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Multimodal workflows optimally predict response to repetitive
transcranial magnetic stimulation in patients with
schizophrenia: a multisite machine learning analysis
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The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option
in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structural MRI, clinical,
sociodemographic, and genetic data using artificial intelligence. We developed and cross-validated rTMS response prediction
models in patients with schizophrenia drawn from the multisite RESIS trial. The models incorporated pre-treatment sMRI, clinical,
sociodemographic, and polygenic risk score (PRS) data. Patients were randomly assigned to receive active (N= 45) or sham (N= 47)
rTMS treatment. The prediction target was individual response, defined as ≥20% reduction in pre-treatment negative symptom sum
scores of the Positive and Negative Syndrome Scale. Our multimodal sequential prediction workflow achieved a balanced accuracy
(BAC) of 94% (non-responders: 92%, responders: 95%) in the active-treated group and 50% in the sham-treated group. The clinical,
clinical+ PRS, and sMRI-based classifiers yielded BACs of 65%, 76%, and 80%, respectively. Apparent sadness, inability to feel,
educational attainment PRS, and unemployment were most predictive of non-response in the clinical+ PRS model, while grey
matter density reductions in the default mode, limbic networks, and the cerebellum were most predictive in the sMRI model. Our
sequential modelling approach provided superior predictive performance while minimising the diagnostic burden in the clinical
setting. Predictive patterns suggest that rTMS responders may have higher levels of brain grey matter in the default mode and
salience networks which increases their likelihood of profiting from plasticity-inducing brain stimulation methods, such as rTMS.
The future clinical implementation of our models requires findings to be replicated at the international scale using stratified clinical
trial designs.
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INTRODUCTION
Repetitive transcranial magnetic stimulation (rTMS) provides a
non-invasive treatment option capable of inducing long-term
excitability and plasticity changes at the neural-systems level
across various neuropsychiatric disorders. rTMS has been most
promising in the treatment of depression with overall milder
adverse effects [1]. In other neurological or neuropsychiatric
disorders such as stroke [2], Alzheimer’s disease [3], Parkinson
Disease [4] and schizophrenia [5], rTMS has also shown to be
effective. Specifically, a small number of investigations using rTMS
as an alternative option to treat negative symptoms in schizo-
phrenia have emerged over the recent years because these

disabling symptoms do not respond adequately to antipsychotic
or psychosocial treatments [6, 7]. However, rTMS treatment
outcomes are observed to have large inter-individual variability.
This heterogeneity may result from genetic [8], neuroanatomical
[9], neurofunctional [10], connectivity-based [11], and sociodemo-
graphic [12] factors. So far, no study has analysed this multi-
dimensional heterogeneity to develop individualised predictors of
rTMS treatment outcomes, except for depression [13].
Treatment outcome prediction in schizophrenia has developed

into an important area of precision psychiatry research [14, 15].
The emergence of machine learning and AI methodologies has
provided researchers the means to create prediction models
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utilising multivariate and multimodal data. We previously pre-
dicted functional outcomes of first episode psychosis using
psychosocial and symptoms variables and validated the model
on an unseen sample of 108 patients with a balanced accuracy of
71.7% [16]. Leighton et al. successfully predicted 1-year remission
and recovery outcomes to medication treatment in first psychosis
and validated their findings in two independent samples using
baseline clinical and demographic variables [17]. Wang et al.
predicted antipsychotic medication treatment outcomes in
schizophrenia with MRI and polygenic risk scores [18].
Currently only one study used machine learning to predict rTMS

treatment outcomes in schizophrenia [6]. In this previous work, we
developed and cross-validated an rTMS treatment response
classifier for patients with predominant negative-symptom schizo-
phrenia based on structural Magnetic Resonance Imaging (sMRI) as
a single predictive modality. However, we did not assess the
potential added value of clinical, sociodemographic, and genetic
information available for these patients. Based on previous
evidence showing a superiority of multimodal predictive models
over unimodal models [19, 20], we hypothesised that the predictive
power of our original, sMRI-based predictive model could be
improved by integrating clinical, sociodemographic, and genetic
information with imaging data. To this end, we combined the sMRI
predictor with newly trained models analysing clinical, socio-
demographic, and genetic data into a multimodal prediction
system. Secondly, previous work [20] showed that the strategic
combination of multiple data domains following the principles of
deferral learning [21] may lead to more efficient predictive systems.
By performing only those examinations in each patient that
conjointly minimise individual predictive uncertainty such systems
could be more easily translated to clinical care, thus reducing data
acquisition costs and diagnostic burden on the patients.
Therefore, we hypothesised that sequential prediction techni-

ques increase the clinical adaptiveness of rTMS response prediction
models compared to “data-hungry” approaches that require the
presence of all data in every patient to be tested, while maintaining
the higher performance of the latter predictive strategies. Hence,
we trained and validated a sequential predictive model using all
available data domains in the “Repetitive Transcranial Magnetic
Stimulation for the Treatment of Negative Symptoms in Schizo-
phrenia” (RESIS) trial database. Thirdly, we evaluated the correla-
tions between the sMRI, clinical and PRS data to identify any
potential cross-modality associations. By doing so, we aimed at a
deeper understanding of the underlining patterns determining the
inter-individual variability of patients’ responses to rTMS.

