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Ecological and evolutionary processes simultaneously regulate microbial diversity, but the evolutionary processes and their driving
forces remain largely unexplored. Here we investigated the ecological and evolutionary characteristics of microbiota in hot springs
spanning a broad temperature range (54.8–80 °C) by sequencing the 16S rRNA genes. Our results demonstrated that niche
specialists and niche generalists are embedded in a complex interaction of ecological and evolutionary dynamics. On the thermal
tolerance niche axis, thermal (T) sensitive (at a specific temperature) versus T-resistant (at least in five temperatures) species were
characterized by different niche breadth, community abundance and dispersal potential, consequently differing in potential
evolutionary trajectory. The niche-specialized T-sensitive species experienced strong temperature barriers, leading to completely
species shift and high fitness but low abundant communities at each temperature (“home niche”), and such trade-offs thus
reinforced peak performance, as evidenced by high speciation across temperatures and increasing diversification potential with
temperature. In contrast, T-resistant species are advantageous of niche expansion but with poor local performance, as shown by
wide niche breadth with high extinction, indicating these niche generalists are “jack-of-all-trades, master-of-none”. Despite of such
differences, the T-sensitive and T-resistant species are evolutionarily interacted. Specifically, the continuous transition from
T-sensitive to T-resistant species insured the exclusion probability of T-resistant species at a relatively constant level across
temperatures. The co-evolution and co-adaptation of T-sensitive and T-resistant species were in line with the red queen theory.
Collectively, our findings demonstrate that high speciation of niche specialists could alleviate the environmental-filtering-induced
negative effect on diversity.
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INTRODUCTION
Temperature is a key driver of microbial diversity in geothermal
ecosystems [1–3]. Although it is well established that microbial
diversity correlated with temperature [4–6], efforts to understand
the mechanisms by which temperature regulates diversity have
yielded two perspectives. In the first, diversity is the outcome of
ecological processes largely through the effects of temperature on
compositional turnover of extant species, due to interspecific
differences [7] in thermal tolerance (the temperature range within
which a species can grow), but may also be a consequence of
species interactions [8]. In the second, diversity originates from
evolutionary processes, primarily as a consequence of tempera-
ture effects on speciation and/or extinction rates [9, 10]. These
ecological and evolutionary processes commonly co-occur and
contribute simultaneously [11, 12] in the same context, but the
evolutionary processes are largely unexplored relative to the
ecological processes [13, 14].
Speciation is the ultimate driver of biodiversity, and under-

standing the factors influencing rates of speciation and its
feedback on species richness is a central challenge in ecology.
Specific prediction about how ambient temperature should relate
to species richness was developed in the context of metabolic

theory of ecology (MTE) for macrobes [15, 16] and later was
extended to microbes [17, 18]. These previous studies mainly
focus on temperature gradients not exceeding 45 °C. Recent
analyses documented that metabolic theory of ecology holds true
for mesophiles (temperature optima ≤ 45 °C), but not for
thermophiles (>45 °C) when considering temperature-
dependence of growth rate and suggested activation energy of
E= 0.65 eV for mesophiles and E ≈ 0 eV for thermophiles [19]. One
reason that thermophilic metabolism may depart from the
canonical MTE hypothesis is that they assumed constant biomass
with temperature, but microbial biomass in hot springs also
decreases exponentially with temperature [20]. For thermophiles,
environmental temperature has been a major determinant of
evolutionary rates [21, 22] and some studies have reported that
thermophillic generation time was inversely related to tempera-
ture [23], which predicts higher speciation rates at higher
temperatures. Simultaneously, higher temperatures would
exclude microbial species with poor adaptation via harsh
environmental filtering [5, 6], eventually showing a higher
extinction rate. However, direct evidence for a temperature
dependence of speciation and extinction rates from the phyloge-
netic perspective has not yet been shown.
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Geothermal springs act as isolated islands of microbial
evolution, and microbiota therein experience greater dispersal
limitation [24] and faster evolution rates [25]. But even for these
thermophiles, different species could have opposite responses to
local conditions such as temperature. Niche breadth might act as
an important evolutionary driver, influencing the rate of species
diversification and adaptation [26, 27]. Species adapted to a wide
or narrow temperature have different survivability [28], due to
their differences in biochemical and physiological properties and
ecological and evolutionary adaptability [29–32]. However,
whether and how differences in niche breadth (i.e. thermal
tolerance) have an impact on the ecological and evolutionary
processes and consequently species diversity is largely unknown.
In this study, the ecological and evolutionary processes of

microbiota over a wide temperature range of 54.8–80 °C were
characterized based on high-throughput sequencing of 16S rRNA
genes. BiSSE (binary-state speciation and extinction) model was
employed to characterize evolutionary features in microbial
adaptation to high temperature. We asked the following ques-
tions: (i) How niche breadth (especially on the temperature niche
axis) influence the ecological and evolutionary performance? (ii)
How niche specialists and niche generalists interacted evolutio-
narily across temperatures? (iii) How ecological and evolutionary
trade-offs on community-level influence the overall diversity
pattern in the face of increasing environmental extremes (i.e.,
temperature)?

