan 2024.

  42. Song Y, Xue XQ, Wu XS, Wang R, Xing YL, Yan WQ, et al. Identification of N-phenyl-2-(N-phenylphenylsulfonamido)acetamides as new RORγ inverse agonists: virtual screening, structure-based optimization, and biological evaluation. Eur J Med Chem. 2016;116:13–26.

    Article  CAS  PubMed  Google Scholar 

  43. Leslie AGW, Powell HR. Processing diffraction data with MOSFLM. Evolv Methods Macromol Crystallogr. 2007;245:41–51.

    Article  Google Scholar 

  44. Bailey S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50:760–63.

    Article  Google Scholar 

  45. Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.

    Article  PubMed  Google Scholar 

  48. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21.

    Article  CAS  PubMed  Google Scholar 

  49. Lloyd MD. High-throughput screening for the discovery of enzyme inhibitors. J Med Chem. 2020;63:10742–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Key R&D Program of China (grant 2019YFE0123700 and 2022YFE0210600), the National Natural Science Foundation of China (grant 82173745), the Chinese Academy of Sciences STS Program (grant KFJ-STS-QYZX-090), the Guangdong Basic and Applied Basic Research Foundation (grant 2023A1515010418 and 2020A1515110793), the Science and Technology Program of Guangzhou, China (grant 2024A04J4313 and 202201010138), the China Postdoctoral Science Foundation, the Guangdong Provincial Grant for Belt and Road Joint Laboratory (grant 2022A0505090006), the Guangdong Provincial Postdoctoral Special Funding. We thank the staff from the BL19U1 beamline of the National Facility for Protein Science Shanghai (NFPS) at Shanghai Synchrotron Radiation Facility for assistance during data collection. The authors gratefully acknowledge the support from the Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences and the Scientific Data Center of Guangzhou Institutes of Biomedicine and Health, CAS (No. 011). The authors gratefully thank Drs Sabine Puch and Carolin Lange (German Aerospace Center, Project Management Agency (DLR-PT)) for their efforts in establishing the collaboration and suggestion, guidance and useful discussions during the project within the EU funded Sino-EU PerMed Project.

Author information

Authors and Affiliations

Authors

Contributions

YX, XSW, YZ and XYL conceived and designed the research. XSW, XYL, CCL, XFZ, CZ, XSC, ZFL, TW, HHY, CP, QQH, HS conduct the research. XSW wrote the manuscript. YX, XSW, YZ and XYL revised the revised the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xi-shan Wu, Yong Xu or Yan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xs., Luo, Xy., Li, Cc. et al. Discovery and pharmacological characterization of 1,2,3,4-tetrahydroquinoline derivatives as RORγ inverse agonists against prostate cancer. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01274-z

Keywords

Search

Quick links