METHODS
Study subjects and target definition
The RESIS study recruited patients with an ICD-10 diagnosis of
schizophrenia across three academic clinical centres, who met the
following criteria: Positive and Negative Syndrome Scale, negative subscale
(PANSS-NS) > 20 points, 1 PANSS-NS item ≥4, no PANSS-NS reduction
≥10% in the 14 days before treatment start, and an illness duration of ≥1
year [7]. All patients provided written informed consent prior to study
enrollment. The study was registered at https://clinicaltrials.gov
(NCT00783120) and the study protocol [22] was approved by the
institutional review boards of the three participating institutions (University
of Goettingen, University of Duesseldorf, University of Regensburg).
From the Intention-To-Treat (ITT) population (N= 157), 96 patients had

pre-treatment sMRI (active/sham rTMS: N= 45/47) and primary PANSS-NS
outcome endpoints defined as follows [7, 23]: ΔPANSS–NS
%= (PANSS–NST1− PANSS–NSBaseline) × 100/(PANSS–NSBaseline – 7). PANSS-
NSBaseline-7 was used as baseline value instead of PANSS-NSBaseline as 7 was
the lowest possible value for PANSS-NSBaseline [24]. The patients were
assigned response or non-response labels, where response was defined as
≥20% improvement between baseline and day 21 in PANSS-NS. These
labels were used as targets for the machine learning analyses
described below.

Treatment and intervention
All patients in the ITT population were blinded to the intervention and were
randomised either to 10 Hz active or sham rTMS applied to the left DLPFC
according to the EEG-10–20 system (F3-electrode, 5 sessions/week during
the 3-week period, 1000 stimuli/day, 50 stimuli/train) with 110% of the
individual resting motor threshold (RMS). The difference between the active
and sham treatment was that sham-treated patients had the stimulation
coil tilted over one wing at an angle of 45 degrees. Rater-blinded clinical
data were recorded before stimulation (baseline/T0) and after day 21 (T1),
day 28 (T2), day 45 (T3) and day 105 (T4). In the ITT population no
significant differences in the primary outcome, other clinical outcomes and
cognition could be detected between active and sham rTMS [7].

Clinical and sociodemographic data acquisition and pre-
processing
Only baseline data were used to train and cross-validate classifiers. We
included all available clinical and sociodemographic data at baseline, no
manual pre-selection was made to minimise manual intervention in the
machine learning pipeline. The features included 16 clinical features
consisting of the Positive and Negative Syndrome Scale Positive Score
(PANSS-PS), Negative Score (PANSS-NS), General Score (PANSS-GS), Sum of
Calgary Depression Scale for Schizophrenia items score (CDSS), Clinical
Global Impressions Sickness Severity Score (CGI-S1), Global Assessment of
Functioning score (GAF) and 10 items from Montgomery-Åsberg Depres-
sion Rating Scale (MADRS); 4 comorbidity features (life-time history of
Alcohol abuse, Alcohol addiction, Substance abuse, Substance addiction
prior to study recruitment) and 5 socio-demographic features (Marital
status, Employment status, Housing status, Education (years), Sum of
education years from parents) (Supplementary C1, S1).

Genetic data acquisition and PRS calculation
All patients, including both active and sham treatment groups, were
genotyped on the Infinium PsychArray-24 BeadChip (Illumina, San Diego,
CA, USA). Based on genetic ancestry components, we identified 15 patients
out of the 45 patients from each of the active and sham groups as
ancestral outliers which had to be removed from further analysis steps. As
a result, only 30 patients from the active group and 30 from the sham
group provided PRS data in the machine learning analyses (Supplementary
C2). Schizophrenia PRS (PRS-SZ) and educational attainment PRS (PRS-EA)
were calculated using the PRS-Continuous Shrinkage method (PRS-CS) [25].
SZ and EA genome-wide association studies were used as discovery
samples [26, 27]. The PRS-CS method generated different scores based on
different assumptions of polygenicity (6 φ values from 1e−1 to 1e−6). All
12 PRS features (6 PRS-SZ and 6 PRS-EA) were z-transformed and used in
the subsequent machine learning analyses.

sMRI imaging data acquisition and pre-processing
Structural MR images were obtained on two 3T systems (Siemens Trio) and
one 1.5T system (Siemens Sonata) using T1-weighted sequences [9]. All
images were quality-controlled, and 4 study participants had to be
removed due to poor image quality. All sMRI images were processed using
the r1207 version of the Computational Anatomy Toolbox for SPM (CAT12)
[28]. The sMRI images of the remaining patients were processed through
automated tissue segmentation and high-dimensional stereotactic regis-
tration with Diffeomorphic Anatomical Registration Through Exponen-
tiated Lie algebra (DARTEL) [29]. The resulting grey matter density (GMD)
images were registered to the MNI-152 template and smoothed with an
8mm Gaussian kernel. Further details relating to image acquisition and
preprocessing can be found in our previous work [6]. The GMD images
were flattened into vectors consisting of 71276 voxels as input features in
the machine learning analyses.