METHODS AND MATERIALS
Field measurements and sample collection
Field measurements and sample collections were carried out in August
2019 in Tengchong, Yunnan Province, China (N 24° 56′~25° 27′, E 98° 26′
~98° 27′) (Fig. S1). The study site was situated at the previously described
Rehai geothermal fields [2, 6], full of intense hydrothermal activity with
numerous springs and mud pools. Direchi (DRC) was chosen to collect
samples along the flowing path with temperature decreasing from 80 °C at
the vent down to 54.8 °C in a pool. The overlaying water on the sediment is
just 5–15 cm deep. The in-situ temperature and pH were measured by
immersing a portable temperature sensor (Hl9124, Hanna Instruments,
Italy) in the surface water just above the sediments. This flow path could
be divided into different small-scale eco-regions by the colorful floating
microbial mat and we collected surface sediment samples for microbial
and chemical analyses from eight small-scale eco-regions labeled DRC1
(80 °C) to DRC8 (54.8 °C), each has seven randomly distributed replicates
(Fig. S1). These samples were collected with sterile spatulas and spoons,
and homogenized in a pre-sterilized aluminum pan before being placed
into tubes. Additionally, the concentrations of nitrite (NO2

−), sulfate
(SO4

2−), hydrogen sulfide (H2S), ferrous iron (Fe2+), total iron (Fetotal), and
dissolved oxygen (DO) at each sampling region were measured in-situ
using Hach test kits (Hach Chemical Co., IA, USA) (Table S1). Total Nitrogen
(TN), nitrate (NO3

−) and organic matter (OM) were measured on air-dried
sediments, according to a previously published protocol [33] (Table S1). All
samples were immediately frozen on dry ice and stored at −80 °C in the
laboratory until further analysis.

DNA extraction, amplification of FL and V4 region of 16S rRNA
gene and sequencing
Nucleic acids were extracted from 0.25 g of sediment using the MoBio
Power Soil DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA)
according to the manufacture’s protocol. Each sample was done in
triplicates and extracted DNAs for each sample were pooled into one
collection tube at final step. The full-length (FL) and V4 region 16S rRNA
genes sequences were amplified using the primer set 27F (5′-AGRGTTYGA
TYMTGGCTCAG-3′)/1492R (5′-RGYTACCTTGTTACGACTT-3′) and 515F (5′-GT
GYCAGCMGCCGCGGTAA-3′)/806R (5′-GGACTACHVGGGTWTCTAAT-3′) with
unique barcode sequences at both 5′ ends, respectively. The FL PCR
system was performed in 30 μl mixture containing 10.5 μl NFW, 15 μl KOD
ONE MM, 1.5 μl forward and reverse primers (10 μM) and 1.5 μl of template
DNA (5~30 ng). Each 50 μl PCR amplification mixture of V4 region
contained 5 μl 10× PCR buffer, 1.5 μl dNTP mixture (10mM for each),
1.5 μl forward and reverse primers (10 μM), 0.5 μl Taq DNA Enzyme

(TaKaRa), 2 μl DNA, 1 μl BSA, and 37 μl ddH2O. The PCR program was as
follows: 95 °C for 5 min (3min for V4 region), 30 cycles of 95 °C for 30S (15S
for V4), 55 °C for 30S (15S for V4) and 72 °C for 90S (45S for V4), and final
extension at 72 °C for 7 min (5 min for V4). The PCR products were verified
by 1.2% (1.8% for V4) agarose gels and purified with the Monarch DNA Gel
Extraction Kit. The concentrations were quantified with Qubit fluorimeter
(Invitrogen, Carlsbad, CA), and then equal molar amounts of DNA were
pooled for PacBio and HiSeq library construction and then sent for
sequencing on the PacBio RS II platform [34] at Biomarker Biotechnology
Co., Ltd. (Beijing, China) and HiSeq platform at Magigene Biotechnology
Co., Ltd (Guangzhou, China), respectively.

Absolute quantification of bacterial biomass by ddPCR
The copy numbers of 16S rRNA for bacteria were quantified by droplet
digital PCR (ddPCR) with a probe approach [35]. Triplicates of 20 μl ddPCR
amplification mixtures, composed of 10 μl ddPCR supermix for probes,
1.8 μl forward primer 515 F (10 μM) (5′-GTGYCAGCMGCCGCGGTAA-3′),
1.8 μl reverse primer 926 R (10 μM) (5′-CCGYCAATTYMTTTRAGTTT-3′), 0.5 μl
bacterial-probe (10 μM) (5′FAM-ACTACNVGGGTWTCTAATCCBKTT-BHQ3′),
2 μl of template DNA (5~30 ng), and 3.9 μl ddH2O, were converted to
12,000–20,000 droplets using the QX200 droplet generator (Bio-Rad). The
generated droplets for each sample were then transferred to a 96-well
plate and amplified in a MyCycler thermocycler (Bio-Rad) using the
following conditions: 10 min at 95 °C; 40 cycles of denaturing at 94 °C for
30S, annealing at 47 °C for 30S, extension at 72 °C for 1 min; and a final
extension at 98 °C for 10min. Subsequently, the plate was loaded onto the
QX200 droplet digital reader (Bio-Rad), which automatically reads the
droplets from each well of the plate. Data were analyzed using QuantaSoft
software (Bio-Rad) and corrected for the various amounts of template
DNA used.

