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Engineered nanomedicines block the PD-1/PD-L1 axis for
potentiated cancer immunotherapy

Jun-hao Li'?, Lu-jia Huang®?, Hui-ling Zhou?, Yi-ming Shan??, Fang-min Chen??, Vesa-Pekka Lehto®, Wu-jun Xu* Li-giang Luo' and

Hai-jun Yu??

Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed
cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to
restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs.
Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to
insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug
delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new
avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy.
We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-

L1 therapy.
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INTRODUCTION

Cancer immunotherapy has gained significant momentum in the
clinic to boost the systemic antitumor immune response [1-5]. In
particular, immune checkpoint blockade (ICB) therapy has
presented impressive therapeutic efficacy against multiple types
of cancers and shifted the paradigm of cancer management [6-8].
Immune checkpoints play a crucial role in maintaining immune
homeostasis and preventing autoimmunity [9-11]. However,
tumour cells may overexpress certain kinds of immune check-
points to evade immunologic surveillance and thereby generate
an immunosuppressive tumour microenvironment (ITM) [12].
Among the immune checkpoints investigated thus far, the
programmed cell death protein-1 and programmed death ligand
1 (PD-1/PD-L1) axis has attracted the most attention. During the
process of PD-1/PD-L1 axis-mediated immune evasion, tumour
cells send a “don’t find me” signal to T cells via the interaction of
PD-L1 on the surface of tumour cells with PD-1 present on the
surface of T lymphocytes or antigen-presenting cells (APCs) to
consequently suppress the antitumor immunity of cytotoxic T
lymphocytes (CTLs) [13, 14]. Therefore, anti-PD-1/PD-L1 therapy
has been extensively exploited to block immune checkpoints and
revitalize exhausted cytotoxic T cells (CTLs) [15]. Compared to anti-
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy,
anti-PD-1/PD-L1 therapy has shown a favourable response rate, a
low grade of immune-related adverse effects (irAE), and long-term
clinical benefits in a subset of cancer patients [16-19]. Further-
more, anti-PD-1/PD-L1 therapy was combined with other therapy

modalities, such as chemotherapy, radiotherapy, molecular-
targeted therapy, and even the recently developed anti-T-cell
immunoglobulin and mucin domain-containing protein 3 (TIM-3)
therapy [20-23].

Despite remarkable advances, only a subset of cancer patients
benefits from current ICB therapy [24]. Certain types of malignant
tumours are intrinsically or adaptively resistant to anti-PD-1/PD-L1
antibody drugs due to multiple mechanisms, including immune
heterogeneity and complex immune tolerance pathways [25-29].
First, certain types of solid tumours (e.g, immune-excluded
tumours) lack tumour-infiltrating T cells to exert antitumor effects.
It is essential to promote intratumoural infiltration of T lympho-
cytes to potentiate anti-PD-1/PD-L1 therapy. Second, tumour cells
generally display low immunogenicity. CTLs cannot recognize
tumour cells due to insufficient expression of tumour antigens.
Therefore, it is crucial to elicit immunogenicity of the tumour cells
to prompt ICB therapy. Third, the antitumor activity of CTLs is
coordinately impaired by other kinds of immune checkpoints (e.g.,
CD47) or immune suppressive cells (e.g., regulatory T cells and M2-
type macrophages). It is essential to concurrently block multiple
immune checkpoints or regulate the ITM. Finally, immune
checkpoints can be upregulated with IFN-¥ secretion by tumour-
infiltrating CTLs, which induces adaptive immune evasion. There-
fore, promoting anti-PD-1/PD-L1 therapy remains a formidable
challenge [30-32].