Machine learning strategy
We generated machine learning models to predict rTMS treatment
response with six different modality combinations using the open-source
machine learning library NeuroMiner 1.1 [30] (Fig. 1). These modality
combinations were (1) clinical and sociodemographic information (clinical
model); (2) clinical, sociodemographic and PRS data (clinical+ PRS model);
(3) sMRI data; (4) stacked model combining the clinical and sMRI models
(sMRI+ clinical model); (5) stacked model combining all modalities (all-
modalities model); and (6) an optimised sequential model combining all
modalities (sequential model). These modality combinations were deter-
mined purely based on the availability of data domains in RESIS dataset.
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The models were categorised into base, stacker, and sequential models.
Base models did not follow a hierarchical stacking strategy: clinical,
clinical+ PRS and sMRI models. Stacker models employed a hierarchical
meta-learning strategy that used the base models’ decision scores as input
features to train a meta-classifier [20] that harnesses the predictive power
of multiple modalities simultaneously with better explainability and
flexibility. The sequential model combined different base and stacker
models in a stepwise manner optimised for prediction performance and
reduced the per-case examinations needed to achieve this performance,
which is an innovative method to maximise the prediction accuracy by
using multiple modalities while reducing the additional burden and cost
for acquiring more data. The optimisation hyper-parameters included 7
candidate prognostic sequences, 5 upper and 5 lower case propagation
percentile thresholds, resulting in 7 sequential models and a total of 175
hyper-parameter combinations (Supplementary 3.6).
We employed pooled repeated nested cross-validation (P-CV) with 10

permutations and 20 folds at the outer CV cycles, and 1 permutation with
19 folds at the inner CV cycles to achieve unbiased estimation of model
generalisability to new patients. All models were trained using the linear
kernel Support Vector Machine (SVM) algorithm. The optimisation metric
was Balanced Accuracy: BAC= (Sensitivity+ Specificity) ÷ 2. All SVM
models generated from an inner CV cycle were combined into an
ensemble classifier, which was then applied to the respective outer CV
data to evaluate model performance. This process was repeated across all
outer CV folds of the repeated nested CV design. For each patient in the
outer CV fold, the obtained SVM decision scores were summed into one
final prediction through majority voting. We employed three different
preprocessing pipelines to cater for the different data domains of the six
modality combinations (Supplementary 3.1. 3.2, 3.5). The pipelines were
fully wrapped into each inner cycle of the CV structure to exclude any
information leakage between training and test data.
We performed additional analyses to test model significance, generalisa-

bility, and therapeutic specificity. First, we conducted cross-over model
validation by applying sham group data to active group models and vice
versa. Then, we determined whether the observed prediction performances of
the active and sham models were significant by training and cross-validating
SVM models on n= 1000 random label permutations. Model significance was
defined at α= 0.05 as P= ∑

n= 1000(BAC(observed)≤ BAC(permuted)) ÷ n. Next, we
assessed the models’ generalisability by training models with leave-one-site-
out cross-validation (LOSO-CV). This cross-validation scheme is a form of
internal-external validation recommended for evaluating the generalisability
of machine learning models in multi-centred studies as an alternative to
external validation and can effectively evaluate overfitting [31]. Each of the
three study sites was iteratively held-out for validation, while the remaining
data entered the inner CV cycles. Consequently, the outer CV only had three
folds and the training sample sizes for each fold were 28, 23, 39 respectively.
Compared to the P-CV approach, the outer CV training sample sizes were
reduced. The inner CV scheme was randomly pooled with 15 folds and 10

permutations. We observed that all LOSO-CV models showed lower prediction
performances compared to the P-CV models in the active groups. To
investigate whether the performance drop was due to residual site effects, or
due to the lower training sample sizes caused by LOSO, we trained the three
LOSO-CV base models on n= 1000 permutations of the patients’ site
assignments. Additionally, we performed Z-test on all models trained on
active-treated patients to assess whether the performance differences
between the models were statistically significant (Supplementary 3.7, 3.8).

Predictive pattern extraction
We used additional post hoc methods to extract the predictive patterns of
the models. Specifically, for the sMRI model, we identified the reliability of
the baseline GMD pattern using the Cross-Validation Ratio (CVR) method,
mapped the significant regions onto the AAL brain atlas, and summarised
the significant regions according to brain networks defined by the Yeo
atlas using the open-source software MRIcroGL (Supplementary 4.3). For
the clinical and PRS models, we used CVR, feature weights, Spearman
coefficients, and sign-based consistency metrics to rank the features and
identify the most predictive variables.

