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Translating research findings into clinical practice: a
systematic and critical review of neuroimaging-
based clinical tools for brain disorders
C. Scarpazza1,2, M. Ha1, L. Baecker1, R. Garcia-Dias1, W. H. L. Pinaya1,3, S. Vieira1 and A. Mechelli1

Abstract
A pivotal aim of psychiatric and neurological research is to promote the translation of the findings into clinical practice
to improve diagnostic and prognostic assessment of individual patients. Structural neuroimaging holds much promise,
with neuroanatomical measures accounting for up to 40% of the variance in clinical outcome. Building on these
findings, a number of imaging-based clinical tools have been developed to make diagnostic and prognostic
inferences about individual patients from their structural Magnetic Resonance Imaging scans. This systematic review
describes and compares the technical characteristics of the available tools, with the aim to assess their translational
potential into real-world clinical settings. The results reveal that a total of eight tools. All of these were specifically
developed for neurological disorders, and as such are not suitable for application to psychiatric disorders. Furthermore,
most of the tools were trained and validated in a single dataset, which can result in poor generalizability, or using a
small number of individuals, which can cause overoptimistic results. In addition, all of the tools rely on two strategies
to detect brain abnormalities in single individuals, one based on univariate comparison, and the other based on
multivariate machine-learning algorithms. We discuss current barriers to the adoption of these tools in clinical practice
and propose a checklist of pivotal characteristics that should be included in an “ideal” neuroimaging-based clinical tool
for brain disorders.

Introduction
Brain-based disorders, including psychiatric and neu-

rological illnesses, represent 10.4% of the global burden of
disease1, and their prevalence within the general popula-
tion is thought to be increasing2. While the past few
decades have seen significant progress in our biological
understanding of these disorders, this has had little or no
impact on real-world clinical practice3–5. This is especially
the case in clinical psychiatry, where diagnostic and
prognostic assessment is still based on self-reports and
clinical ratings, which are associated with low inter-rater

agreement and accuracy6. It is recognized that patients
suffering from psychiatric and neurological illnesses could
benefit from the translation of the research findings into
clinical practice. The key question for researchers and
clinicians is how to enable this7,8.
Over the past two decades, scientists have invested

many resources in the use of brain-imaging to develop
objective tests for detecting brain disorders, monitoring
their progression over time and optimizing treatment.
This has led to several promising findings. For example, in
the field of psychiatry, structural neuroimaging has
revealed widespread neuroanatomical alterations, includ-
ing both transdiagnostic and disorder-specific effects9–11.
Additionally, neuroanatomical measures have been found
to account for up to 40% of the variance in clinical out-
come, and can even explain some of this variance where
clinical variables (e.g. diagnosis) fail to do so12–14. These
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findings have led to the suggestion that structural neu-
roimaging could be used to develop objective measures of
psychiatric disease, in contrast with current nosological
criteria which are susceptible to subjective bias7.
However, so far we have not been able to translate the

plethora of promising findings into clinically useful
imaging-based tests5,15–17. One of the main reasons for
the current gap between research and clinical practice, is
that the former has been dominated by analytical methods
that only allow statistical inferences at group-level (e.g.
how does the brain differ between a group of people with
psychosis and a group of healthy controls?); whilst a
clinician has to make diagnostic and treatment decisions
at the level of the individual. In recent years, a growing
number of studies have attempted to address this issue by
using alternative analytical methods that allow statistical
inferences at the level of the single case. A large propor-
tion of these studies have been employing machine-
learning methods to make inferences at the levels of the
individual based on structural18,19 or functional20,21 neu-
roimaging data. This has resulted in a number of
encouraging findings22,23. For example, machine-learning
methods appear to be effective in differentiating between
patients with brain illness and healthy controls, and in
predicting the onset of illness and response to treat-
ment12,22,23. Although this is still an emerging area of
research, there is compelling evidence that neuroimaging
data allow for more accurate diagnostic and prognostic
inferences compared to the use of clinical and psycho-
metric data alone12.
Following these encouraging findings, some research