Sequence processing and statistical analysis
The short reads (V4 region) generated by high-throughput sequencing
were analyzed via an in-house Galaxy Pipeline (http://
mem.rcees.ac.cn:8080) [36] (Fig. 1A). Briefly, the raw sequences were
demultiplexed by barcode identification with no errors allowed. Then
primer sequences were trimmed and forward and reverse reads were
joined using FLASH [37], followed by quality control. Quality filtering
criteria included average quality score >20, minimum length of 140 bp,
and no ambiguous bases. Good quality reads were subjected to generate
sub-operational-taxonomic-unit (sOTU, equal to amplicon sequence
variant (ASV)) using Deblur [38] (Fig. 1A). The raw PacBio FL sequences
were initially subjected to correct sequence errors using the JGI SMRT
Portal “reads of insert” protocol with accuracy >99%, corresponding to
Q20. Then, quality filtering, chimera detection and clustering were also
performed via the Galaxy Pipeline mentioned above (Fig. 1A). Reads
≤1340 bp or ≥1640 bp were removed based on read length analysis [39].
Currently, the sequences processing methods for FL reads of 16S rRNA

gene are not as mature as the analysis of short reads. Different methods
are used for clustering long-reads, some based on ASVs [40, 41], others
based on OTUs either at 99% [42] or 97% similarity level [43]. Undoubtedly,
exact ASVs are providing single-nucleotide resolution and are independent
of a 16S rRNA gene reference database [44]. However, the use and
development of ASV methods are mostly based on short reads, careful
consideration could be taken when applied to long-reads. The big concern
is the considerable error rate of long-reads sequencing based on PacBio
CCS [45] and cluster-free method of ASVs will undoubtedly amplify the
impact of these sequencing errors. In our study, we tried to control the
artificial inflation of diversity estimates, and thus it is necessary to bin
similar sequences together (i.e. UPARSE) to mitigate the impact of
sequencing errors [39, 42, 43]. By using UPARSE [46] (Fig. 1A), we tested
two clustering thresholds, at 99% and 97% similarity level. The results
suggested that the clustering thresholds at 99% and 97% resulted in
similar trends for microbial taxonomic diversity and phylogenetic diversity
(Pearson correlation, R2= 0.36~0.79, p < 0.001), but 99% similarity level
had far exceeding number of rare species. We finally chose at 97%
similarity level to cluster and present our data.
Taxonomic assignment of representative sequences for both FL and

V4 sequences were performed with the RDP (Ribosomal Database Project)
classifier [47] based on SILVA database 138.1 version [48]. Those
V4 sequences assigned to Archaea were discarded, since the FL sequences
only captured Bacteria. The discarded sequences took up less than 5% of
the total V4 sequences.
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Representative sequences for both FL and V4 sequences were aligned
by PyNAST [49] and phylogenetic trees were constructed with FastTree [50]
(Fig. 1A). To eliminate the influence of differences in sequencing depth on
downstream analyses, 12573 of FL sequences and 42910 of V4 sequences
were randomly resampled. Rarefaction curves were constructed for the
normalized data (Fig. S2). Taxonomic alpha diversity (Simpson index and
observed richness) were calculated separately for each temperature group.
In order to eliminate the influence of species richness on the microbial
phylogenetic diversity, mean-nearest-taxon-distance (MNTD) and nearest-
taxon-index (NTI) [51, 52] which independent of species richness were
determined. They were calculated to reflect the phylogenetic distinctive-
ness of the tips of the tree using ‘mntd’ and ‘ses.mntd’ in ‘picante’ R
package. MNTD was calculated as the mean of the branch lengths
connecting each OTU to its closest relative within a sample and NTI as −1
times of the standardized effect size of MNTD accounting for the effects of
species richness via 999 random resampling from a source pool based on a
null model [53]. Smaller MNTD value represent closer phylogenetic
relatedness among tips and higher NTI value indicated more phylogenetic
clustering among tips [51, 54].
A phylogenetic tree for 1555 species with clear annotation at species-

level was constructed and visualized using iTOL Pipeline (https://
itol.embl.de/) [55]. Each species was represented by the most abundant
OTU. Different colors for branches and the innermost ring indicate various
Phyla, and the outermost ring represents the thermal tolerance breadth
trait. The bargraphs showed the relative abundance of each OTU across
temperature groups.
Blomberg’s K was calculated to represent the phylogenetic signal based

on the environmental preferences of taxa as their potential traits using the
“multiPhylosignal” function in the “picante” R package [56].
Averaged community-level niche breadth represented by Levins’ niche

breadth index [57] was determined using the “spaa” package in R [58].

Larger niche breadth could indicate more available resources to microbial
communities [59, 60].
To evaluate the dispersal capacity of community, we used a neutral

community model (NCM) to predict the relationship between OTU
detection frequency and their relative abundance across the wider
metacommunity [61, 62]. NCM is an adaptation of the neutral theory
adjusted to large microbial populations and usually used to quantify the
importance of stochastic processes on community assembly. In this model,
Nm is an estimate of dispersal between communities. The parameter R2

represents the overall fit to the neutral model [61, 62]. NCM was performed
on Tutools platform (https://www.cloudtutu.com), a free online data
analysis website.
Spearman correlation was employed to explore the correlation between

environmental factors and α-diversity indices, and between environmental
factors and the relative abundance of different phyla. The significant
correlations were visualized with “ggcor” package in R. Analysis of
Similarities (ANOSIM) [63], Multi Response Permutation Procedure (MRPP)
[63] and Permutational Multivariate Analysis of Variance (PERMANOVA)
[64, 65] were performed to determine any significant differences across
temperature groups. PCoA based on unweighted UniFrac matrix was used
to display microbial community structure changes across temperature
groups. Mantel tests and CCA were used to estimate the effect of
environmental factors on variation of microbial community structures.
Random forest models used to evaluate the relative importance of
environmental factors influencing microbial community structure (the first
axis of PCoA) were performed with “randomForest” and “rfPermute” in R
[66]. We proposed environmental extremes to consider both temperature
and other environmental factors together by reducing the dimensionality
of environmental factors by Principal Component Analysis (PCA). Except for
the spearman correlation and random-forest analysis, all analyses were
performed via Galaxy Pipeline (http://mem.rcees.ac.cn:8080) [36].

