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Neo-intline: integrated pipeline enables neoantigen design
through the in-silico presentation of T-cell epitope
Bingyu Li1,2, Ping Jing1, Genhui Zheng 3,4, Chenyu Pi1, Lu Zhang1, Zuojing Yin3, Lijun Xu1,2, Jingxuan Qiu5, Hua Gu1,
Tianyi Qiu3,6✉ and Jianmin Fang1✉

Neoantigen vaccines are one of the most effective immunotherapies for personalized tumour treatment. The current immunogen
design of neoantigen vaccines is usually based on whole-genome sequencing (WGS) and bioinformatics prediction that focuses on
the prediction of binding affinity between peptide and MHC molecules, ignoring other peptide-presenting related steps. This may
result in a gap between high prediction accuracy and relatively low clinical effectiveness. In this study, we designed an integrated
in-silico pipeline, Neo-intline, which started from the SNPs and indels of the tumour samples to simulate the presentation process of
peptides in-vivo through an integrated calculation model. Validation on the benchmark dataset of TESLA and clinically validated
neoantigens illustrated that neo-intline could outperform current state-of-the-art tools on both sample level and melanoma level.
Furthermore, by taking the mouse melanoma model as an example, we verified the effectiveness of 20 neoantigens, including 10
MHC-I and 10 MHC-II peptides. The in-vitro and in-vivo experiments showed that both peptides predicted by Neo-intline could
recruit corresponding CD4+ T cells and CD8+ T cells to induce a T-cell-mediated cellular immune response. Moreover, although the
therapeutic effect of neoantigen vaccines alone is not sufficient, combinations with other specific therapies, such as broad-
spectrum immune-enhanced adjuvants of granulocyte-macrophage colony-stimulating factor (GM-CSF) and polyinosinic-
polycytidylic acid (poly(I:C)), or immune checkpoint inhibitors, such as PD-1/PD-L1 antibodies, can illustrate significant anticancer
effects on melanoma. Neo-intline can be used as a benchmark process for the design and screening of immunogenic targets for
neoantigen vaccines.
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INTRODUCTION
Cancer is an increasing global burden, with over 10 million new
cases and millions of deaths annually,1 and its incidence will
continue to increase to ~28.4 million new cases by 2040 according
to model estimation.2 As a new cancer therapy, immunotherapy
has been demonstrated to be an advanced strategy for eliminating
cancer cells by triggering the immune system of patients.3,4

Therapeutic vaccines, a type of immunotherapy strategy,3,4 which
have been proven to be significantly effective for cancers such as
pancreatic ductal adenocarcinoma5 and melanoma,6,7 requires
tumour-specific neopeptides or so-called neoantigens. Neoanti-
gens are recognized and bonded by the major histocompatibility
complexes (MHC) to form the MHC-neoantigen complexes, which
are further recognized by the T cells and trigger the personalized
immune response of the individual patient.8,9 Personalized
neoantigen therapy could induce long-lasting tumour-specific
memory T cells through de novo induction of the T-cell population,
boosting the existing T-cell response and epitope spreading.9

The screening of cancer-specific neoantigens is dependent on
multi-omics data and bioinformatics prediction of T-cell epitope.3

Currently, tumour-specific neoantigens are mainly designed

through standard in-silico pipelines, which follow two rules. First,
the neoantigen peptides should contain the tumour-specific
mutation, which means that the personalized somatic mutations,
which occur on the cancer cell rather than the normal cell, were
filtered to generate the target neoantigen peptide. Second,
mutation-containing peptides (MCPs) should be presented by the
MHC and activate the T-cell-mediated immune response.10

Although the current benchmark method of T-cell epitope
prediction can reach a high accuracy of 80%-90%,11 only several
neoantigen vaccines, like NeoVax12 and Neo-MoDC,13 have been
approved by the Food and Drug Administration (FDA) or in clinical
trials. The gap between high prediction accuracy and low clinical
effects is likely due to the complex immune presentation processes.
Current standard in-silico pipelines focus on the binding affinity

prediction between mutation-containing peptide (MCP) and major
histocompatibility complex (MHC), ignoring the other steps of the
presenting processes, including proteasome hydrolysis,14 the
transport efficiency of transporters associated with antigen
processing,15 and T-cell receptor (TCR) recognition.16 Additionally,
for MCP and MHC binding, the above pipelines only considered
the prediction of endogenous peptide presentation, while more
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recent research pointed out that in addition to MHC-I peptides,
CD4+ T-cell neoepitopes (MHC class II epitopes) could also
reshape the tumour microenvironment and drive the therapeutic
T-cell immune response to cancer.17 Considering it is necessary to
ensure that the neoantigen can successfully go past all the
presenting steps, the pipelines of neoantigen prediction should
contain the comprehensive steps of presenting processes to
generate suitable MHC-I and MHC-II neoantigen targets for
preclinical experiments.
To achieve this purpose, we presented a novel computational