teams have been developing imaging-based tools for
making inferences at the level of the individual24–27.
Through these tools, clinicians can upload the brain
images of individual patients and receive an automatic
report of the brain abnormalities detected. These tools
differ greatly with respect to their specific purpose (e.g.
what disease is being targeted), their technical char-
acteristics (e.g. what is the underlying statistical model),
their robustness (e.g. how the tool was validated) and their
availability (e.g. freely vs. commercially available). At
present there is no single resource which presents all
available tools and systematically compares their aims and
characteristics; this means that it can be difficult for a
clinician or a researcher to identify the most appropriate
tool. In addition, in the absence of a systematic review of
their strengths and limitations, the real translational
potential of the existing tools is still unclear. To address
this gap, we conducted a systematic review of available
neuroimaging-based clinical tools for making inferences
at single-subject level. Our first aim was to describe and
compare how these tools have been developed and vali-
dated, with the ultimate goal of assessing their transla-
tional potential in real-world clinical settings. Our second

aim was to use the findings to develop a checklist of the
pivotal characteristics that should be included in an ideal
imaging-based clinical tool for brain disorders. We hope
that this review will help clinicians and researchers
appreciate the aims, strengths, and limitations of the
available tools and select the most appropriate option for
their investigations.

Materials and methods
Studies selection
As the results of the current review might have health-

related implications, the protocol of this review has been
registered to the International Prospective Register of
Systematic Reviews (PROSPERO—Registration Number:
CRD42019127819). In accordance with the PRISMA
guidelines28,29, an in-depth search was conducted on
PubMed and Google Scholar databases up to February
2019. The following terms were used: (brain AND (MRI
OR neuroimaging OR “magnetic resonance”) AND
(“clinical tool”) AND (psychiatric OR psychiatry OR
neurological OR neurology OR disease OR disorder)). All
papers describing a neuroimaging-based tool developed to
detect brain abnormalities in brain disorders at the level
of the individual, regardless of the diagnosis, were inclu-
ded. Furthermore, additional relevant studies were found
using different strategies. These included using the
“related articles” function of the PubMed database; tracing
the references from the identified papers; tracing the key
references on the tool websites; and emailing the provi-
ders of the clinical tools.

Inclusion and exclusion criteria
The following inclusion criteria were used: (i) articles

presenting a neuroimaging-based clinical tool; (ii) articles
presenting a tool aimed at detecting abnormalities in the
brain (i.e. studies presenting a tool for detecting
abnormalities in other organs, for instance the heart, were
excluded); (iii) articles presenting a validation of the
algorithm or technology that underlie the tool (i.e. studies
applying an already validated clinical tool were excluded);
(iv) articles published as original articles in peer-reviewed
academic journals or conference proceedings (posters
from conferences were excluded); (v) articles published or
available in English.
Articles were excluded from the review according to the

following a priori exclusion criteria: (i) articles that pre-
sent software for analyzing neuroimaging data without a
clear implementation in a translational tool (e.g. Statistical
Parametric Mapping18,19); (ii) articles reporting studies
that use non-human subjects; and (iii) studies that present
clinical tools that are yet to be released.
According to our first exclusion criterion, we excluded

platforms which allow the storage and analysis of indivi-
dual MRI scans, using software such as Freesurfer30,
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Sienax31, or FSL32, but do not provide a clinically mean-
ingful report including an estimate of neuroanatomical
abnormalities at the level of the individual. One example
is QMENTA (https://www.qmenta.com/), a cloud-based
platform where different neuroimaging modalities (i.e.
structural MRI, functional MRI, diffusion tensor imaging,
positron emission tomography) can be stored and a dif-
ferent of different statistical analyses can be carried out.
For instance, using QMENTA, researchers can investigate
gray matter (GM) volume, cortical thickness, structural
and functional connectivity, and ventricular volumetry,
just to name a few of the multiple analyses which can be
implemented via this platform. The advantage of using a
platform such as QMENTA is the possibility to run
multiple analyses simultaneously on a cloud thereby
saving time. However, QMENTA does not provide
researchers and clinicians with individualized reports
indicating whether or not the brain under investigation
deviates from those of healthy controls and what specific
alternations might be driving this conclusion.
According to the same exclusion criterion, we also

excluded ASSESSA PML (https://ixico.com/technology/
data-platforms/assessa-platform/), a platform allowing
neurologists to transfer clinical and neuroimaging data to
expert neuroradiologists, who will visually inspect the
scans to detect the presence of progressive multifocal
leukoencephalopathy (PML), an opportunistic infection of
the brain emerging as an adverse event of pharma-
cotherapy to treat multiple sclerosis (MS)33. ASSESSA
PML was excluded from the current review as it is not a
clinical tool that automatically extracts clinically relevant
information from neuroimaging data.