Fig. 1 The experimental design and analytical workflow. A Data processing for the full-length sequencing and V4 region sequencing.
B Primer set used for targeting full-length 16S rRNA genes and its hypervariable V4 regions. C The overlap OTUs between V4 sequences and
full-length sequences and mapping V4 sequences’ sOTUs to full-length sequences’ OTUs.
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The classification of “T-sensitive” and “T-resistant” species
We used “T-sensitive” and “T-resistant” to represent species those are
adapted to narrow and wide thermal tolerance breadth in the geothermal
ecosystem, respectively. The grouping criteria of defining “T-sensitive” and
“T-resistant” species is obtained by comparing the observed distribution to
the expected distribution derived from 100,000 permutations. We found
that the enrichments of species at a specific temperature and those under
five to eight temperatures (when Nobserved species > Nexpected species), which
means species occurring at a specific temperature and those occupying at
least five temperatures were not randomly observed, but driven by
deterministic factors. Based on this rationale, species found in a specific
temperature were classified as T-sensitive species and those found in five
to eight temperatures as T-resistant species. Then the T-resistant and
T-sensitive as two evolutionary states were subjected to Binary-State
Speciation and Extinction (BiSSE) model to calculate their speciation,
extinction and transition rate [67].

BISSE models and the unified phylogenetic tree used for BISSE
models
The fossil record, which is the richest source of information on the
evolutionary events behind extant communities, is mostly absent for
Bacteria and Archaea [68] and researchers must use extant sequence data
for evolutionary reconstructions [69]. BiSSE models make it feasible to
study evolutionary features of extant microbial species. BiSSE model is a
phylogenetic tree-based model and is able to calculate the two-state
(binary) evolutionary character (i.e., speciation, extinction, and state-
transition rates) of extant species [67]. The analysis was performed with the
“diversitree” R package [70].
The BiSSE model would necessitate a more comprehensive phylogenetic

tree of life. First, we conducted an analysis based on the All-Species Living
Tree (LTP) from SILVA database. The All-Species Living Tree was
downloaded from the SILVA database and the identified T-resistant and
T-sensitive species were mapped to this tree using BLASTN (identity ≥ 98%,
length ≥ 1000, E-value ≤ 1e− 5). Totally, 3241 representative sequences
(26070 from the original) were preserved for T-sensitive species and 217
(524 from the original) for T-resistant species. We found that a lot of
different OTUs matched the same species in the SILVA database. Therefore,
a subtree containing 1063 mapped species was extracted from the LTP
tree and linearized, allowing reconstruction of an ultrametric tree using the
“ape” package in R. In addition, the special geochemical conditions cause
hot springs to breed a large amount of “microbial dark matter” [71, 72]. The
microbiota dwelling geothermal springs experience faster evolution rates
[25, 73], which could result in new “microbial dark matter”. These
“microbial dark matter” can’t be included in a relatively complete database
(such as the SILVA database). Therefore, when the representative
sequences in geothermal springs are compared with the SILVA database,
there are only subset of sequences could find their close relatives in the
All-Species Living Tree (LTP). Thus, it is not comprehensive to calculate the
BISSE model with reference to the subtree of All-Species Living Tree (LTP)
to determine the evolutionary characteristics of microorganisms in hot
springs. Therefore, we used our own sequences to construct a unified
phylogenetic tree by FastTree. The BiSSE model analysis was performed
based on the LTP subtree and the self-built phylogenetic tree.

BISSE analysis for species with various thermal tolerances
For each input linearized phylogenetic tree, diversitree was run twice: first
to produce a heuristic starting point for the simulation by using
starting.point.bisse function, and then to obtain the maximum likelihood
estimate for the rate parameters by utilizing find.mle function. During the
first round of estimation, T-resistant and T-sensitive species were
constrained to have identical speciation rates and extinction rates. The
second round was run with all rate parameters unconstrained, allowing
T-resistant and T-sensitive species having different speciation and
extinction rates. To assess the robustness of the final estimation, the
Analysis of Variance (ANOVA) test was used to verify whether the
constrained results (from the first round) were significantly different from
the unconstrained results (from the second round).

Applying Metabolic Theory of Ecology (MTE) to quantify
diversification potential, environmental effect and their
relative strength
Given the positive contribution of speciation and transition rate and the
negative contribution of extinction rate to microbial diversity, we defined

an index: diversification potential (DP) as follows:

DP Tð Þ ¼ λþ t � μ

Where λ, μ and t represent speciation rate, extinction rate and transition
rate, respectively, and obtained from BiSSE model.
Given the filtered out effect induced by increased environmental

filtering, we use the extinction rate to represent the environmental-filtering
potential (EP) following the equation of

EP Tð Þ ¼ μ

Since DP and EP were related to temperature, metabolic theory of
ecology (MTE) [6, 74] was employed to quantify the variations of DP, EP
and their relative strength (RSDP vs EP) along the temperature axis. The
equations are as follows:

DP Tð Þ / e�EDP=KT

EP Tð Þ / e�EEP=KT

RSDP vs EP ¼ DP Tð Þ=EP Tð Þ / eEEP�EDP=KT

where K is Boltzmann’s constant and T is absolute temperature in kelvin
(K). The activation energy E equals the inverse number of slope in the
linear regression.