Encouragingly, nanosized drug delivery systems (NDDSs) have
displayed valuable potential to address these concerns [33-36].
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The NDDSs are endowed with tumour-targeting capability,
biological barrier permeability, enhanced tissue accumulation,
sufficient cellular uptake, and controllable payload release [37-40].
Specifically, nanoparticles modified with specific ligands can
actively target tumour cells [41, 42]. Moreover, stimuli-responsive
nanoparticles have been generated to systemically deliver
immunotherapeutics, which can be triggered to dissociate and
release drugs in the TME while remaining stable in blood
circulation [43-47]. For example, an endogenous enzyme-liable
prodrug of immune modulator prodrug could be activated to
trigger immune responses by intracellular enzymes after tumour
cell adsorption [48]. Last but not least, consisting of advanced
biomaterials, including polymers, liposomes, silica, and metal-
organic frameworks (MOFs), NDDSs with high loading capability
and good biocompatibility can safely codeliver multiple drugs to
the tumour site and tumour cells [49-53]. To fully exert the
therapeutic effects, a variety of NDDSs have been designed to
deliver different therapeutic cargoes, including antibodies, small
molecule inhibitors, and nucleic acids (Table 1). Herein, we
summarize the recent advances in NDDS-based anti-PD-1/PD-L1
therapy, with an emphasis on the delivery of therapeutic cargoes
with 4 different PD-1/PD-L1 targeting strategies (Fig. 1): PD-L1
exosome inhibition, PD-L1 dimerization, PD-1/PD-L1 downregula-
tion, and PD-1/PD-L1 blockade [54-58]. The recently rising NDDS
of engineered cellular vesicles (CVs) for anti-PD-1/PD-L1 therapy
are also discussed. Finally, the current challenges and perspectives
of NDDS-based anti-PD-1/PD-L1 therapy are briefly overviewed.

NDDSS FOR THE DELIVERY OF SMALL MOLECULE PD-L1
INHIBITORS

Small molecule inhibitors have been recently explored for ICB
therapy [59, 60]. It has been reported that there are approximately
15 small-molecule PD-1/PD-L1 inhibitors in preclinical or phase |
clinical trials [61]. However, due to high toxicity and nonspecific
biodistribution, a tumour-targeted delivery system is of para-
mount importance. Additionally, as ICB monotherapy may lead to
drug resistance in tumours, it would be a wise choice to codeliver
therapeutic cargoes with different antitumor mechanisms for
synergistic antitumor therapy [62, 63]. For example, recent studies
have discovered that exosomes derived from tumour cells are rich
in PD-L1, which can travel to the draining lymph node and
downregulate T-cell activity [64]. Moreover, ferroptosis refers to
the antioxidant capacity impairment of cells caused by intracel-
lular iron accumulation, which has recently been exploited to elicit
antitumor immunogenicity [65-68].

To suppress extracellular secretion of PD-L1-expressing exo-
somes and elicit ferroptosis, Wang et al. engineered a nanosystem
by coassembling the exosome inhibitor GW4869 with 5-B-cholanic
acid (CA)-grafted and Fe3*-chelated hyaluronic acid (HA) [57]. In
combination with aPD-L1-based anti-PD-L1 therapy, this nanosys-
tem significantly reduced exosomal PD-L1 expression and thereby
augmented the proportion of immune-active CD8" T cells in the
tumour-draining lymph nodes, which led to constant tumour
inhibition.

BMS-1 is another small molecule that inhibits the PD-1/PD-L1
axis by promoting PD-L1 dimerization [60]. Yu et al. developed an
immunotherapy nanoparticle codelivering BMS-1 and CCL19 (an
immunostimulatory chemokine)-encoding plasmid (pCCL19) to
synergistically suppress cancer immune evasion and reprogram
the ITM [54]. The nanoparticles contained the tumour-targeting
peptide cyclo(Arg-Gly-Asp-p-Phe-Lys), which ensured enhanced
accumulation at tumour sites. After administration of the
nanoparticles, the levels of CCL19 and IFN-y were significantly
improved, which indicated that the TME was reprogrammed to an
immunoactive state.