pipeline, Neo-intline (integrated pipline of neoantigen design), to
generate personalized neoantigens from the next generation
sequencing (NGS) data. This pipeline integrates the processes of
T-cell immune presentations, which considers single nucleotide
polymorphisms (SNPs) and insertion and deletion (Indel) data
from NGS. The prediction ability of Neo-intline was systemically
evaluated on seven cancer patients from clinical trials,18–20 TESLA
community data21 and literature datasets.22,23 Neo-intline was
compared with other state-of-the-art peers, which illustrated good
performance on melanoma. In addition, we tested the effective-
ness of Neo-intline-generated neoantigens in mouse melanoma
models. The top 10 MHC-I peptides and top 10 MHC-II peptides
from the ranking list were synthesized for both in-vitro and in-vivo
experimental validation. The results showed that the neoantigens
of melanoma generated through Neo-intline could (1) stimulate
the activation of T cells in-vitro, (2) inhibit tumour growth in mice
by combining with adjuvants such as GM-CSF and Poly (I:C), and
(3) illustrate anticancer ability through combination therapy with
immune checkpoint inhibitors of anti-PD1/anti-PDL1 antibodies.

RESULTS
Model performance of Neo-intline compared with state-of-the-art
peers
The utility of Neo-intline was firstly applied to detect the human
neoantigens and compared with current state-of-the-art peers.
Here, we selected three cutting-edge and widely used MHC-I
neoantigen prediction pipelines including MuPeXi,24 Neopepsee,25

and pTuneos26 for comparison. Meanwhile, seven clinical samples
including three melanoma patients,18 three gastrointestinal (GI)
patients,19 and one breast cancer (BRCA) patient20 were derived as
benchmark datasets. The validation was performed on the clinically
validated peptides and the historically validated dataset derived
from IEDB.27 The validation process was evaluated as Fig. 1
illustrated, which includes ranking the list of all possible peptides
predicted by each approach (Fig. 1a), mapping the experimentally
validated peptides in IEDB (Fig. 1b) and deriving the overlapped
peptides (Fig. 1c) as the benchmark validation dataset for model
comparison. Two parameters of RCS and RS were adopted to
evaluate the performance of four peers. Detailed description of
evaluation parameters was described in Methods part.
According to RCS, Neo-intline could win the best performance in

five out of seven samples (sample ID: 3998, 3784, 3903, 4069 and
4136), followed by neopepsee for two samples (sample ID: 3995 and
4032) (Fig. 1d). Meanwhile, we noticed that Neo-intline could
outperform three other methods on all the melanoma cases and
BRCA cases but performed worse than others in all GI cases (Fig. 1d).
These results suggested that Neo-intline might be more suitable for
melanoma, and the prediction of neoantigens for different tumours
may require different parameters for in-silico modelling. Moreover,
the results of RS showed that Neo-intline could achieve the lowest
RS of 0.43 for positive samples, followed by 0.45 for pTuneos, 0.48
for MuPeXI and 0.74 for neopepsee (Fig. 1e), which means Neo-
intline could achieve smaller RS for positive samples than other
approaches. Further, results showed that neopepsee can only detect
14 out of 34 positive samples and 5 out of 19 negative samples,
which makes it difficult to distinguish between RS for positive
samples and negative samples with both median value of 1 (Fig. 1f).

Meanwhile, the median value of positive samples was 0.39, 0.30 and
0.37 for Neo-intline, MuPeXI and pTuneos, respectively. Among
them, pTuneos only provided 11 different scores for over a thousand
of peptides (from 0 to 1 with an interval of 0.1), which makes
multiple peptides achieve the same ranking score. Thus, considering
the median value of negative samples predicted by pTuneos was
also 0.37, it is difficult to distinguish positive samples from negative
ones (Fig. 1f). The median value of negative samples was 0.64 for
Neo-intline and 0.92 for MuPeXI, respectively, which showed that
those two methods could distinguish the positive samples and
negative ones by ranking score.
In general, through the evaluation parameters of RCS and RS,

Neo-intline could outperform other state-of-the-art tools at
sample level (RCS won 5 out of 7 samples) and melanoma level.
The good performance of Neo-intline might benefit from the in-
silico design, which considers all the possible processes of peptide
presentations. For example, the peptide of RILLVAASY that defined
as negative sample,19 while only Neo-intline provided the RS of
this peptide below the median RS of negative ones. This might be
caused by the TAP process of Neo-intline, in which RILLVAASY
achieves the logarithm IC50 value of 4.20, higher than the
averaged logarithm IC50 value of 3.06.