RESULTS
Consistency analysis of long-reads and short reads of 16S
rRNA genes
High-throughput sequencing of 16S rRNA gene has been radically
changing our view of microbial evolution and diversity. The
combination of FL and fragmented 16S rRNA gene could mitigate
the poor phylogenetic classification from fragmented sequence
alone and low quality limitations from FL sequence alone. Variant
sequencing depths were obtained for FL and V4 fragmented
sequences. The number of high-quality reads ranged from 12,573
to 28,924 sequences per sample for FL sequences, whereas from
42,910 to 243,816 for V4 sequences. Rarefaction curves indicated
that most of the diversity could be covered at the resampling
depth of 42,910 for V4 sequences, while that for FL sequences did
not reach saturation at the resampling depth of 12,573 (Fig. S2).
In order to compare the consistency between V4 and FL

sequences, pairwise sequence alignments were conducted using
BLASTN (Fig. 1B). At 97% identity level, 82.51% of the V4 sequences
could be found in the FL sequences, and 83.96% of the FL
sequences could be matched to the V4 sequences. Furthermore,
we found that single sOTU (sub-operational-taxonomic-unit, equal
to amplicon sequence variant (ASV)) of V4 sequences could match
multiple OTUs of FL sequences (Fig. 1C), which indicated that FL
sequences covered more comprehensive taxonomic profile with
higher phylogenetic resolution than the V4 sequences. Therefore,
most of the subsequent analyses mainly relied on FL sequences.
However, since FL sequences were not as deep as shorter
sequences (Fig. S2), some analyses were also compensated with
V4 fragmented sequences.

Environmental constraints on microbial composition
A total of 28,073 OTUs affiliated to 66 phyla were identified from
FL sequences, with 11 dominant bacterial phyla (average relative
abundance greater than 3% in 56 samples) accounting for
53.0–95.9% sequences in resampled samples. The relative
abundance of dominant phyla fluctuated across temperature
groups (Fig. 2A). Specifically, the relative abundance of Proteo-
bacteria, Bacteroidetes, Actinobacteria and Cyanobacteria signifi-
cantly increased (p < 0.05) with temperature, opposite to that of
Firmicutes, Armatimonadota, Thermotogota, Caldatribacteriota and
Nitrospirota (Fig. S3A). Microbial absolute abundance quantified by
droplet digital PCR (ddPCR) decreased with temperature (Fig. S3B).
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Principal coordinate analysis (PCoA) showed that microbial
community structures of different temperature groups were
distinctly separated (Fig. S3C), as confirmed by the multiple
dissimilarity tests (Table S2). The Mantel test showed that in
addition to temperature, other variables such as pH, NO3

−, NO2
−,

TN and OM co-varying with temperature also had significant
(p= 0.001) associations with microbial community structures
(Fig. 2B). Canonical correspondence analyses (CCA) further
displayed a clear temperature-driven distribution pattern of
microbial community structure (F= 1.751, p= 0.001) (Fig. 2C). In
addition, Random Forest mean predictor importance of environ-
mental variables indicated temperature was a more important
predictor (higher MSE% value) driving microbial community
structure pattern (Fig. 2D).

High temperatures increased phylogenetic clustering
In order to decipher the microbial taxonomic and phylogenetic
pattern across sampling sites, we examined Simpson’s diversity
index, species richness, mean-nearest-taxon-distance (MNTD) and
the nearest-taxon-index (NTI) along environmental extremes axis
which represented the combined effect of environmental

variables (Fig. S4). The geothermal springs are an analog to the
ancient early earth. As we know earth experienced a process of
cooling down and environmental temperature has been the most
prominent factor driving the thermophile’s diversity expansion
[21, 22]. Therefore, temperature was of particular interest in its
effect on microbial diversity. We found the influence of
temperature on microbial diversity (Fig. 3) was consistent with
the influence of the combined effect of environmental variables
(Fig. S4), indicating that temperature played a dominant role in
driving microbial diversity pattern.
Specifically, Simpson’s diversity index decreased significantly

with temperature (R2= 0.19, p < 0.001) (Fig. 3A), from 35.0 ± 16.1
at 54.8 °C (DRC8) to 23.4 ± 10.5 at 80 °C (DRC1). A similar pattern
was observed for species richness (R2= 0.24, p < 0.001), which
decreased from 996 ± 260 at 54.8 °C to 633 ± 150 at 80 °C (Fig. 3B).
For phylogenetic patterns with temperature, MNTD decreased
from 0.117 ± 0.016 at 54.8 °C to 0.091 ± 0.015 at 80 °C (R2= 0.29,
p < 0.001) (Fig. 3C), indicating that the phylogenetic relatedness
became closer with temperature. Consistently, increasing NTI with
temperature (R2= 0.40, p < 0.001) was observed, from
2.412 ± 0.229 at 54.8 °C to 6.470 ± 0.642 at 80 °C (Fig. 3D), further

Fig. 2 Microbial community variation and potential environmental constraints across sampling sites. A Microbial community composition
at the phylum level, including 11 dominant bacterial phyla with average relative abundance greater than 3% in 56 samples, and those less
than 3% were combined into “others”. The IDs of DRC8…DRC1 above the columns represent the eight sampling sites. B, C Significant
correlations between environmental factors and community structure based on (Partial) Mantel test and canonical correspondence analysis
(CCA), respectively. D The relative contribution of environmental factors to microbial community structure (the first axis of PCoA) based on
random forest. %IncMSE means increase in mean squared error. The larger the value, the greater the importance of the environmental factor.
p value, ns indicates non-significance; * for p < 0.05; ** for p < 0.01; *** for p < 0.001.
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suggesting higher temperature promoted stronger phylogenetic
clustering at finer taxonomic level near the tips of the
phylogenetic tree. These results were robust for V4 sequences
with deeper sequencing depth (Fig. S5). Moreover, Blomberg’s K
statistics revealed that phylogenetic signal for temperature is
stronger than other environmental variables (Fig. 3E). Levins’ niche
breadth became narrower with temperature (Fig. 3F). The Spear-
man correlation also confirmed the negative effects of tempera-
ture on Simpson’s diversity index, species richness, MNTD,

biomass and Levins’ niche breadth (p < 0.05) and the positive
effects on NTI (Fig. S6).