Post hoc cross-modalities correlation analyses
We implemented a series of post hoc analyses to assess the correlation
between clinical, PRS data and sMRI-based variables to find potential cross-
modality patterns which could bridge the predictive patterns identified by
the sMRI model and the clinical+PRS model in the active rTMS group. First,
we corrected for covariate effects in all modalities following the same
preprocessing pipeline used in the model development (Supplementary
3.1, 3.2). Then, we conducted univariate Pearson correlation analyses
between each clinical and PRS feature used in our clinical+ PRS model
(Supplementary S15) and the GMD images organised in ROIs and brain
networks (Supplementary C5).

Post hoc predicted treatment effects analyses
We implemented a set of further post hoc analyses to investigate the
relationship between the prediction results of our models and the precise
PANSS-NS score reductions observed at different follow-ups after the
patients received the treatment. These analyses included linear regression
R² and T-test Cohen’s d calculations (Supplementary C6).

RESULTS
Sample characteristics
Group level differences between the active and sham-treated
groups are listed in Table 1. We did not find significant group level
differences in basic sociodemographic variables, including sex

Fig. 1 Schematic diagram of the main analysis design of our study. Boxes represent key analysis stages of our study, arrows represent the
order of the analysis stages.
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(p= 0.315), site distribution (p= 0.886), right-handedness
(p= 0.778), age (p= 0.418) and education (p= 0.830). Similarly,
we did not find clinical baseline differences except for slightly
higher PANSS-PS scores in the active rTMS groups (all PANSS-
PSActive= 14.4, PANSS-PSSham= 12.4, p= 0.012). This trend was
similarly observed in PANSS-NS and GS, but not significant in both
cases. Both treatment groups improved similarly over time
(PANSS: all F ≥ 10.51, all p <=0.002; MADRS: F= 17.27, p < 0.001;
GAF: F= 16.24, p < 0.001). Distributions of PANSS-NS responders
and non-responders were equal in both rTMS treatment groups
(active vs. sham rTMS responders/non-responders: 21/24 vs. 22/25;
χ2 < 0.001, p= 0.989). Even though PANSS-PS scores were
significantly higher in the active group at baseline (t= 2.565,
p= 0.012), the significance was no longer observed at day 21
(t= 0.876, p= 0.383).

Unimodal classifiers performances
All model performances can be found in Table 2. The clinical
model achieved a BAC of 64.6% (sensitivity: 62.5%, specificity:
66.7%). The clinical+ PRS model performed at a BAC of 75.9%

(sensitivity: 70.8%, specificity: 81.0%), which was 11.3% higher
than the performance of the clinical model (p= 0.009) (Supple-
mentary S11). The top 10 most predictive features according to
CVR included Apparent Sadness (MADRS-1), Inability to feel
(MADRS-8), 4 PRS-EA scores (phi= 1e−5, 1e−4. 1e−6, 1e−3),
employment status, marital status, GAF score and substance abuse
(Fig. 2A–C). The retrained sMRI model with images processed
using the CAT12 r1207 pipeline achieved a BAC of 80.1%
(sensitivity: 79.2%, specificity: 81.0%). Compared to our previous
work (BAC= 84.4%), our retrained sMRI model’s BAC was 4.3%
lower, but not statistically significant different from the original
sMRI model (p= 0.108).

Neuroanatomical predictive patterns from sMRI model
The neuroanatomical pattern predicting response to the active
rTMS treatment involved relatively higher GMD in four areas:
(1) cerebellum, (2) dorsomedial and ventromedial prefrontal,
frontopolar and cingulate cortices, (3) the insular, opercular,
temporopolar and medial temporal cortices and (4) superior
and inferior occipital lobe. Higher baseline GMD predicting

Table 1. Sociodemographic and clinical differences at baseline between Active and Sham rTMS treatment groups from RESIS dataset.

Active rTMS Sham rTMS Active vs. Sham

Sociodemographics (N= 45) (N= 47) χ2 p

Sex (male:female) 39:6 37:10 1.01 0.315a

Site (Goettingen:Regensburg:Düsseldorf ) 17:22:6 17:22:8 0.242 0.886a

Hand preference (Right:Left) 39:5 39:6 0.08 0.778a

Marital status (Married:Not married) 8:36 8:37 0.05 0.800a

Employment status (Working:Not working) 10:35 4:41 2.11 0.146a

Housing status (Live alone:Live with someone) 34:11 38:7 0.63 0.429a

Comorbidity

Life-time history of alcohol abuse before study (Yes:No) 2:42 1:39 0.01 0.933a

Life-time history of alcohol addiction before study (Yes:No) 1:43 1:40 0.44 0.506a