Data extraction
Two authors (C.S. and M.J.H.) extracted and checked the

data independently. An additional member of the team
double-checked the data in case of discordance between the
first two extractions. An independent researcher oversaw
the entire search procedure and randomly selected some of
the articles for a random double-check. In this process, no
critical issues were detected by the independent researcher.
A database was created including the following character-
istics: general information (authors, year of publication,
name of the tool, website) and technical details regarding
the tool (type of images analyzed, type of analysis per-
formed, number of subjects used to create and validate the
tool, image source, i.e. the dataset used to create and vali-
date the algorithm, group of patients that would benefit
from the tool, brain regions analyzed by the tool, validation
strategy, abnormality inference strategy). Additional infor-
mation regarding each tool was also recorded, including
how to access it, how to use it, how the results are reported,
time from images upload to report, whether the tool has
been licensed, strengths and limitations.

Results
The literature screening and final selection were per-

formed according to the PRISMA guidelines28,29. This
procedure is summarized in the flow diagram (Fig. 1).
Applying the PRISMA procedure, a total of eight tools
from 24 original articles have been included in the sys-
tematic review.

Excluded tools
According to the PRISMA guidelines, inclusion and

exclusion criteria must be decided before running the
systematic search. In the current review, an additional
exclusion criterion was added a posteriori: we decided to
exclude tools that are no longer available. This decision
was motivated by the following reasons. First, when a tool
was no longer available, there was no tool-related website
either; this made it impossible to collect some of the
information required for the present review. Second, a
tool that was no longer available was not relevant to our
aim to help clinicians and researchers select the most
appropriate option for their investigations. Based on this
additional exclusion criterion, two tools were excluded.
The first one, ASSESSA, was initially developed to

automatically provide a quantification of GM atrophy and
white matter (WM) lesion volume. The focus of this tool
was the quantification of hippocampal volume through
the learning embeddings for atlas propagation (LEAP)34,
an algorithm for the quantification of the regional volume
which was developed to enrich clinical trials of Alzhei-
mer’s disease in the pre-dementia phase. The clinical tool
ASSESSA is no longer available.
The second tool to be excluded, called appMRI, was

developed to allow for the automatic statistical analysis of
hippocampal volume (http://appmri.org/en/). The tool
performed an automated segmentation using FreeSurfer
software and then provided a numerical output of left and
right hippocampal volumes, together with normative
values generated using a reference database of age-
matched healthy controls. As for ASSESSA, this tool is
no longer available.

Included tools
Eight neuroimaging-based clinical tools were identified.

Their technical characteristics are summarized in Table 1,
while more general information, including how to use each
tool and their strengths and limitations, is reported in Table 2.
Two of the eight tools (ADABOOST35 and Qure25) are

designed to specifically perform a single type of analysis
(hippocampus segmentation and gross abnormality identi-
fication, respectively). On the contrary, the other six tools
(DIADEM36,37, Icobrain38–41, Jung Diagnostics27,42,43, Neu-
roQuant24,44–51, Quantib52,53, volBrain54,55) are designed to
extract multiple types of information from the data and/or
evaluate multiple disorders.
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As reported in Table 2, six of the eight tools obtained at
least one certification for medical use (DIADEM, Ico-
brain, Jung Diagnostics, NeuroQuant, Quantib, Qure).
The remaining two tools are not approved for medical
use. In particular, ADABOOST35 is present on the neu-
Grid platform56, a web portal which aims to provide
automated algorithms to support the diagnostic assess-
ment of individual patients with neurodegenerative dis-
ease from neuroimaging data. The second tool which is
not approved for medical use is volBrain26,54,55. The
website for this tool explicitly states that it was developed
for research purposes, and as such does not hold any
certification for medical use.
One tool (DIADEM36,37) has no associated references

describing the underlying methodology in detail. The
references that are mentioned on the website36,37 describe
algorithms to perform parcellation and segmentation with
better accuracy than previous approaches. However, it is
not clear how are these algorithms are incorporated

within the overall tool which performs several additional
functions e.g. quantification and labeling. For this reason,
we do not report the main characteristics of this tool in
the following results description, as they are not present
in any scientific reference.