Model comparison on the TESLA community dataset and literature
dataset
To further evaluate the prediction performance of Neo-intline
compared with current available state-of-the-art peers, we
introduced the widely used TESLA community dataset21 as the
benchmark dataset. Here, three recently published neoantigen
prediction tools of DeepNeo,28 Seq2Neo,29 and TSNAD v2.030 were
selected for performance comparison.
The TESLA community dataset contains 5 subjects with 3

melanoma patients and 2 non-small cell lung cancer (NSCLC)
patients, which includes 535 validated peptides with 34 positive
ones (Supplementary Data 1). The prediction performance was
compared by evaluation parameters of AUC value, sensitivity,
specificity and balanced accuracy. As illustrated in Supplementary
Fig. 1a, Neo-intline could achieve the best AUC value of 0.6731,
followed by 0.6357 for Seq2Neo, 0.5557 for DeepNeo and 0.4879
for TSNAD v2.0. For other parameters, Neo-intline could achieve
the best-balanced accuracy of 0.6504, which outperformed the
other three tools (Table 1). Note that, Seq2Neo could achieve the
best sensitivity (0.7941) and TSNAD v2.0 could achieve the best
specificity (0.9601) but with consequences of losing the perfor-
mance on specificity (0.499) and sensitivity (0.1176), respectively.
Considering that the TESLA community dataset contains two

different cancers, we separate them for further investigation. The
melanoma dataset contains three patients, including 302 vali-
dated peptides with 26 positive ones. The NSCLC dataset contains
two patients, including 233 validated peptides with 8 positive
ones. The performance on melanoma illustrated the good
performance in Neo-intline with AUC value of 0.7028, which
could significantly outperform all other thee with the highest AUC
value of 0.6311 for Seq2Ne. Meanwhile, the performance on
NSCLC is relatively low for Neo-intline, which the AUC value is only
0.5325, lower than those of 0.6353 for TSNAD v2.0, 0.6283 for
Seq2Neo and 0.5672 for DeepNeo.
Besides the TESLA community dataset, we also involved two

experimentally validated datasets from previously published
literature of chronic lymphocytic leukemia and melanoma patients
for comparison.22,23 Considering those two datasets are small, we
mixed them together for validation, which involved 86 validated
peptides with 18 positive ones. Results showed that Neo-intline
could achieve the best AUC value of 0.6944, which outperformed
all other three (Supplementary Fig. 1b). Besides AUC value, Neo-
intline could achieve the best sensitivity (0.8333) and balanced
accuracy (0.7181), and comparable specificity (0.6029) among all
four validated tools (Table 1).
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Successfully designed MHC-I and MHC-II neoantigens for mice
melanoma
Above results illustrated that Neo-intline could outperform other
state-of-the-art tools on sample level (RCS won 5 out of 7 samples)
and melanoma level for both TESLA community data and

literature datasets. Thus, we further test the pipeline of Neo-
intline on real melanoma neoantigen vaccine design in mouse.
After the pipeline of Neo-intline (see Methods and Materials), 32
MHC-I peptides (Supplementary Table 1) and 147 MHC-II peptides
(Supplementary Table 2) were derived from mouse melanoma

Fig. 1 The model evaluation based on Rank Coverage Score (RCS) and Rank Score (RS). a Ranking List of different tools including Neo-intline,
MuPeXi, Neopepsee, and pTuneos. b Experimentally validated peptides derived from three benchmarks18–20 and IEDB.27 c List for validation
and two evaluation parameters. d Rank coverage score (RCS) of the final rank list obtained from Neo-intline, MuPeXI, neopepsee and pTuneos
on 7 clinical samples, overall melanoma samples, and overall GI samples. e Ranking score (RS) on all positive positive neoantigens calculated
by four compared algorithms. f Boxplot of RS calculated by four compared algorithms for both positive (labelled as 1) and negative (labelled
as 0) samples
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model. Next-generation sequencing data can be found in
Supplementary Data 2 and Supplementary Data 3. The top 10
peptides for MHC-I (MHCI) and the top 10 peptides for MHC-II
(MHCII) were selected to generate the melanoma neoantigen
vaccine.
The predicted neoantigen probability scores (NPSs) for MHC-I