The intrinsic immune resistance caused by low tumour
immunogenicity is another reason for the limited response rate
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Fig. 1

Schematic illustration of NDDS-based anti-PD-1/PD-L1 therapy to circumvent immune evasion and elicit a T-cell antitumor

immune response. Inhibitors, nucleic acids and antibodies are therapeutic cargoes loaded in NDDSs. Among different therapeutic strategies
targeting the PD-1/PD-L1 axis, 4 unique strategies are highlighted in this review, including a restraining the extracellular secretion of PD-L1-
expressing exosomes by delivering small molecular inhibitors (e.g.,, GW4869) [57]. b Dimerizing PD-L1 on the surface of the tumour cells by
delivering small molecular inhibitors (e.g., BMS-1) [54]. ¢ Downregulating PD-1/PD-L1 expression by delivering gene-editing tools or inhibitors
(PD-1 downregulation is omitted in the scheme) [55, 74, 88]. d Blocking the PD-1/PD-L1 interaction by antibodies or engineered cellular

vesicles [56, 58].

of anti-PD-1/PD-L1 therapy [69]. Tumour cells conceal tumour-
specific antigens and reduce their immunogenicity by autophagy-
mediated degradation of major histocompatibility complex class |
(MHC-l) (an indispensable cellular component for antigen
presentation) [70-73].

To address this challenge, Zhou et al. developed liposome-based
versatile nanovesicles for tumour-targeted inhibition of autophagy
and restoration of MHC-I expression on the surface of tumour cells
[74]. The nanovesicles were rationally designed for codelivery of
the autophagy inhibitor doxycycline (Doxy) and the PD-L1 inhibitor
JQ1. The nanovesicles were further functionalized with a matrix
metalloproteinase 2 (MMP-2)-cleavable poly(ethylene glycol) (PEG)
corona and a tumour-targeting peptide (CRGDK). Moreover, the
nanovesicle was loaded with IR-1061 fluorescence dye for a second
near-infrared (NIR-ll) fluorescence imaging and 1061 nm laser-
triggered payload release. JQ1 is a potent inhibitor of
bromodomain-containing protein 4 (BRD4), which can abolish
IFN-¥-inducible PD-L1 expression [75, 76]. The glutathione (GSH)-
activatable JQ1 prodrug was developed as a component of the
lipid shell for tumour-targeted PD-L1 inhibition (Fig. 2a). The
nanovesicles remarkably elongated blood circulation and the
tumour-specific distribution of Doxy and JQ1 (Fig. 2b). Codelivery
of Doxy and JQ1 with the nanovesicles efficiently elicited MHC-I
expression and reduced PD-L1 expression on the tumour cells,
thereby eliciting a robust T-cell antitumor response (Fig. 2c-e).

It was recently revealed that metformin (Met), a well-known
drug for the clinical treatment of diabetes, may promote
antitumor immunity by degrading PD-L1. Therefore, it became a

Acta Pharmacologica Sinica (2022) 43:2749 - 2758

promising strategy to deliver Met to the tumour site for PD-L1
downregulation. To this end, Hu et al. designed a nanoparticle by
conjugating Met with the photosensitizer Ce6 via an MMP-2-
cleavable peptide spacer, which synergistically performed photo-
dynamic therapy (PDT) and downregulated PD-L1 [77]. Apart from
PD-L1 inhibition, Met has been identified to inhibit tumour growth
through M2 to M1 phenotype repolarization of tumour-associated
macrophages (TAMs) [78, 79]. M1-type TAMs have been identified
to promote the intratumoural infiltration of CD8" T cells and
suppress immunosuppressive regulatory T cells (Tregs) [80, 81].
Wei et al. therefore engineered a Met-loaded macrophage
nanoparticle (Met@MP) to remodel the TME and boost the
antitumor activity of aPD-1 [82]. The macrophage-derived
nanoparticles displayed an active tumour-targeting capacity,
elongated blood circulation stability, high biocompatibility, and
low immunogenicity and were further modified with mannose to
target M2-type TAMs. Met@MP dramatically increased TAM-
mediated proinflammatory cytokine secretion and elicited an
antitumor immune response, verifying the potential of Met@Man-
MPs for cancer immunotherapy.