Target disorders
All the identified clinical tools have been developed to

support the diagnosis of neurological disorders. In particular,
five tools are designed to provide quantitative support to the
diagnosis of dementia and in particular of Alzheimer’s dis-
ease (ADABOOST35, Jung Diagnostistics27,43, NeuroQuant45,
Quantib53, volBrain26,54), mild cognitive impairment (MCI)
(ADABOOST35, Jung Diagnostics27, NeuroQuant48), or
other forms of dementia (Jung Diagnostics43). Furthermore,
four tools are designed to support the diagnosis of MS
(Icobrain38,39,41, Jung Diagnostics42, Quantib52, volBrain55).
In addition, one tool (NeuroQuant) has a parallel version
called LesionQuant which has been developed to assist the
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diagnosis of MS. However, no reference to a scientific pub-
lication presenting this alternative version is available on the
website. Two tools supported the diagnosis of traumatic
brain injury (TBI) (Icobrain40 and NeuroQuant46,49–51).
Finally, one tool can be used to provide support to the
diagnosis of temporal lobe epilepsy (TLE) (NeuroQuant44,47),
and one tool (Qure25) is designed to identify different types of
intracranial hemorrhages and mass effects in the brain.

Type of analysis
All the identified clinical tools have been designed to

perform a region of interest (ROI) analysis measuring pre-
defined biomarkers for the target disorder. For instance,
we know that dementia (in particular Alzheimer’s disease)
is associated with atrophy of the hippocampus. Accord-
ingly, two tools are specifically designed to focus on
hippocampal volume as a biomarker of this disease
(ADABOOST35 and Jung Diagnostics27,43). One addi-
tional tool is designed for the investigation of the hippo-
campus but has not been specifically validated in patients
with dementia (volBrain54). Other tools support the
diagnosis of dementia through the quantification of both
hippocampus volume and general atrophy (Neuro-
Quant45,48, Quantib53, volBrain26). Finally, one tool per-
forms atrophy quantification (Icobrain41) but has only
been validated in patients with MS. As dementia might
also be associated with metabolic abnormalities, one tool
(PETQuant, a variation of NeuroQuant) performs auto-
matic analysis of metabolic and amyloid based positron
emission tomography (PET) images. However, no refer-
ences are available for this tool.
Similarly, the main pathognomonic feature for MS is the

presence of inflammatory WM lesions57. Accordingly, five
tools are designed to perform the segmentation of WM
lesions and to calculate their volume (Icobrain38,39,
JungDiagnostic42, NeuroQuant—no reference available,
Quantib52, volBrain55). In addition, as MS has recently
been described to be associated with GM atrophy, one
tool (Icobrain41) also provides atrophy measurements in
patients with MS.
Patients with TBI present with evident traumatic lesions

in the brain. A tool (Icobrain40) is therefore designed for
intracranial lesion segmentation, cistern segmentation
and the evaluation of midline shift. However, mild TBI is
not associated with gross brain lesions but with subtle
progressive atrophy58. Accordingly, a different tool
(NeuroQuant46,49–51) has been validated to detect atro-
phy, structures asymmetry and/or progressive atrophy in
patients with TBI.
Patients with TLE are prone to suffer from Mesial

Temporal Sclerosis (MTS), involving the loss of neurons
and scarring of the deepest portion of the temporal lobe,
in particular, the hippocampus59. One tool (Neuro-
Quant44,47) is therefore designed to detect MTS inTa
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patients with TLE through the measurement of the hip-
pocampus volume. Finally, one tool (Qure25) identifies
gross abnormalities such as tumors and strokes.

Brain imaging type
The vast majority of the identified tools analyze magnetic

resonance images (MRI) data, in particular, T1-weighted
images (ADABOOST35, Icobrain38,39,41, Jung Diag-
nostics27,42,43, NeuroQuant44,45,47,48, Quantib52,53, Vol-
Brain26,54,55). However, there are a few exceptions. Four tools
also require the fluid attenuated inversion recovery (FLAIR)
acquisition sequence for the segmentation of WM lesions
(Icobrain38,39,41, LesionQuant, a parallel version of Neuro-
Quant with no reference available, Quantib52, volBrain55). One
tool (Qure25) analyzes non-contrast computerized tomo-
graphy (CT) scans, while one tool (Icobrain40) requires CT
scan in the case of suspected TBI. Finally, one tool (PET-
Quant) analyzes images acquired using positron emission
tomography.