Life-time history of substance abuse before study (Yes:No) 8:35 4:37 0.72 0.397a

Life-time history of substance addiction before study (Yes:No) 5:38 2:38 0.48 0.490a

Sociodemographics Mean (SD) Mean (SD) T-stat p

Age (years) 34 (9.9) 35.6 (9.4) 0.814 0.418b

Education (years) 11.4 (1.9) 11.3 (2.1) 0.215 0.830b

rTMS functional and anatomical parameters

Left resting motor threshold (RMT) 46.7 (10.3) 48 (11.8) 0.519 0.605b

Scalp-to-cortex distance BA 9 (mm) 16.3 (2.2) 16.7 (1.9) −0.951 0.344b

Scalp-to-cortex distance BA 46 (mm) 16.3 (2.4) 16.9 (2.5) −1.211 0.299b

Severity of illness and treatment

PANSS negative symptoms 26.3 (4.5) 25.9 (4.4) 0.428 0.669b

PANSS positive symptoms 14.4 (4.3) 12.4 (3.2) 2.565 0.012*b

PANSS general symptoms 42.4 (9.5) 38.7 (9.9) 1.766 0.081b

PANSS total 83.2 (14.2) 77.3 (14.8) 1.939 0.056b

Clinical global impressions: sickness severity score 4.6 (0.9) 4.7 (0.9) −0.11 0.911b

Global assessment of functioning 52.1 (12.3) 52.4 (11.8) 0.115 0.908b

Antipsychotic dose (CPZ mg) 598.6 (451.1) 596.6 (494.5) 0.02 0.984b

Depression severity

Calgary Depression Scale for Schizophrenia score 5.2 (3.4) 5.9 (3.5) −0.83 0.411b

Montgomery–Åsberg Depression Rating Scale 14.5 (5.5) 13.8 (5.6) 0.558 0.579b

Sociodemographic and clinical differences were assessed using independent t-tests and chi-square tests. pa value obtained from chi-square test on
independence. pb value obtained from independent t-test. All p values are FDR corrected using Benjamini/Hochberg method.
PANSS Positive and Negative Syndrome Scale, CPZ chlorpromazine equivalents, BA Brodmann area, SD standard deviation, χ2 chi-square test statistics, T-stat
independent T-test statistics.
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non-responses was found in the left-hemispheric somatosen-
sory and parietal cortices with extensions to the lateral
temporal and premotor structures, as well as in the thalamic
nuclei, bilaterally (Fig. 2D). Despite these neuroanatomical
predictive patterns having some differences from our previous
work, no statistically significant differences were noted
between the two patterns (ppositive region = 0.18, pnegative
region = 0.91) (Supplementary 4.4). Furthermore, we grouped

the neuroanatomical predictive patterns according to Yeo atlas
brain networks. Default, limbic and frontoparietal networks
were particularly related to the prediction of treatment
response (Supplementary S22).

Stacked classifiers performance
Two models were trained and validated using the principle of
stacked generalisation. Both stackers achieved higher prediction
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performance than unimodal classifiers. The sMRI+ clinical stacker
achieved a BAC of 89.0% (sensitivity: 87.5%, specificity: 90.5%)
with a significant BAC increase of 8.9% comparing to the sMRI
model (p= 0.009). The stacker combining all data modalities
achieved a BAC of 89.3% (sensitivity: 83.3%, specificity: 95.2%). It
improved BAC by 9.2% when compared to the sMRI model
(p= 0.009) (Supplementary S11). It also improved prognostic
summary index (PSI) from 59.9 to 78.6, positive likelihood ratio
from 4.2 to 17.5 and decreased number needed to predict from
1.7 to 1.3 (Table 2).

Sequential classifier performances
Among all RESIS active group models, the optimal sequential
model achieved the highest BAC of 93.5% (sensitivity: 91.7%,
specificity: 95.2%). The sequential model showed a 50% increase
in R2 value compared to the sMRI model, indicating stronger
correlation with PANSS-NS score reduction (sMRI: R2= 0.271,
Sequential model: R2= 0.406, p= 0.0002) (Fig. 3C, D) (Supple-
mentary S37). Compared to the sMRI model, the optimal sequence
model demonstrated a significant increase in BAC (13.4%),
sensitivity (12.5%), and specificity (4.7%) (p= 0.0001). Starting
with sMRI (BAC: 80.1%, PSI: 59.9), 31.1% of patients progressed to
the second model (sMRI+ clinical stacker: BAC: 89%, PSI: 77.7),
while only 11.1% visited the third model (all-modalities stacker:
BAC: 93.5%, PSI: 86.6) (Fig. 3F) (Supplementary S8). Sequential
model 6 achieved a comparable BAC of 91.1% (p= 0.21) with the
optimal sequential model, utilising only the sMRI and clinical
models in the sequence, with 46.7% of patients propagated to the
second stage clinical model. Sequential model 5 achieved a BAC of
80.7% with two nodes, statistically similar to the sMRI model
(p= 0.44). The prognostic sequence started with the clinical+ PRS
model, with 57.8% of patients progressing to the sMRI model
(Supplementary S5–10).