Along with chemical inhibitors, peptide antagonists of the PD-1/
PD-L1 axis were also developed for anti-PD-1/PD-L1 therapy. For
example, Yu et al. codelivered anti-PD-L1 peptide (dPPA) and
thioketal bond-linker paclitaxel dimer (PXTK) to synergistically
activate T cells and generate antitumor immunogenicity [83].
Moreover, an anti-PD-1 peptide (AUNP-12) was combined with
photothermal therapy to elicit robust antitumor immune
responses against melanoma [84].
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Fig.2 Schematic demonstration of a tumour-targeted multifunctional prodrug nanovesicle (termed GPR@Doxy/JQ1) for inhibiting MHC-I
autophagy and PD-L1-based immune evasion of tumour cells. a Chemical structure of the main components integrated into the
nanovesicles. b Systemic codelivery of Doxy and JQ1 with the nanovesicles for tumour-specific autophagy inhibition and PD-L1
downregulation. ¢ Flow cytometric quantification of Doxy-mediated MHC-| restoration. d PD-L1 expression on the surface of 4T1 tumours
in vivo. e Growth curves of the 4T1 breast tumours after various treatments (G1, PBS; G2, GPR@Doxy+Laser; G3, GPR@JQ1 + Laser; G4,

GPR@Doxy/JQ1 + Laser) (""P<0.001, ""P <0.0001). Adapted with permission from [74]. Copyright (2021) John Wiley & Sons, Inc.

NDDS-DELIVERING NUCLEIC ACIDS FOR PD-1/PD-L1
BLOCKADE THERAPY

In recent years, transcriptional regulation and gene editing have
been explored to boost anti-PD-1/PD-L1 therapy by remodelling
the TME and overcoming immune evasion [85, 86]. For instance,
Wang et al. engineered acid-activatable micelleplexes loaded with
small interfering RNA of PD-L1 (siPD-L1) to knockdown PD-L1
expression on the surface of tumour cells (Fig. 3a, b) [55]. The
micelleplexes were constructed with the ionizable diblock
copolymer PDPA and amphiphilic oligoethylenimine (OEI-C14),
which displayed high lysosome escape efficiency for the cytosolic
delivery of siPD-L1. To further prompt the antitumor effect, the
photosensitizer pheophorbide A (PPa) was covalently loaded in
the micelleplexes to combine PD-L1 silencing and PDT. Upon
cellular uptake by the tumour cells, the nanoparticles dissociated
in acidic lysosomal vesicles for cytosolic release of siPD-L1. When
exposed to 671nm laser irradiation, PPa generated cytotoxic
reactive oxygen species (ROS) to elicit immunogenic cell death
(ICD) of the tumour cells, which recruited antigen presenting cells
(APCs) for antigen engulfment in the tumour and subsequently
prompted intratumoural infiltration of CTLs. Moreover, siPD-L1
silenced PD-L1 expression in tumour cells to relieve immune
evasion. Similarly, positively charged liposomes were also devel-
oped as siPD-1 carriers to silence PD-1 expression in T cells [87].
Together, NDDS-based PD-1/PD-L1 downregulation significantly
improved the antitumor efficacy.

SPRINGER NATURE

In addition to RNA interference-based PD-L1 regulation,
clustered, regularly interspaced, short palindromic repeats
(CRISPR) and CRISPR-associated protein (Cas) systems have been
extensively investigated for targeted genome editing. For
example, Tang et al. reported a photothermal nanosystem (termed
ANP/plasmid) for PD-L1 ablation to potentiate ICB therapy (Fig. 3c)
[88]. The ANP/plasmid nanoparticles were constructed with a
guanidinium-based cationic supramolecular layer, Au nanorod
core, and CRISPR/Cas9 plasmid. The nanoparticles can be actively
internalized by tumour cells through the cationic guanidyl ligand.
Upon NIR-Il laser irradiation, the gold nanorods induced mild
hyperthermia (~42°C) at the tumour site. Afterwards, the heat-
inducible promoter (HSP)-Cas9 plasmid started transcription and
performed precise PD-L1 editing in the tumour cells, which
subsequently activated tumour-infiltrating T cells. The PD-L1
genome silencing strategy provides an appealing method for
long-term anti-PD-1/PD-L1 therapy.