Validation datasets and strategies
All the identified tools can be used to perform a cross-

sectional analysis, and thus can be applied to support the
diagnosis. Two tools (Icobrain38,41 and Neuroquant46)
have also been validated on longitudinal data to predict
the natural course of the disease. No tools have been
validated to predict the longitudinal response to
treatment.
Most tools have been validated using MRI data collected

from a single dataset, either freely or private. In a small
number of cases, validation is based on the use of multiple
datasets. For instance, Smeets et al.41 (Icobrain for MS)
used three datasets, two of which are private and the third
one is publicly available60; Ochs et al.49, Ross et al.50,51

used data from healthy participants and patients with AD
that were part of the ADNI dataset (http://adni.loni.usc.
edu/) in combination with scans from patients with TBI
which were part of a private dataset; volBrain26,54,55 was
validated using healthy participants data from IXI (http://
brain-development.org/) and from additional publicly
available datasets (http://www.nitrc.org/projects/mni-
hisub25; http://cobralab.ca/atlases), AD patients data
from OASIS (http://www.oasis-brains.org/), infants data
from BSTP (http://brain-development.org), MS data from
the MSSEG 2016 (https://www.hal.inserm.fr/inserm-
01397806). Qure25 was validated combining scans from
20 different private datasets in India. Finally, Biometrica
MS42 (the MS version of Jung Diagnostics) combined real
and simulated data. In no case, the strategy adopted to
deal with the problem of different scanners and/or dif-
ferent acquisition parameters has been described. The
strategy used to validate the tools always consisted of
comparing the tool performance with the performance of
the gold standard. The gold standard is mainly of threeTa
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types: a ROI manual delineation by an expert; the per-
formance of previously available software; the perfor-
mance of an expert radiologist in abnormality
identification by visual inspection. The tools that have
been validated using the first strategy (i.e. comparison
with a manual delineation of ROI) are: ADABOOST35,
Icobrain for TBI40, NeuroQuant for sub-cortical seg-
mentation45,48, and Quantib for both sub-cortical struc-
ture53 and WM lesions52. The tools that have been
validated using the second strategy (i.e. comparison with
previous software) are: Icobrain for WM lesion segmen-
tation38,39,41, NeuroQuant for atrophy estimation49, vol-
Brain for volumetry26, WM lesion segmentation55, and
hippocampus estimation54. The tools that have been
validated using the third strategy (i.e. comparison with
visual inspection by an expert radiologist) are: Icobrain for
WM lesion segmentation38, Jung Diagnostics for both
hippocampus27,43 and WM lesion identification42; Neu-
roQuant for atrophy identification44,47,50,51. The only
apparent exception is Qure25 where the performance of
the algorithm has been compared with the results of a
medical report, which in turn relies on expert visual
inspection as well as other clinical data.

Abnormality inference
All identified tools included a control group of disease-

free individuals to compare the pathological brain. Five
out of the eight tools (ADABOOST35; Icobrain38–40;
Quantib52,53, Qure25, Jung Diagnostics27,43) rely on
machine-learning algorithms to detect brain abnormal-
ities as statistical deviation from the average healthy brain.
Two tools rely on classical statistics to identify brains
whose structures are statistically different in volume from
the analogous structure in the average healthy brain:
volBrain26,54,55 and NeuroQuant44–51 detect abnormalities
if a brain region volume falls below the 5th percentile or
above the 95th percentile of the same region in the
average brain.

Strengths and limitations
The identified tools are characterized by important

strengths (see Table 2 for a tool specific description of the
strengths and limitations). First, the majority of the tools
rely on advanced machine-learning algorithms that offer
superior ability to detect complex and distributed patterns
in the data61,62 (ADABOOST35; Icobrain38–40; Quan-
tib52,53; Qure25; Jung Diagnostics27,43). Second, most of
the tools have been licensed for medical use, and this
undoubtedly presents an important step toward their
translational application in real-world clinical settings.
Third, the time from image upload to the report receipt is
less than an hour. For instance, using volBrain, results are
available in 12min; using NeuroQuant in 8 min; using
Icometrix in 1 h.