peptides ranged from 2.67e−4 to 31.26, and the 10th ranking
candidate achieved an NPS score of 0.248, which is 928 times that
of the 32nd ranking candidate. Additionally, the final NPS for MHC-
II peptides ranged from 2.77e−7 to 12.43, and the 10th ranking
candidate achieved an NPS score of 1.014, which is over 3 million
times that of the 147th ranking candidate (2.77e−7). Interestingly,
several neoantigens occupying the top rankings in our study were
previously proven to be able to drive therapeutic immune
responses for cancer treatment. For example, the Gly795Ala
mutation on Eef2 with the core peptide of LPVNESFAF (ranked 11
in Supplementary Table 1) and the Phe835Val mutation on Actn4
with the core peptide of VTFQAFIDV (rank 21 in Supplementary
Table 1) for MHC-I were proven to be the functional neoantigens
for melanoma.17 For MHC-II, 10 peptides were previously detected
as neoantigens in Sebastian’s work,17 and were ranked from rank
28 to rank 122 among 147 MHC-II peptides in Supplementary
Table 2. Among them, three were ranked within the top 50,
including Tyr382His mutations on Gene Tm9sf3 with a core
peptide of HHASRAIPFGTMVAV (rank 28), Asp314Asn mutations
on Gene Cpsf3I with a core peptide of FDRTFANNPGPMVVF (rank
34), and Val602Ala mutations on Gene Ddx23 with a core peptide
of TAMFTATMPPAVERL (rank 40). These peptides were proven to
be efficient for tumour control and improving survival time in
individuals with B16F10 melanoma. Moreover, we generated an
epitope pool which included 9,215 previous experimentally
validated Mus musculus peptides from IEDB or published articles.
By 100% sequence identity searching through the epitope pool,
six (MHC-I-1, 2, 6, 11, 19, and 21) out of top 21 MHC-I peptides and
three (MHC-II-6, 16, 20) out of top 20 MHC-I peptides were
detected as previously validated peptides (Supplementary Table 3),
which illustrated the good performance of Neo-intline to serve the
purpose for neoantigens screening.
Meanwhile, we adopted three cutting-edge tools including

PMTnet,31 PanPep,32 and DLpTCR,33 to predict the peptide-CDR3
binding ability for top peptides (Supplementary Fig. 2). The TCR
beta sequences of Mus musculus were derived from previous
study,34 which included 85 identical CDR3 sequences. Further, we
define a new probability score based on the prediction of three
tools, in which peptide-TCR pairs can be scored as 1 (predicted as
positive in all three methods), 0.75 (predicted as positive in two
methods), 0.25 (predicted as positive in one method), and 0
(predicted as negative in all three methods). Then, for each

peptide, the T-cell interaction score was defined as the percentage
of positive CDR numbers over the pair score (Supplementary
Fig. 2). Interestingly, by taking the 0.75 as the threshold for pair
score, MHC-I-6 and MHC-I-19, which were experimentally validated
before, could achieve the top two T-cell interaction scores that
over 0.7. Moreover, all six experimentally validated peptides could
achieve the T-cell interaction score over 0.5. By taking the value of
MHC-I-1 as baseline, 6 out of top 10 MHC-I peptides may have real
immunogenicity and hold the potential to elicit T-cell response,
including 1, 2, 3, 6, 7, and 10, but 4 may probably fail
(Supplementary Fig. 2a).
Similarly, we also validated the MHC-II peptides. Considering the

MHC-II-6 was involved in the 55-mer peptide containing the
mutation site, but not the previously predicted 15-mer core, we
use the experimentally identified 15-mer core as the positive
control for evaluation (Supplementary Fig. 2b). Results showed
that peptide GRYFLKSSSATETMH derived from MHC-II-6 could
achieve a relatively high T-cell interaction score of 0.4. Moreover,
by setting the TIS of MHC-II-20 as a baseline, we found that MHC-
II-5 could be considered as potential neoantigens that could elicit
T-cell response (Supplementary Fig. 2b).

In-vitro and In-vivo validation of neoantigens for melanoma
Experimentally, we first evaluated the ability of MHCI and MHCII to
stimulate the immune response through an in-vitro incubation
test with the T-cell repertoire. The fluorescent staining of
fluorescein isothiocyanate isomer (FITC) and allophycocyanin
(APC) showed that the neoantigens could significantly stimulate
the activation of T cells after antigen presentation through the
indicators of two cytokines (IFN-γ and TNF-α) and one cell
biomarker of CD69 (Fig. 2a–e). Moreover, we measured the
content of important cytokines, including IFN-γ, TNF-α, IL-2 and IL-
6, in-vivo (Fig. 2f–i). Eight hours after vaccination, the content of
four cytokines in peripheral blood peaked, and was at least 2 times
higher than that in the control group (IFN-γ), and then started to
decrease (Fig. 2f). The contents of IFN-γ, TNF-α and IL-2 remained
higher than those in the control groups until 48 h (Fig. 2f–h). The
levels of all four cytokines decreased to those of the control group
at 72 h.
Next, we used C57BL/6 mice to examine the efficiency of the

neoantigen vaccine in model organisms. Firstly, we counted the
tumour volume of each mouse from Day 0 (the day to split
groups) to Day 22 (Fig. 3a–c). The tumour volumes decreased by
15% to 18% on Day 22 by using MHCI and MHCII (Fig. 3a). The
granulocyte-macrophage colony-stimulating factor (GMCSF)
monotherapy could decrease 13.6% of the tumour volume on
Day 22, which is lower than MHCI and MHCII (Fig. 3b). The
combination of neoantigen and GMCSF could achieve better
performance, which could decrease 36.3% of the tumour volume
(MHCI+ GMCSF) and 45.5% of the tumour volume (MHCII+
GMCSF) on Day 22 (Fig. 3b). The survival analysis illustrated that
three treatment groups performed better than the control group
(half death after 20 days) and the best performance occurred in
the combination therapy group of neoantigen and GMCSF (MHCI/
II+ GMCSF), in which over 50% of the mice survived after 38 days
(Fig. 3c). Further, we calculated the percentage of CD4+ and CD8+