Permutation significance and cross-over validation results
We conducted label permutation tests on all P-CV active group
classifiers and showed that their BACs were significant after
correcting for multiple comparisons using the false-discovery rate
(p range: 0.001–0.031). We also conducted feature permutation
tests on these models and found that all of the prediction patterns
were significant (p range: 0.001–0.005), except for the sMRI+
Clinical stacker (p= 0.89) (Supplementary S13). We applied the
active group models to sham-treated patients, the BACs were
around chance level for all models (BAC range: 50.0%–53.6%). All
models trained on sham-treated patients had BAC values around
chance level (BAC range: 45.5%–53.6%) and none was statistically
significant (p range: 0.257–0.770). When we applied the sham
models to active-treated patients, the BACs were also around or
below chance level (BAC range: 36%–50%) (Table 2).

Leave-one-site-out model performance
When evaluating our model’s cross-site generalisability using
LOSO-CV, we observed the following BAC performances: (1)

Clinical: 47.9%, (2) Clinical+ PRS: 67%, (3) sMRI: 71.1%, (4)
sMRI+ Clinical: 63.7%, (5) all modalities: 77.7%, (6) sequential:
69.6%. Except for the clinical model BAC (p= 0.608), all other LSO
models’ BACs were significant (p range: 0.001–0.019). These
performances did not differ from the BACs obtained in the 1000
random permutations of the patients’ site membership in sMRI
(p= 0.725) and clinical (p= 0.347) models, indicating that no
residual site effects were present. There was a significant
difference between the observed and LSO permuted variant of
the clinical+ PRS model (p < 0.001) due to the fact that 15
patients had no PRS data and the missing PRS were imputed in
each training fold using early fusion (Table 2).

Cross-modalities correlation analyses results
When we correlated the GMD data with clinical features, we
found that the superior, middle, inferior and medial frontal gyri
showed that the most significant correlations (ROI correlation
count= 23), including MADRS items, substance addiction and
abuse, as well as PANSS-PS scores, followed by cerebellum (ROI
correlation count= 18) and temporal lobe (ROI correlation
count= 17) (Supplementary S26). Cerebellar volumes were
correlated with MADRS items, GAF score, PANSS-GS and -PS
scores as well as substance and alcohol abuse. Temporal lobe
volumes were correlated with MADRS items, CGI-S1, PANSS-NS
and substance abuse (Supplementary S25). Among brain net-
works, the default network volumes showed the largest number
of correlations with clinical features including reduced appetite
(MADRS-5), substance addiction and abuse. The limbic network
volumes were correlated with apparent sadness (MADRS-1) and
reported sadness (MADRS-2). No significant correlations were
found between sociodemographic features and GMD (Supple-
mentary S20). The frontal lobe (ROI correlation count= 19) and
cerebellum (ROI correlation count= 17) showed the highest
number of significant correlations with PRS features. All ROIs
within the frontal lobe were correlated with PRS-SZ, except for the
medial orbital gyrus which was correlated with PRS-EA. The crus
of the cerebellum was correlated with PRS-EA while the vermis
was correlated with PRS-SZ (Supplementary S29). In terms of brain
networks, frontoparietal and somato-motor networks were
correlated with PRS-SZ. No significant correlations were found
between brain networks and PRS-EA (Supplementary S32).

Treatment stratification effects
Supplementary analyses indicated that patients stratified to the
response group based on the predictions of our active rTMS
models showed significantly higher treatment response rates
(sMRI model: 79.2% responders, sMRI+ Clinical model: 82.6%, all
modalities stacker: 83.3%, sequential model: 90.9%) compared
to the original non-stratified patient sample (46.7% responders)
(Supplementary S33–S35). We found significant linear correla-
tions between the predicted rTMS response likelihood and
PANSS-NS score reduction 21 days after the treatment in all of
our active models with R² ranging from of 0.20 to 0.41, except