However, these tools are also characterized by impor-
tant limitations. First, they are validated for neurological
disorders only; no tool is available for supporting the
diagnosis of psychiatric disorders to date. Second, each
tool performs a ROI analysis to investigate a single dis-
order of interest; no tool is available for investigating
multiple disorders. Third, all these tools but one (Qure25,
which relies on 291,732 images) have been validated on a
small number of brain images. Although some of them
used fairly large datasets to develop some normative
model that could be used to detect abnormalities (e.g. n=
20035 for ADABOOST; n= 600 for volBrain26), the
dataset used for validating such model tended to be much
smaller (n= 7 MCI, n= 7 AD for ADABOOST35; n= 10
AD for volBrain26). Finally, an important limitation
common to all the available tools is that none of them
account for inter-scanner variability resulting from dif-
ferences in scanner provider, magnetic field and acquisi-
tion parameters. This is of crucial importance to develop
flexible tools that are generalizable to “unseen” scanners
i.e. scanners that were not used to train the tool.

Discussion
The current review focused on the description of

neuroimaging-based analytical tools that are available to
support the clinical assessment of brain-based disorders.
The primary aim was to describe and compare how these
tools have been developed and validated. The second aim
was to use the findings to develop a checklist of the
pivotal characteristics that should be included in an ideal
imaging-based clinical tool. Through a systematic search
of the literature, eight clinical tools were identified. The
most important aspects of these tools are discussed below.
First, the available tools are targeted towards neurolo-

gical disorders only. In particular, most of them were
developed to assist in the diagnosis of Alzheimer’s disease
and/or MS. In contrast, we could not find any tools to
support the clinical assessment of psychiatric disorders.
This could be explained by the current paucity of reliable
imaging-based biomarkers in psychiatric disorders, where
neuroanatomical alternations tend to be subtle and
widespread relative to neurological disorders63. Second,
the available tools rely on the measurement/quantification
of putative biomarkers that are pathognomonic for the
neurological disorder they are validated for (i.e. hippo-
campus volume or GM atrophy for dementia; WM
hyperintensities for MS). On the one hand, this aspect is
of extreme importance, as it means the tools extract the
relevant information in an automated manner and pro-
vide outputs that are not affected by subjective bias. On
the other hand, one could argue that the actual clinical
utility of these tools is limited, because all of them have
been developed to detect neurological disorders where the
diagnostic accuracy is already very good. Third, all tools
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have been validated by comparing their performance with
a gold standard, which can be of three types: (a) the
performance of human experts in the manual delineation
of ROI; (b) the performance of previously available soft-
ware; (c) the identification of brain pathology by visual
inspection. Fourth, most of the tools were trained in a
single dataset, which can result in poor generalizability to
unseen scanners. Related to this point, all of the tools
were developed without making an explicit attempt to
tackle the bias resulting from inter-scanner variability.
Fifth, the tools, with few exceptions, have been created
and validated using a small number of individuals, a
limitation with potential implications for their reliability
and generalizability. Sixth, the tools mainly rely on two
strategies to detect brain abnormalities: (a) application of
multivariate machine-learning algorithms to compare the
patient’s brain structure with the average healthy brain
(most frequent); (b) univariate comparison of the patient’s
data with the average healthy brain, for instance using
percentiles (5° or 95°) or confidence intervals as cut-off for
detecting abnormalities.

Adapting existing tools to psychiatric disorders: challenges
Could the existing tools be adapted to psychiatric dis-

orders? There are many reasons why such adaptation
might be challenging.
First, there are no established imaging-based bio-

markers for psychiatric diagnosis4,5. For example, there is
no single brain alteration that identifies psychosis with
high sensitivity and specificity. Furthermore, the results
obtained when comparing groups of psychiatric indivi-
duals against a group of healthy controls are usually
unspecific. For instance, decreased GM volume of the
frontal lobe has been found in schizophrenia64, depres-
sion65, PTSD66; this might explain the presence of cross-
cutting symptoms across psychiatric disorders. Therefore,
the existing tools, which analyze specific biomarkers for
neurological disorders, might be difficult to adapt to
psychiatric disorders.
Second, the absence of biomarkers makes the diagnosis