T cells among CD45+ lymphocytes to evaluate the recruitment of
functional T cells. Compared with the control, the percentage of
CD4+ T cells increased approximately threefold by MHCI-GMCSF
and above fourfold by MHCII-GMCSF (Fig. 3d). Additionally, both
MHCI-GMCSF and MHCII-GMCSF increased the CD8+ T-cell
percentage by ~2.5 times compared with the control group
(Fig. 3e). Additionally, we evaluated two immune inhibition
markers of Myeloid-derived suppressor cells (MDSCs) and Fork-
head box protein P3 (FoxP3). The results showed that both MHCI-
GMCSF and MHCII-GMCSF could significantly decrease the
percentage of MDSCs (Fig. 3f) and FoxP3+ T-cells (Fig. 3g)
compared with the control group.

Table 1. Prediction performance of AUC, sensitivity (sen), specificity
(spe) and balanced accuracy (BA) for four tools

TESLA dataset AUC Cutoff Sen Spe BA

Seq2Neo 0.6357 0.6178 0.7941 0.4990 0.6465

TSNAD v2.0 0.4869 0.8977 0.1176 0.9600 0.5388

DeepNeo 0.5557 0.7112 0.3235 0.8722 0.5978

Neo-intline 0.6731 0.0018 0.5882 0.7125 0.6504

Literature dataset AUC Cutoff Sen Spe BA

Seq2Neo 0.5376 0.9275 0.5 0.6471 0.5735

TSNAD v2.0 0.5267 0.9897 0.5556 0.6471 0.6013

DeepNeo 0.6176 0.5782 0.6111 0.6912 0.6511

Neo-intline 0.6944 0.0003 0.8333 0.6029 0.7181

Bold values represent that Neo-intline achieves the best performance
among all compared peers
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In addition, we added polyinosinic-polycytidylic acid (Poly I:C),
to the neoantigen vaccine as a combination therapy. Compared
with the control group, monotherapy with Poly I:C illustrated no
antitumour effects (Fig. 3h). The combinational therapy of MHCI-
GMCSF and MHCII-GMCSF with Poly I:C significantly reduced the
tumour volume after 17 days (Fig. 3h). On Day 22, the average
tumour volume of the MHCII-GMCSF-Poly I:C treatment group was
only 18.2% (mm3) of that of the control group (over 1400mm3),
which illustrated its potential treatment effect. Considering the
great performance of MHCII-GMCSF-Poly I:C in reducing tumour
volume, we evaluated the action model on tumour inhibition.
After adding anti-mouse-CD8 (aCD8) antibody and anti-mouse-
CD4 (aCD4) antibody to block the CD4 and CD8 protein on T cells,
only the aCD8 group and MHCII-GMCSF-Poly I:C treatment group
illustrated the ability to delay tumour growth, and only the MHCII-
GMCSF-Poly I:C treatment group showed a decrease in tumour
volume after 22 days (Fig. 3h). The tumour volumes of aCD4 group
remained the same as those in the control group on Day 24. This

phenomenon revealed that the function of MHCII-GMCSF-Poly I:C
was mainly to stimulate the MHC-II-mediated T-cell immune
response by recruiting and activating CD4+ T cells. Moreover,
MHCII-GMCSF-Poly I:C could also recruit CD8+ T cells and stimulate
the MHC-I-mediated T-cell immune response at a certain level
(Fig. 3i). This might be caused by the cross-reactive immune
response between MHC-I peptides and MHC-II peptides. More-
over, the survival analysis showed that the therapy group of MHCI/
II-GMCSF-Poly I:C could significantly increase the survival rate
compared with control group and other two therapy groups
(Fig. 3j).