Recently, a polyaptamer hydrogel was exploited to block the
PD-1/PD-L1 interaction [89]. The hydrogels were composed of PD-
1-binding DNA aptamers and Cas9/sgRNA-cleavable DNA linkers,
which can be intratumorally injected into B16F10 melanoma
tumour-bearing mice. The Cas9/sgRNA could precisely excise DNA
linkers, leading to the in situ release of DNA aptamers, which
blocked PD-1 on tumour-infiltrating T cells and thereby promoted
their antitumor activity. Apart from directly targeting PD-1/PD-L1,
the upstream regulators of the PD-L1 pathway have also been

Acta Pharmacologica Sinica (2022) 43:2749 - 2758
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exploited as potential targets for PD-L1 downregulation. For
example, Chen et al. developed a CRISPR-Cas-based nanosystem
targeting B-catenin to restrain tumour PD-L1 expression, in which
B-catenin is a key mediator of the Wnt/B-catenin signalling
pathway [90]. Knockout of B-catenin collectively induced tumour
cell apoptosis and impaired tumour PD-L1 expression [91]. The
nanosystem was composed of a cationic CaCOs; core and
protamine for CRISPR-Cas9 plasmid encapsulation. The nanosys-
tem was functionalized with HA for binding CD44 expressed on
the surface of the tumour cells modified with TAT-NLS peptide for
enhanced tumour penetration, and aptamer (AS1411) was further
employed for targeting the nuclei. The nanosystem showed a
satisfying plasmid encapsulation ratio (> 95%) and gene transfec-
tion efficiency (10 times that of naked DNA), which dramatically
suppressed PD-L1 expression to boost ICB therapy.

NDDS-INTEGRATING ANTI-PD-1/PD-L1 ANTIBODIES FOR ICB
THERAPY

Antibodies targeting the PD-1/PD-L1 axis have been approved for
the treatment of multiple malignancies (e.g., nivolumab and
pembrolizumab) [92-97]. Currently, there are over 5000 clinical
trials for anti-PD-1/PD-L1 monoclonal antibody (mAb)-based

Acta Pharmacologica Sinica (2022) 43:2749 - 2758

monotherapy or combinational therapy [61]. Moreover, bispecific
antibodies containing two antigen binding sites to simultaneously
block dual immune checkpoints are being exploited as novel anti-
PD-1/PD-L1 therapy strategies [61]. Nevertheless, systemic admin-
istration of anti-PD-L1 antibodies suffers from “on-target but off-
tumour” effects since PD-L1 is also expressed in normal tissues,
which severely hampers therapeutic efficiency and causes
irAEs [98].

In recent years, various NDDSs have been engineered to
improve the tumour-specific delivery of immune checkpoint
antibodies [99, 100]. Yang et al. conjugated aPD-L1 with
reduction-detachable glucosylated PEG chains to improve the
performance of anti-PD-1/PD-L1 therapy against glioblastoma
[101]. The glucosylated PEG chains could bind to glucose
transporter-1 (GLUT1) overexpressed on the brain capillaries and
then be detached in the reductive environment of tumours, which
promoted tumour accumulation of antibodies and avoided the
irAE in the healthy tissues.