of psychiatric disorders quite unreliable, and conse-
quently, it can be problematic to use diagnostic labels as
the gold standard to validate a tool. Thus, strategies used
to validate the existing tools would be difficult to imple-
ment in the case of psychiatric disorders since: (i) there is
no relevant ROIs that can be manually traced; (ii) there
are no software that reliably identifies psychiatric indivi-
duals at the level of the single subjects; (iii) psychiatric
pathology cannot be identified by brain visual inspection.
To create a tool that can be reliably applied to psychiatric
research, an alternative validation strategy and gold
standard would need to be identified.
Third, we need to consider the issue of disease hetero-

geneity. Although both psychiatric and neurological

disorders tend to be heterogeneous in terms of clinical
presentation, naturalistic course of the illness and treat-
ment response67–69, neurological disorders are character-
ized by more specific and reliable neural correlates than
psychiatric disorders. For example, atrophy of the hippo-
campus in Alzheimer’s disorder is evident above and
beyond the neuroanatomical heterogeneity of the disease.
The same cannot be said for the neuroanatomical altera-
tions that are typically observed in psychiatric disorders.
Here, neuroanatomical alterations tend to be subtle and
widespread, making the discrimination between normal
heterogeneity and pathological heterogeneity more chal-
lenging63,70,71. This means that the adaptation of existing
tools to psychiatric disorders would require careful con-
sideration of the issue of heterogeneity72.
Finally, we need to pay attention to how statistical

inferences about the presence/absence of neuroanatomical
abnormalities are made. As the neural correlates of psy-
chiatric disorders are subtle, diffuse and complex,
abnormality inferences that rely on classical statistics (e.g.
percentiles) are likely to be highly prone to false negative
findings. When adapting the existing tools to psychiatric
disorders, therefore, it would be appropriate to adopt
statistical models that can detect high orders of complexity
and abstraction in the data. In this scenario, the applica-
tion of advanced machine-learning methods, such as
convolutional neural networks, is a promising strategy73,74.
In short, if the scientific and clinical psychiatric com-

munity is still devoid of a neuroimaging-based clinical
tool to enrich the diagnostic pathway, the main reason
appears to be the complexity of the problem at hand.
Compared to neurological disease, psychiatric disorders
are characterized by higher levels of etiological, pheno-
typic and neurobiological overlap, and heterogeneity75;
this makes the task of developing reliable imaging-based
biomarkers a significantly greater challenge.

What would an ideal clinical tool for brain disorders look
like?
In this last section, we propose several pivotal char-

acteristics that should be included in an ideal imaging-
based clinical tool (graphically represented in Fig. 2) to
assist the clinical assessment of psychiatric disorders.

● From a region-of-interest to whole-brain approach:
Existing tools for neurological disorders use a
region-of-interest approach to detect localized
alternations. Considering the subtle and widespread
neural correlates of the psychiatric disorders22,71,76,
the ideal clinical tool should not restrict its analysis
to a single or few regions; instead, it should analyze
the whole-brain to exploit all the available
neuroanatomical information.

● Accounting for disease heterogeneity: As etiological,
neurobiological and phenotypic heterogeneity is a
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key aspect of brain disorders67,70,77, the ideal tool
should be created and validated on a sample which is
large enough to capture such variability. While the
required number of subjects depends on the
heterogeneity of the disease under investigation,
this is likely to be in the order of hundreds or even
thousands for most brain disorders. In addition the
sample size should be large enough to allow the
investigation of gender-specific and age-specific
effects within a clinical population of interest. As
the number of subjects used to create and validate
the tool increases, so does the sample heterogeneity
due to the loosening of inclusion criteria. On the one
hand, higher levels of heterogeneity make the
creation of an accurate tool more challenging, as
the model needs to be able to distinguish between
normal heterogeneity and pathological
heterogeneity78,79. On the other hand, larger
samples are more likely to have a normal
distribution and be representative of the clinical
population of interest, and as such carry greater
translational potential in real-world clinical practice.

● Accounting for inter-scanner variability: As the ideal
clinical tool is supposed to handle MRI scans of
individuals from different clinicians/hospitals/
countries, it should be able to estimate and
account for differences in scanner provider,

magnetic strength field and acquisition parameters.
This is especially important for psychiatric disorders,
where the effects of interest are subtle and, therefore,
inter-scanner variability can be much greater than
disease-related variability71,80,81.