Neoantigen vaccines combined with immune checkpoint
inhibitors could enhance the antitumour effect in mice
In addition to broad-spectrum immune stimulant of Poly I:C, we
also evaluated the performance of neoantigen vaccines combined
with immune checkpoint inhibitors (ICIs) of mouse PD-1 antibody
(mPD1) and mouse PD-L1 antibody (mPDL1). Here, we provide a

Fig. 2 In-vitro validation of Neoantigen peptides. a–e In-vitro validation between neoantigen groups and control groups. IFN-γ and CD69
were detected by fluorescein isothiocyanate isomer (FITC). a Control group of IFN-γ and CD69. b Validation group of IFN-γ. c Validation group
of CD69. d Control group of TNF-α. e Validation group of TNF-α. f–i Content of IFN-γ, TNF-α, IL-2 and IL-6 from peripheral blood in the
neoantigen group and control groups at 0 h, 8 h, 24 h, 48 h and 72 h. f Content of IFN-γ. g Content of TNF-α. h Content of IL-2. i Content of IL-6
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novel perspective to evaluate whether the combination of in-
silico-designed neoantigen vaccines and ICIs could increase the
treatment effect.
The results showed that on Day 20, the average tumour size of

the control group was over 1200mm.3 The tumour volume
showed that the best treatment effects occurred in the MHCI/II-
GMCSF-mPDL1 group, followed by treatment with MHCI/II-
GMCSF-mPD1, mPDL1, mPD1 and MHCI/II-GMCSF (Fig. 4a and
Supplementary Fig. 3). For the two neoantigen-ICI combination
therapies, the tumour sizes were <500mm3 on Day 20, which
illustrated a significant effect (P < 0.0001) on the deceleration of
tumour growth and higher than the other three therapies (Fig. 4a).
Meanwhile, we evaluated the percentage of CD3+ T cells (Fig. 4b),
CD8+ T cells (Fig. 4c), and CD4+ T cells (Fig. 4d) among all live
cells. Results showed that control and ICI groups showed no
statistical significance, while neoantigen-involving groups had a
significantly increased number of CD3+ T cells, CD8+ T cells and
CD4+ T cells (P < 0.001). The combined therapy of MHCI/II-GMCSF-

mPDL1 illustrated the best treatment ability, which illustrated the
potential synergistic effect on tumour suppression. The above
results illustrated that the combination of the neoantigen vaccine
and mPD1/mPDL1 antibody displayed a potential synergistic
effect on the antitumour response, resulting in an additional effect
on tumour suppression compared with the single treatment of the
neoantigen vaccine and immune checkpoint blockade.

DISCUSSION
Neoantigen vaccines illustrated strong anticancer activities in
multiple cancers, while not all neoantigen vaccines could provide
the expected effects. To date, hundreds of clinical trials based on
neoantigen vaccines have been conducted globally. Nevertheless,
only a few treatments based on neoantigen vaccines show clinical
benefit for tumour patients.12,13,35 Neoantigen therapy still shows
uncertain efficacy for individual patients, leading low success rate
in clinical trials.9 The main principle of the neoantigen vaccine is to

Fig. 3 In-vivo validation on C57BL/6 mice. a Tumour volumes for C57BL/6 mice after using MHCI and MHCII as monotherapy. b Tumour
volumes for C57BL/6 mice after using GMCSF as monotherapy or adjuvant with neoantigen vaccine. c Survival analysis of single neoantigen
therapy and combined neoantigen therapy. d Percentage of CD4+ T cells among CD45+ lymphocytes on neoantigen combined with GMCSF.
e Percentage of CD8+ T cells among CD45+ lymphocytes on neoantigen combined with GMCSF. f Percentage of MDSCs among CD45+

lymphocytes on neoantigen combined with GMCSF. g Percentage of FoxP3+ T-cells among CD4+ T cells on neoantigen combined with
GMCSF. h Tumour volumes for C57BL/6 mice after treatment with Poly I:C, MHCI-GMCSF-Poly I:C and MHCII-GMCSF-Poly I:C. i Tumour volumes
for C57BL/6 mice after treatment with MHCII-GMCSF-Poly I:C, MHCII-GMCSF-Poly I:C+ aCD8, and MHCII-GMCSF-Poly I:C+ aCD4. j Survival
analysis of different therapies, including monotherapy of Poly I:C, combined therapy of MHCI/II-GMCSF, and combined therapy of MHCI/II-
GMCSF-Poly I:C
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detect the potential T-cell epitopes that have been produced by
tumour mutation. Then, a neoantigen-based therapeutic vaccine
can be constructed to induce cellular immunity. At present, the
screening of cancer-specific neoantigens is dependent on multi-
omics data and bioinformatics prediction. Although the current
benchmark methods of T-cell epitope prediction can reach a high
accuracy, only ~20% of the neoantigens are proven to be able to
activate cellular immunity.17 The gap between such high
prediction accuracy and low clinical effects is likely due to the
complex immune presentation processes.
Usually, the bioinformatics prediction of neoantigen only

focuses on the interaction between MHC-I and peptide. Some
studies also consider the binding affinity between MHC-I-peptide
and T-cell receptors but ignore other important steps, such as the
hydrolysis of proteasome and the presentation of TAP.25,26 It’s
possible that a potential antigenic peptide has a strong bind
affinity with MHC-I molecule, but cannot be produced by
proteasome or transported by TAP, uncapable of being presented
to the cell surface. Therefore, the current bioinformatics prediction
pipeline, which only focuses on MHC-I binding affinity, has certain
limitations. This means that the gap between the high prediction
accuracy of the benchmark method and the real clinical
effectiveness may be due to the failure of the designed antigenic

peptide to be presented. What’s more, early research on
neoantigen prediction mainly focused on the design of MHC-I
epitopes. However, recent studies have shown that the mutated
MHC-II epitopes could also cause therapeutic anticancer immune
responses. For example, Sebastian’s work showed that the
majority of the immunogenic mutanome is recognized by CD4+