Fig. 2 Feature importance and predictive patterns extracted from the Clinical+PRS model and sMRI model. A All features from
Clinical+ PRS model ranked by absolute CVR values in ascending order. The vertical red lines indicate CVR value at −2 and 2 which are
equivalent to p= 0.05. B Predictive pattern analysis for the clinical and sociodemographic features used in the Clinical+ PRS model, ranked by
absolute CVR values in ascending order. CVR subplot vertical red lines: CVR equivalence to alpha level of 0.05 (|2.2|), Sign-based consistency
subplot vertical red line: −log10 p equivalence to alpha level of 0.05 (1.3). C Predictive pattern analysis for the PRS features used in the
Clinical+ PRS model, ranked by absolute CVR values in ascending order. CVR subplot vertical red lines: CVR equivalence to alpha level of 0.05
(−2.2), Sign consistency subplot vertical red line: −log10 p equivalence to alpha level of 0.05 (1.3). All exact values can be found in
Supplementary S15. D The reliability of the Grey Matter Density (GMD) pattern elements was measured in terms of a Cross-Validation Ratio
(CVR) map (CVR=mean(w)/standard error(w)], where w are the weight vectors of the 5054 Support Vector Machine (SVM) models generated
in the study’s repeated nested cross-validation setup). The CVR map was thresholded at CVR value ranges corresponding to an alpha level of
0.01 (CVR ≤−3, CVR ≥ 3). Reliable areas of GMD increase in predicting responders to active rTMS are shaded in red colours, whereas areas of
GMD increments predicting non-responders to active rTMS are painted in green. The open-source 3D rendering software MRIcroGL (C.
Rohrden) available at https://www.nitrc.org/projects/mricrogl/ was used to overlay the CVR map on the MNI single-subject template.
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for the clinical model. We observed large effect sizes (Cohen’s
d > 0.80) in patients with a predicted rTMS responsive and
medium (Cohen’s d < 0.50) to small (Cohen’s d < 0.20) effect
sizes in patients with non-response prediction in all active-group

models. We found no significant correlation between the
predicted rTMS response likelihood and PANSS-NS score
reduction 21 days after the treatment in the sham models
(Supplementary S37).
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DISCUSSION
To our knowledge, this is the first study reporting the successful
application of clinical, sociodemographic and PRS-based as well as
multimodal machine learning models to the prediction of
individual response to rTMS treatment in patients with schizo-
phrenia. We significantly extended the scope of our previous work
[6] by incorporating new data domains and multimodal sequential
modelling strategies. With the sequential model, we were able to
increase the prediction performance of unimodal classifiers from
80.1% to 93.5% and the prognostic certainty increase from
+69.6% to +86.5%, compared to our previous work. We observed
that individual rTMS treatment responses could be predicted with
a BAC of 75.9% using clinical and PRS data. Our methods
facilitated robust generalisability to new study sites despite the
lower training sample sizes in the LOSO-CV.
The high prediction accuracies achieved in our active group

models showed that, despite high inter-individual variability in
rTMS treatment responses, there are underlining neuroanatomical,
clinical, and genetic patterns which can forecast the likelihood of
treatment outcome on an individual level. Moreover, the chance-
level prediction results on sham-treated patients confirmed that
our active rTMS response models were not only accurate but also
therapeutically specific. Our cross-over model validation results
further emphasised the therapeutic specificity of our models. This
is important because in the RESIS trial, both active and sham-
treated groups showed significant PANSS-NS reductions between
baseline and 21 days (pactive= 5.24E−05, psham= 3.00E−06).
Therefore, to differentiate the efficacy of active from sham rTMS,
it is necessary to apply the same modelling methodology to both
groups. Furthermore, the chance-level prediction performances do
not suggest that the sham-treated patients have a different
pathobiology comparing to the actively treated patients, but only
indicate that no general outcome-predictive pattern could be
identified for the sham intervention.
Importantly, our study demonstrated that the challenges of

diagnostic cost, feasibility and acceptability arising from multi-
modal prognostic classifiers could be mitigated by using
sequential prediction strategies. Despite showing higher predic-
tion accuracies, models utilising data domains such as brain scans,
genetic and blood markers may have prohibitive data acquisition
and processing costs which may greatly limit their accessibility in
the clinical setting [15], particularly in low and middle-income
countries. However, current evidence suggests that these multi-
modal techniques are needed to resolve the disease and
treatment course heterogeneity of affective and psychotic
disorders potentially caused by the multifactorial nature of these
conditions [19, 20]. To overcome this dilemma, our proposed
stepwise sequential approach reduces costs by requesting
additional data only when necessary for conclusive predictions.
For example, our optimal sequential model, stratifying data
acquisition into three steps, achieved the highest prediction
accuracy while requiring full data acquisition for only 11% of
patients. These sequential models would significantly reduce the
data acquisition costs compared to their fully stacked
counterparts.
Our multi-modal results linking baseline neuroanatomical,