● The importance of validation: Since the validation
strategies used for neurological disorders—where we
have a few established diagnostic biomarkers—
cannot be applied to psychiatric disorders, it is of
pivotal importance to identify an alternative strategy
to validate the tool. A possible solution might be to
switch the focus from diagnostic to prognostic
assessment and establish a prospective link
between neuroanatomical alterations and clinical
outcomes12. As an example, studies have shown that
neuroanatomical alternations in patients at high
clinical risk of developing psychosis are predictive of
future transition to the illness82; as a further
example, cortical folding defects in people with a
first episode of psychosis have been found to be
predictive of future response to pharmacological
treatment83. The use of clinical outcome measures
could, therefore, provide an alternative validation
strategy for tools targeting psychiatric disorders.

● Using advanced multivariate statistics to capture
abstract and complex patterns in the data: As the
neural correlates of psychiatric disorders are subtle
and distributed, the ideal clinical tool should use
multivariate rather than univariate algorithms. In
addition, in light of current conceptualizations of
psychiatric and neurological illnesses as network-
level disorders of the brain84,85, the ideal clinical tool
should be able to capture multivariate interactions
with high levels of abstraction and complexity. There
are several statistical and machine-learning methods
which could be used to achieve this. For example,
deep learning is a family of algorithms that can
detect high orders of complexity and abstraction in
the data and make inferences at the level of the
individual with greater precision than ever before62.
In light of these qualities, deep learning algorithms
are attracting significant interest in neuroscience
including psychiatric and neurological research86.

● Informing diagnostic and prognostic assessment: The
ideal tool would assist clinicians through the
complex tasks of clinical assessment and
prognostic decision-making. Thus, the tool should
indicate the likelihood of a certain diagnosis or a
certain clinical outcome. This could be achieved by
matching the neuroanatomical abnormalities
identified in a patient with the neuroanatomical
alterations that are known to be associated with a
certain psychiatric disorder (in the case of diagnostic
inference) or a certain clinical outcome (in the case

Fig. 2 Proposal for an ideal imaging-based clinical tool. This figure
summarizes the characteristics of an ideal clinical tool to assist the
clinical assessment of psychiatric disorders.
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of prognostic inference). A high/low match score
would indicate that an individual presents with
neuroanatomical changes that are typical/atypical of
a certain psychiatric or neurological disorder a
certain clinical outcome.

Conclusions
A pivotal aim of neuroimaging research is the devel-

opment of clinical tools that can support clinical decision-
making by producing accurate, objective, and real-time
outputs from neuroimaging data17. The results of this
review indicate that there is a very limited number of
clinical tools available to support the diagnosis of neu-
rological disorders, while there are none for psychiatric
disorders. In addition, only two of the available tools have
been validated using longitudinal datasets, and are
therefore suitable for prognostic assessment. The majority
of the available tools (4 out of 7) make use of multivariate
machine-learning methods, which allow inferences at the
level of the individual and as such open up new possibi-
lities in personalized medicine87. However, the results of
such methods should be interpreted with caution22 as
they can be over-optimistic due to a combination of small
sample sizes and less-than-rigorous methodologies78. A
further complication is that several genetic and environ-
mental factors that can affect the structure of the human
brain without necessarily leading to pathology88. This
means one must avoid the pitfall of considering structural
brain abnormalities pathological per se should be avoided;
instead, researchers and clinicians must interpret the
output of a machine-learning model in light of the
patient’s clinical history and symptomatology89. A related
consideration is that the ideal tool should not be limited
to the examination of brain abnormalities, but might also
benefit from the integration of potentially valuable
information such as duration of illness and symptomatic
presentation90.
In conclusion, we envisage a future in which imaging-

based tests will complement traditional clinical assess-
ments of psychiatric and neurological disorders, leading to
biologically informed diagnosis, monitoring and treat-
ment of individual patients. Before this vision can be
realized, however, several outstanding challenges need to
be addressed; these include, for example, the issues of
neuroanatomical heterogeneity, inter-scanner variability,
and validation. We hope the observations and suggestions
included in the present article will help researchers realize
this vision in the future.
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