Comparison of ecological properties between the T-sensitive
and T-resistant species
The T-sensitive and T-resistant species were identified according
to narrow or wide thermal tolerance, respectively (Fig. 4A). A total
of 26,070 phylotypes were classified as T-sensitive species (OTU-
level species only found in a specific temperature) and 524 as

Fig. 3 Microbial diversity patterns and community niche breadth across temperatures. Variation trends of A Shannon (n= 7), B Richness
(n= 7), CMean-nearest-taxon-distance (MNTD) (n= 7), D Nearest-taxon index (NTI) (n= 7) across temperatures. Pearson correlation coefficient
was shown on the figure. E Phylogenetic signal estimated by Blomberg’s K and temperature shows the strongest phylogenetic signal. F Levins’
niche breadth across temperatures. The letters denote significant differences.
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T-resistant species (OTU-level species found in five to eight
temperatures) (Fig. 4A). The T-sensitive species outnumbered the
T-resistant species (2124–4286 vs. 318–455), both of which
decreased from 54.8 °C to 80 °C with steeper decreasing trend
for the T-sensitive species (Fig. 4B). Despite high species richness,
T-sensitive species occupied much less community abundance

(2.634 × 104 vs. 4.620 × 105, Fig. 4E) and sequences proportion
(8.05% vs. 83.6%, Fig. S7A) than those T-resistant species.
Additionally, the structures of T-sensitive sub-community showed
greater dissimilarity between any paired temperature groups with
little overlap to the whole community (Fig. 4C), but the T-resistant
sub-community was significantly highly correlated to the whole
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community (Fig. 4D). However, compared to T-resistant species,
T-sensitive species represented stronger phylogenetic clustering,
with higher NTI (Fig. 4F). Consistently, T-sensitive species exhibited
a narrower community-level Levins’ niche breadth (Fig. S7B) and a
lower Nm-value (162 vs. 10429, Fig. S7C) of the neutral community
model (NCM).
The phylogenetic tree was constructed with the representative

sequences for species those having clear taxonomic affiliations
(Fig. 4G). The relative abundance and the number of the species
varied across temperature groups. From 54.8 °C to 80 °C, the
richness of species was 301, 309, 318, 318, 322, 365, 520 and 536
respectively, showing a slightly increasing trend with temperature.
The selected species were distributed in different phyla and most
of the selected species belonged to T-sensitive species and a few
to T-resistant species (1179 vs. 108).

The evolutionary characteristics of the T-sensitive and
T-resistant species
The variation trend of evolutionary characteristics (i.e., speciation,
extinction, and state-transition rates) of T-sensitive and T-resistant
species across temperature groups based on the LTP subtree
(Table S3) were roughly as same as the unified phylogenetic tree
based on our sequences (Table S4), so we only reported the results
based on the self-built unified phylogenetic tree.
The on average per species evolutionary rate parameters (i.e.,

speciation, extinction, and state-transition rates) of T-sensitive and
T-resistant species across temperature groups were estimated
using the BiSSE model with a maximum likelihood method
(Fig. 5A). The results obtained by this model across temperature
groups were reliable as proved by the significant difference
between constrained and unconstrained results (ANOVA test,
p < 0.001) (Table S4). The relatively low temperature of 54.8 °C
favored speciation of T-sensitive lineages (speciation rate λTs=
50.119), concomitant with a low but balanced reversible transition
between T-sensitive and T-resistant lineages (tTs→Tr = 8.841 and
tTr→Ts = 8.775) (Fig. 5B and Table S4). For the intermediate range
of 57.2–63.9 °C, the most remarkable changes are that speciation
(λTr) and extinction rates (μTr) for T-resistant species increased to
23.069–30.608 and 24.468–31.624, respectively (Fig. 5A, B and
Table S4) and an advantageous transition from T-sensitive to
T-resistant lineages (tTs→Tr = 6.829–8.333) than the reverse
(tTr→Ts= 0.406–0.738) (Fig. 5A, B and Table S4). For the high
temperature range of 68–80 °C, the extinction rate of T-resistant
species was further accelerated sharply (μTr= 116.034–189.436),
but the speciation rate (λTr) dropped back to 0 again (Fig. 5A, B
and Table S4). High temperature favors more frequent transition
to T-resistant lineages from T-sensitive lineages (tTs→Tr =
22.834–35.224) than the intermediate temperature. Notably, the
extinction rate of T-sensitive lineages remained zero across
temperature groups, but only peaked to 6.894 at an extremely
higher temperature of 80 °C (Fig. 5A, B and Table S4).
Speciation (λ) and transition (t) rates act to increase microbial

diversity, whereas extinction (μ) acts to decrease diversity. To
evaluate the contributions of these processes to species richness,