clinical, and genetic variations in schizophrenia and rTMS

treatment outcome supports the hypothesis proposed by previous
research that brain plasticity is a crucial determinant of the
effectiveness of brain stimulation approaches such as rTMS. Hasan
et al. found that rTMS effectiveness in patients with schizophrenia
may depend on the brain’s capacity for mounting structural
plasticity responses in the limbic and default mode network
(DMN) [9]. In our sMRI model, we found that the neuroanatomical
pattern predicting response to active rTMS was particularly
associated with relatively higher GMD in the DMN and limbic
networks as well as motor-thalamic regions. These findings may
suggest that patients with higher GMD in these regions have an
increased likelihood for responding to rTMS treatment. In contrast,
patients who have higher GMD in sensorimotor regions may not
have this advantage. Additionally, impaired anticorrelated cou-
pling between the dorsolateral prefrontal cortex (DLPFC)-based
Central Executive Network (CEN) and the medial prefrontal,
frontopolar, and medial parietal regions of the DMN have been
found in depression and schizophrenia [32, 33]. Studies showed
that high-frequency rTMS may attenuate abnormally elevated
within-default network connectivity and restore anticorrelated
activation patterns of the DMN and CEN [34, 35]. GMD of these
regions have also been identified by our sMRI model to be
predictive of rTMS treatment response. These regions’ GMDs were
also highly correlated with MADRS items which were highly
predictive of treatment response in the clinical+ PRS model
(Supplementary S25). Our results are consistent with these
previous findings where the DMN and limbic networks are the
most predictive of rTMS treatment response. The high correlation
between DMN and limbic networks and clinical variables suggests
that the underlining neuroanatomical predictive patterns are
reflected in the clinical predictive pattern underlying our model.
We observed that PRS-EA was more predictive of treatment

response than PRS-SZ in our clinical+ PRS model. PRS-EA has
been associated with brain compensatory potential, cognitive
abilities, and white matter integrity. Richards et al. [36] showed
positive correlations between PRS-EA and cognition in schizo-
phrenia patients, independent of PRS-SZ, suggesting its relevance
to cognitive abilities in the context of the disease. Jansen et al. [37]
found positive associations between global fractional anisotropy
and PRS-EA, suggesting that higher PRS-EA is associated with
better white matter integrity, which may contribute to improved
treatment response in schizophrenia patients compared to those
with lower PRS-EA.
Our study has limitations. Since RESIS is the only multi-site

randomised trial investigating rTMS treatment response in
schizophrenia patients, no external validation has been possible
to date. Given the high prediction accuracies and small sample
sizes of our study, large-scale international validation studies are
needed to rule out the possibility of overfitting and assess the
generalisability of the proposed models beyond our discovery
sample. Due to the ancestral outliers, we did not have an equal
number of PRS data compared to sMRI and clinical data. This
affected our machine learning modelling strategy and therefore, a
standalone PRS model could not be incorporated into the multi-
modal prognostic system. Our study shows a high predictive value
of polygenic scores for education attainment, which is influenced
by both sociological and genetic factors. The inclusion of parental

Fig. 3 Post-hoc model performance analyses for all RESIS active models. AModel performance measures for all RESIS active models. B Step-
wise BAC performance increase observed in the models in the active treatment group vs. models trained in the sham treatment group in both
pooled CV and leave-one-site-out CV (Sequential model not included). C Comparison of linear correlations between patients’ predicted
likelihood of non-response to rTMS treatment from sMRI model and sequential model and PANSS-NS score reduction from baseline to 21 days
after rTMS treatment (upper R-squared: sMRI model, lower R-squared: sequential model). D Comparison of linear correlations between
patients’ prediction decision scores from sMRI model and sequential model and PANSS-NS score reduction from baseline to 21 days after rTMS
treatment (upper R-squared: sMRI model, lower R-squared: sequential model). EModel performance measures for each prognostic node of the
sequential prognostic system (Supplementary S8). F The percentage of cases which are propagated at each step of the step-wise sequential
model trained on the active treatment group.
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education attainment as a highly predictive variable in our
clinical+ PRS model emphasises this complexity. Therefore, our
conclusion about PRS-EA should not be interpreted as a purely
genetic signature, but as a complex phenotype influenced by
social and economic factors.
Recent studies showed high accuracies (82.5%–95.8%) in predict-

ing responses to pharmacological and electroconvulsive treatment
in patients with schizophrenia using functional MRI and electro-
encephalography [38–42]. In keeping with these findings, our study
suggests that brain compensatory potential and neuroplasticity may
be predictive of rTMS treatment response. Future studies should
explore whether the prediction of rTMS treatment response could
be further enhanced using brain connectivity and white matter
integrity measurements. This could help solidify our study’s findings
and form a more unified explanation of the individual variability in
rTMS treatment response in schizophrenia.
In conclusion, our study found that individual response

variability to rTMS can be optimally deciphered by integrating
phenotypic, neuroimaging, and genetic data using multimodal
machine learning strategies. Furthermore, we demonstrated that a
stepwise sequential approach can be an effective mitigation
strategy which maximises prediction accuracy while controlling
costs and diagnostic burden in future precision psychiatry
workflows. This approach could improve acceptability and
accessibility of such models in the clinical setting. Our study
further suggests that rTMS responders may have more adaptive
default-mode and limbic networks, thus increasing their response
likelihood to rTMS. Multi-site prospective rTMS validation studies
and stratified clinical trials covering a larger and more diverse
population of patients with schizophrenia recruited in different
parts of the world are the mandatory next step to benchmark
these findings and further optimise the proposed tools for
translation into real-world clinical care.
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