T cells.17 MHC-II epitope-based neoantigen vaccines may have
strong anticancer activity. Thus, besides the multiple steps of
MHC-I epitope presentation, the pipeline of neoantigen screening
should also consider MHC-II neoantigens.
Therefore, considering the gaps between the in-silico design

pipeline and clinical usage, we proposed Neo-intline, a neoanti-
gen prediction pipeline that can be used as a benchmark for
neoantigen vaccine design. This pipeline not only incorporates
the design of both MHC-I and MHC-II neoantigens but also refines
the presentation processes of the T-cell epitopes. Beginning from
the mutations obtained through WGS, pipeline can predict the
possibility of each mutation-containing peptide (MCP) from
presentation to finally recognition by T cells. To achieve that,
we fully considered the presentation processes of both MHC-I and
MHC-II peptides and designed two scores, which can be used to
rank and select the potential therapeutic MCPs for synthesis. The
first validation in-silico on clinical trial data and TESLA community

Fig. 4 Effectiveness of neoantigen vaccine, immune checkpoint blockade and combinational therapy in C57BL/6 mice. a Tumour volumes of
the control and five treatment groups. b Percentage of CD3+ T cells among all live cells in the control and five treatment groups. c Percentage
of CD8+ T cells among all live cells in the control and five treatment groups. d Percentage of CD4+ T cells among all live cells in the control
and five treatment groups
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data showed the good performance of Neo-intline, especially on
melanoma compared with current state-of-the-art peers. More-
over, we performed in-vitro and in-vivo validation for melanoma
on C57BL/6 mice model. It should be noted that some of the
antigenic peptides selected in previous studies were in our final
candidate list but were not ranked in the top 10. The previous
MHC-I neoantigens ranked from 11 to 21 among our list of 32
peptides. Previously detected MHC-II peptides were ranked from
28 to 122 among the list of 147 peptides. In this study, we
screened the top 10 MCPs for MHC-I and MHC-II for subsequent
experimental validation.
Through both in-vitro and in-vivo experiments, we found that

the simple therapy of MHC-I neoantigen and MHC-II neoantigen
vaccines could trigger T-cell immunity and illustrate useful but
not significant anticancer effects in C57BL/6 melanoma mice.
The combination of neoantigen vaccine with GM-CSF, Poly I:C
and immune checkpoint inhibitors of PD1/PDL1 antibody could
significantly improve the therapeutic effect of neoantigen
peptides. Additionally, in different combination therapies, other
ingredients cannot activate cellular immunity, while neoantigen
peptides can recruit T cells, release cytokines, and induce
subsequent T-cell-mediated cellular immunity. Notably, MHC-I
peptides can also cause CD4+ T-cell-mediated cellular immunity,
and the MHC-II peptides can cause CD8+ T-cell-mediated cellular
immunity, which may be due to the cross-reaction between the
MHC-I peptides and MHC-II peptides. These results showed that
Neo-intline can accurately predict neoantigen peptides that
could trigger cellular immunity through the immune presenta-
tion system and recruit functional T cells. Additionally, in clinical
treatment, the neoantigen vaccine can be combined with other
non-T-cell-targeted drugs, such as the broad-spectrum immune
enhancement agents GM-CSF and Poly I:C and specific immune
checkpoint inhibitors PD1 antibody and PDL1 antibody, to
achieve better immunotherapeutic effects.
In general, we presented Neo-intline, the pipeline integrates the

processes of T-cell immune presentations. Accepting sequence
data as input, Neo-intline comprehensively considered all the
possible processes in T-cell epitope presentation, including not
only the proteasomal hydrolysis, TAP transport, MHC-I binding and
TCR recognition steps in class I peptide presentation, and more
importantly, took class II peptide presentation into account,
therefore the high immunogenicity of the predicted peptides both
in in-silico, in-vitro and in-vivo validation. The novelty and impact
of Neo-intline reals in three levels: (1) introducing the idea of
obtaining more accurate neoantigens by fully considering all the
known steps in the T-cell epitope presentation processes, (2)
providing in-silico, in vitro and in vivo validation to prove the
peptides designed by Neo-intline is capable to stimulate T-cell
immunity, (3) testing the therapeutic potential to combine the
neoantigens with adjuvant and immune checkpoint inhibitors for
melanoma treatment.
There are several limitations in this study to be considered