we propose a diversification potential (DP) index as DP = λ+ t− μ.
Given that increased temperature will filter out species, we use
extinction rate to represent environmental-filtering potential (EP) as
EP= μ. By applying DP and EP to T-sensitive and T-resistant species,
we found that DP for T-sensitive species (DPTs) and EP for T-resistant
species (EPTr) were both positive across temperatures, except for
EPTr= 0 at the lowest temperature. More specifically, DPTs and EPTr
both exponentially increased with temperature (R2= 0.19, p < 0.001
(Fig. 5C) and R2= 0.63, p < 0.001 (Fig. 5D)), with fitted activation
energies of EDP= 0.09 ± 0.02 eV (Fig. 5C) and EEP= 0.89 ± 0.09 eV
(Fig. 5D). Then, we assessed the relative strength of diversification
potential versus environmental-filtering potential (RSDP vs EP) under
the MTE framework. Specifically, RSDP vs EP=DPTs(T)/EPTr(T) ∝ e^(EEP
– EDP)/KT (see derivation in “Materials and methods”). When
EDP > EEP, diversification overwhelms environmental filtering and
overall diversity increases with temperature, else if EDP < EEP,
environmental filtering is advantageous over diversification and
overall diversity decreases with temperature. Our results accorded
well with the latter situation that EDP < EEP and RSDP vs EP decreased
exponentially with temperature (R2= 0.70, p < 0.001) (Fig. 5E),
indicating that environmental filtering is dominant over diversifica-
tion at high temperatures.

DISCUSSION
Stronger environmental filtering and greater genomic diversifica-
tion can exist in the same environmental context [6], but
how these processes interact to influence microbial diversity
across environmental gradients such as temperature was unclear.
Here we chose appropriate sequencing and multivariate analysis
methods to investigate the ecological and evolutionary character-
istics of microbiota over a broad temperature range (54.8–80 °C).
It’s a big challenge to reconstruct speciation and extinction
processes of prokaryotes due to lack of fossil record [68].
By constructing relatively robust phylogenetic trees for the extant
species, we could gain insights into evolutionary features
of bacteria and archaea. In this study, we have some strategies
to ensure the robustness of our data: (1) choosing the full-length
16S rRNA genes by PacBio RSII sequencing to obtain high
microbial phylogenetic resolution [39]; (2) using NTI and MNTD
which are controlling or eliminating the influence of
species richness to calculate microbial phylogenetic pattern; (3)
comparing the binary-state speciation and extinction model
results from the LTP subtree and a unified phylogenetic tree
based on our own sequences. Our results demonstrated that niche
specialists and niche generalists cooperated to maintain microbial
diversity via a dynamic equilibrium process, the underlying
mechanism mainly including adaptive diversification of specialists,
niche expansion of generalists and transition from specialists to
generalists.
Species diversity is determined by both the physical (niche) and

biological (biotic interaction) environments, both in ecological and
evolutionary aspects. From ecological perspective, we previously
found that temperature and interspecies interactions are

Fig. 4 Ecological characteristics for thermal (T)-sensitive and T-resistant species. A Classification of T-sensitive and T-resistant species. The
grouping criteria are obtained by comparing the observed distribution to the expected distribution derived from 100,000 permutations.
We chose the grouping criteria when Nobserved species > N expected species, which means the species within the indicated temperature group
are not randomly selected. In this study, the grouping criteria is 1 and ≥5, which is the rational for why we defined “T-sensitive” species as the
species occurring at a specific temperature and “T-tolerant” species at least in five temperatures. The inset plot shows enrichments of species
in five to eight temperatures. B The richness of T-sensitive and T-resistant species across temperatures. C, D The relationship of T-sensitive and
T-resistant community structure with the whole community structure, respectively. E Variations in community abundance of T-sensitive and
T-resistant species across temperatures quantified by ddPCR. F Variations in the within-community nearest-taxon index (NTI) between
T-sensitive and T-resistant species. G The phylogenetic tree was constructed with 1555 species with clear taxonomic affiliations. Each species
was represented by the most abundant OTU. Colors for both the branch and the innermost ring represent different Phyla, and colors for the
outermost ring represent the thermal niche breadth (T-sensitive, T-resistant and others). The rings with inset bargraphs show the relative
abundances of each OTU across temperatures. Temperature and species richness at each temperature were marked at the ends of the rings.
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deterministic factors affecting sediment community assembly [6].
In this study, several lines of evidence could support that
temperature is the key environmental filter determining evolution:
(1) the geothermal springs are analogous to the ancient early
earth and environmental temperature has been a major
determinant of evolutionary rates and the most prominent factor
driving the thermophile’s diversity expansion during early earth
cooling down [22]; (2) temperature was a more important
predictor in driving the variation of microbial community structure
revealed by higher random forest %MSE value (Fig. 2D); (3) there is
strong clustering of phenotypes and the degree of clustering
within communities is associated with temperature (Fig. 3C, D and

Fig. S5); (4) temperature shows a higher phylogenetic signal than
other environmental variables (Fig. 3E). Therefore, temperature
could be the most important niche dimension in the studied
geothermal ecosystems. By considering temperature niche axis,
T-resistant (able to occur in at least five temperatures) and
T-sensitive (only occupying a specific temperature) species
essentially represent niche generalists and niche specialists in
hot spring environments, respectively. We indeed found the
discrepancy in ecological (Fig. 4) and evolutionary (Fig. 5)
performances of these species with differential niche breadths.
For instance, composition shift of T-sensitive species happened at
a relatively fixed niche breadth (a temperature point) (Fig. 4C),