To achieve tumour-specific distribution and activation of
immune checkpoint inhibitors, Wang et al. further developed an
MMP-2-liable nanoparticle for tumour-targeted delivery of aPD-L1
and the photosensitizer ICG (Fig. 4a) [56]. The antibody
nanoparticles with long-circulating features can only be activated
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in the TME with high MMP-2 expression to release aPD-L1 while
preventing on-target but off-tumour effects. Moreover, the
combination of PD-L1 blockade and PDT synergistically recruited
tumour-infiltrating CD8™ T cells and eventually regressed tumour
growth (Fig. 4b—d). Cell-based bioinspired NDDSs have also been
applied for the delivery of anti-PD-1/PD-L1 mAbs. For instance,
platelets conjugated with aPD-L1 on the surface (P-aPD-L1) were
exploited to improve the therapeutic effect of aPD-L1 [102]. aPD-
L1 was conjugated onto the plasma membrane of platelets via a
maleimide linker, which improved the stability of aPD-L1 in blood
circulation. Upon reaching the tumour sites, the platelets could
specifically adhere to the surface of the tumour cells and be
activated to generate aPD-L1-bearing platelet-derived micropar-
ticles (PMPs), thus specifically delivering aPD-L1 to the tumour
(Fig. 4e). Compared to free aPD-L1, PMPs displayed increased
blood circulation and increased tumour accumulation and
thereby induced a robust T-cell immune response to prevent
recurrence of B16F10 melanoma and 4T1 triple-negative breast
tumours.

SPRINGER NATURE

aPD-1 is delivered to reverse the immune inhibiting state of
T cells and other immune cells. aPD-1 platelet-conjugated stem
cells (S-P-aPD-1) were generated to augment antileukaemia
efficacy [103]. The aPD-1 platelets were modified with PEG4-N-
hydroxysuccinimidyl ester (DBCO-PEG4-NHS ester), and the
haematopoietic stem cells were modified with an azide. Then,
they were integrated through a click reaction. The systems
facilitated the bone marrow-targeting transportation of aPD-1 and
released aPD-1 in situ through platelet activation. The in vivo
treatment with S-P-aPD-1 showed 80% survival of C1498
leukaemia-bearing mice on the 80th day after tumour cell
injection, validating the significant antileukaemia efficacy of S-P-
aPD-1.

Anti-PD-1/PD-L1 antibodies have also been exploited for
generating tumour-targeted NDDSs for the potentiation of
immunotherapy. For instance, Schmid et al. engineered T-cell-
targeting nanoparticles by conjugating the F(ab’)? PD-1 antibody
to the surface of PEGylated poly(lactic-co-glycolic acid) (PLGA)
nanoparticles [104]. The nanoparticles displayed satisfying T-cell
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binding affinity and T-cell activation efficiency. The authors further
utilized the nanoparticles to deliver a transforming growth factor
 (TGF-B) inhibitor and a Toll-like receptor (TLR7/8) agonist, which
significantly increased tumour-infiltrating CD8" T cells and
prolonged the survival of the tumour-bearing mice.

CELLULAR VESICLES INTEGRATING PD-1/PD-L1 PROTEINS TO
BOOST ICB THERAPY

Bioengineering strategies hold great prospects in the field of
antitumor immunotherapy, in which engineered cellular vesicles
(CVs) are utilized as biomedicine carriers since they hold
outstanding advantages in terms of stability, biocompatibility,
and cellular characteristics [105]. Given that most immune
checkpoints are membrane proteins, CVs functionalized with
immune checkpoint ligands/receptors may establish a Trojan
horse strategy that disrupts immunosuppressive cellular interac-
tions [106].

Apart from the adaptive immune effects exerted by T
lymphocytes, innate immune effects, including phagocytosis and
antigen presentation by macrophages, also play an important role
in the antitumor immune process. CD47 is an innate immune
checkpoint that is highly expressed on the surface of tumour cells
and prevents macrophage phagocytosis by binding to its receptor

Acta Pharmacologica Sinica (2022) 43:2749 - 2758

signal regulatory protein alpha (SIRPa) on the surface of
macrophages [44]. Meng et al. reported fused cellular vesicles
(Fus-CVs) to concurrently block PD-L1 and CD47 for enhanced
antitumor immunity (Fig. 5a, b) [58]. The Fus-CVs were prepared
by the following steps. First, tumour cell lines overexpressing PD-1
and SIRPa were constructed by genome editing. Then, single CV
components were isolated and fused into Fus-CVs containing both
PD-1 and SIRPa. Fus-CVs ensured the concurrent blockade of
tumour-overexpressing PD-L1 and CD47 through bispecific
targeting effects, which significantly promoted the immune
response of T cells in the B16F10 melanoma tumour model.
Moreover, Fus-CVs remarkably elongated the survival rate of 4T1
breast tumour-bearing mice by inhibiting postoperative metas-
tasis of the tumour cells.

Furthermore, the engineered CVs can perform tumour-targeted
delivery of immunotherapeutics through ligand-receptor interac-
tions. Indoleamine 2,3-dioxygenase 1 (IDO-1) is an immunosup-
pressive molecule overexpressed by tumour cells and dendritic
cells (DCs) that can inhibit CTLs and recruit Tregs [107]. To
circumvent IDO-1-induced immune resistance, Zhang et al.
encapsulated the IDO-1 inhibitor 1-methyl-tryptophan (1-MT) into
PD-1-presenting CVs to concurrently block the PD-1/PD-L1 axis
and overcome the immunosuppressive effects of IDO-1 [108]. An
in vitro study demonstrated that the PD-1 CVs colocalized with
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PD-L1 on the membrane of B16F10 tumour cells. Furthermore,
fluorescently labelled CVs can be efficiently internalized by
marrow-derived DCs for the intracellular delivery of 1-MT and
subsequently inhibit IDO-1 activity in DCs.

The CVs have also recently been explored as nanovectors for
gene delivery. For example, Pan et al. developed a bacterial outer
membrane-based vesicle (OMV) integrating a PD-1 plasmid to block
PD-L1 on the surface of tumour cells (Fig. 5c) [109]. Escherichia coli
was genetically engineered to express the tumour-targeting peptide
LyP1 on the surface of the membrane. Then, the bacterial
membrane was extracted, and the PD-1 plasmid was loaded into
the OMV through electroporation to form LyP1-OMV@PD-1. Upon
systemic administration, LyP1-OMV@PD-1 specifically delivered the
PD-1 plasmid into the tumour cells via LyP1-mediated endocytosis,
leading to PD-1 expression by the tumour cells. The immunofluor-
escence assay showed significantly elevated expression of PD-1 in
4T1 cells after LyP1-OMV@PD-1 treatment. PD-1 could interact with
the tumour-originating PD-L1 for self-blockade of the tumour PD-L1.

CONCLUSION AND PERSPECTIVES
In summary, we overviewed recent advances in NDDSs for anti-
PD-1/PD-L1 immunotherapy. The NDDSs exploited thus far can be
catalogued into micellar nanoparticles, nanovesicles, micelleplexes
and cellular vesicles. These NDDSs are rationally engineered to
target the PD-1/PD-L1 axis by delivering various immunother-
apeutics, including small molecule antagonists, nucleic acids,
antibodies and PD-1/PD-L1 proteins. The NDDSs display elongated
blood circulation and a controllable payload release profile at the
tumour site by minimizing the nonspecific distribution of the
immunotherapeutics. Furthermore, NDDSs can be readily engi-
neered to integrate multiple immunotherapeutics for combinatory
immunotherapy. Overall, NDDSs are promising platforms to
circumvent the challenges of current anti-PD-1/PD-L1 therapy.
Nevertheless, several challenges remain to be addressed before
the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.
First, it is crucial to thoroughly evaluate the systematic immune
response to NDDSs since some of their ingredients may induce
unexpected immune toxicity. Second, standardized fabrication
procedures are essential for scale-up production and batch quality
control of NDDSs. Furthermore, clinically relevant cell culture or
animal models, for example, organ-on-a-chip, patient-derived cell
lines and humanized animal models, should be employed for
evaluation of the antitumor immune response. Last but not least,
compared to the complicated formulation of NDDSs, well-
established nanoformulations (e.g., liposomes and micellar nano-
particles) might represent promising candidates for the clinical
translation of nanomedicine-based anti-PD-1/PD-L1 therapy.
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