Fig. 5 Evolutionary characteristics of T-sensitive and T-resistant species. A Binary-state speciation and extinction (BiSSE) model for the
evolution of T-sensitive and T-resistant species. Each state has distinct speciation (λ), extinction (μ), and state-transition (t) rates. B The variation
trend of the per species’ speciation rate (λTs vs. λTr), extinction rate (μTs vs. μTr) and transition rate (tTs-Tr vs. tTr-Ts) for the T-sensitive and
T-resistant species. C, D, E Effects of temperature, 1/kt, on the diversification potential of T-sensitive species (DPTs, the slope EDP= 0.09 eV), the
ecological-filtering potential of T-resistant species (EPTr, the slope EEP= 0.89 eV) and the relative strength of DPTs to EPTr (RSDP vs EP),
respectively. The linear line was fitted by using ordinary least-squares regression. The X axis was the reciprocal temperature (1/kT) and The Y
axis was the ln-transformed DPTS, the ln -transformed EPTr and the ln-transformed DPTs to EPTr, respectively.
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whereas the composition turnover of T-resistant sub-community
across temperatures was gradual and mirrored the whole
community (Fig. 4D).
Niche specialization has long been argued to increase species

speciation and adaptation rate [75], which could allow co-
existence of more species via finer partitioning of limited niche
space and resources [26]. Specifically, niche specialists (i.e.
T-sensitive species) were strictly constrained by the local
environment condition (limited space and resources) and
experienced stronger dispersal limitation, as proved by the
narrower Levins’ niche breadth (Fig. S7B) and negative value of
R2 in the NCM (Table S5), as well as higher Nm across niche
generalists (i.e. T-resistant) community (Fig. S7C). It is well known
that niche expansion has come at cost of reduced capacity to
adapt [76] and lower performance [77]; moreover, resource
limitation enhanced speciation [78]. Therefore, the local ende-
mism of niche specialists indicated maximum fitness at “home
niche” and greater advantage in species diversification. Indeed, we
observed higher speciation rate for T-sensitive species across
temperatures (Fig. 5B and Table S4). Additionally, low abundance
of T-sensitive species is beneficial for decreasing biotic interaction
[79], and indirectly promoting high speciation and species
richness. Given the more clustered phylogenetic relatedness of
T-sensitive species than T-resistant species (Fig. 4F), T-sensitive
lineages across temperatures may expand from phylogenetic
closer species via sympatric speciation [80, 81] and thus each
temperature accommodated more phylogenetically similar spe-
cies, leading to increased competition among similar species
under limited resources availability. However, low abundance
reduced the physical contact of T-sensitive species with adjacent
species and thus weakened competitive exclusion, allowing co-
existence of more species with similar traits in a pretty narrow

ecological niche (Fig. S7B), which eventually increased local
diversity. Therefore, niche specialists were proposed to indirectly
obtain higher speciation rates at the cost of less biomass and
narrower niche breath, further promoting their relatively higher
diversity.
Notably, despite of increasing extinction rate of T-resistant

species, their species number was comparable across tempera-
tures (Fig. 4B), mainly due to the concomitant increase in
transition rate from T-sensitive to T-resistant species (Fig. 5 and
Table S4). The continuous transition of T-sensitive species to
T-resistant species ensures that the exclusion probability
of T-resistant species is relatively constant at different tempera-
tures. This transition of T-sensitive species to T-resistant species
implied a “win-win” scenario between T-sensitive and T-resistant
species: T-sensitive species (more constrained) need to achieve
niche expansion via transition to T-resistant species (greater
dispersal), while T-resistant obtained continuous replenishment
since T-sensitive species generated relative stable species pool via
high speciation and maintained a dynamic source-sink relation-
ship with T-resistant species. Despite the differences in speciation
and extinction rates between T-resistant and T-sensitive
species, they are also evolutionarily related to each other. The
findings of this very complex interaction and interdependence
between the two have led to their co-evolution and co-
adaptation, consistent with a key component of the Red Queen
theory [82]. The balance of evolutionary dynamics between the
niche specialists and niche generalists in hot springs could be the
biological factor driving evolution.
We further elucidated relative contribution of environmental

filtering and diversification to microbial diversity in response to a
prominent niche axis (e.g., temperature in this study). The relative
strength of diversification versus environmental filtering

Fig. 6 Conceptual diagram of the dynamic balance between microbial speciation and environmental filtering in a stressful environment
such as high temperature. Higher temperature could enhance environmental filtering, resulting in less community abundance, reshaping
community structure, and decreasing community-level thermal niche breadth. Simultaneously, higher temperature promotes speciation at
finer tips of the tree, leading to reduced phylogenetic distance (i.e., MNTD) and strengthened phylogenetic clustering (i.e., NTI). When
environmental filtering overwhelms speciation, we could observe a reduction in the microbial diversity pattern along the temperature
gradient. The evolutionary characteristics underlying the consequential diversity pattern were determined by the dynamics of speciation,
extinction, and transition rate for niche specialists (e.g., T-sensitive species only present at a narrow range of temperatures) and niche
generalists (e.g., T-resistant species able to tolerate a wide range of temperatures) along an environmental extremes gradient (e.g.
temperature).
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decreased exponentially with temperature (Fig. 5D), well in
accordance with the overall reduction in diversity, indicating
environmental filtering is advantageous over diversification when
conditions became more stressful. We propose a conceptual
framework to better describe the balancing of ecological and
evolutionary processes in regulating diversity pattern along a
prominent niche axis (e.g. temperature), (Fig. 6). Facing the
intensive global change, microbes have been suffering more
stressful conditions and this framework could be applied in other
stressful environments and gain more deep understanding of how
microbial diversity maintains in a phylogenetic aspect. Given the
differences in niche breadth, dispersal ability and evolutionary
characteristics, the transitions between niche specialists’ and niche
generalists’ lifestyle help microbes adapt to environmental
fluctuations.

DATA AVAILABILITY
The sequencing data are deposited in the National Genomics Data Center (NGDC)
database with accession numbers CRA007636 and CRA007773.
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