when interpreting the results. The usage of Neo-intline could be
influenced by the applicability and accuracy of the algorithms
integrated in the pipeline. Note that, the current prediction tools
may not fully consider the exact biological processes, for example,
the proteasome cleavage may produce spliced peptides, therefore
generating T epitopes different from exogenous protein
sequences,36 which is not taken into account by currently used
algorithm. Besides, in this study, we only considered the
combination of neoantigen therapy with PD-1/PD-L1 antibodies.
Other immune checkpoint inhibitors such as CTLA-4 antibody or
other anti-cancer drugs may also be considered for the
neoantigen-based combination therapy. In addition, we only
provide the in-silico validation on human neoantigen detection, in-
vitro and in-vivo validation on C57BL/6 mice model. The real
clinical utility is yet to be verified by the subsequent experiments
and clinical trials.

MATERIALS AND METHODS
Pipeline design of Neo-intline
The pipeline of Neo-intline is illustrated in Fig. 5. The main
purpose of Neo-intline was to simulate the biological processes of
T-cell epitope presentation, which included (1) selecting muta-
tions with high expression levels, (2) generating 45-mer peptides
for MHC-I and 55-mer peptides for MHC-II around the mutation
sites, as MCPs, (3) deriving the peptides with a high possibility of
being hydrolysed by the proteasome for MHC-I MCPs, (4)
calculating the theoretical IC50 value between MCPs and TAP for
MHC-I MCPs, (5) predicting the binding affinity between MCPs and
two types of MHC, and (6) combining the above steps with the
TCR recognition score to obtain the final ranking of both MHC-I
neoantigens (MNA-I) and MHC-II neoantigens (MNA-II). Among the
above, the in-vivo processing steps can be systemically simulated
through Neo-intline. Detailed information for each step can be
found below.

Whole exome sequencing and transcriptome resequencing
The Whole Exome Sequencing was performed by a commercial
provider (BGI-Tech). The DNA and RNA from B16F10 cells and DNA
from the tail tissue of C57BL/6 mice were extracted in triplicate for
sequencing. The bioinformatics analysis began from the sequen-
cing data (raw data) generated on Illumina HiSeq2000 platform.
Firstly, the adaptor sequence in the raw data was removed, and
low-quality reads which have too many Ns or low base quality
were discarded. Secondly, Burrows-Wheeler Aligner (BWA)37 was
used to do the alignment. The reference genome uses the mouse
genome mm10 (http://hgdownload.cse.ucsc.edu/goldenPath/
mm10/bigZips/). Then, BWA can convert the sequence data into
BAM format files. After that, the BAM format files were further
processed, such as fixing mate information of the alignment,
adding read group information, and removing duplicate reads
caused by polymerase chain reaction (PCR). After these processes,
the final BAM files used to do the variant calling got ready. Single
Nucleotide Polymorphisms (SNPs) were called by Genome
Analysis Toolkit (GATK).38 After that, some filters were applied to
get more confident variant results. Then, the commercial provider
(BGI-Tech) uses AnnoDB which is in-house to annotate the
confident variant results. The final variants can feed to the
downstream advanced analysis pipeline. Quality Control (QC) was
present in the whole pipeline for the clean data, the alignment,
and the called variant. In this process, we detected melanoma-
associated somatic mutated genes from SNP analysis shown in
Supplementary Data 2 and Supplementary Data 3, respectively.
The Transcriptome Resequencing was also performed by BGI-

Tech, in which the raw data generated from the Illumina HiSeq
platform was analysed through the standard pipeline. Samples were
extracted from the mouse tumour cells B16F10 and tail tissue
samples of C57BL/6 mice, which were sequenced in triplicate. Then,
quality control was conducted by the following filter criteria: (1)
Remove reads with adaptors; (2) Remove reads in which unknown
bases (N) are >5%; (3) Remove low-quality reads (we define the low-
quality read as the percentage of the base which quality is <15 is
>20% in a read). Next, HISAT39 was used to map the clean reads to
mm10 from http://hgdownload.cse.ucsc.edu/goldenPath/mm10/
bigZips/. Finally, fragments Per Kilobase of the exon model per
Million mapped fragments (FPKM) were obtained for each gene
according to the sequencing reports.

Peptide preparation
For each mutation at position m, a peptide ranging from position
m-n to m+ n was defined as the tumour-specific mutation
peptide P1 (m-n,m+ n). The peptides derived from wild-type
samples (no mutation) and tumour samples (mutation) were
defined as PWT and PM, respectively.
Here, for MHC-I, n= 22, while for MHC-I, n= 27. Thus, 45-mer

peptides for MHC-I and 55-mer peptides for MHC-II can be
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Fig. 5 Workflow for pipeline Neo-intline. The NGS data of melanoma samples derived from C57BL/6 mice were aligned with the reference
sequence to detect the mutation sites. After the six steps of Neo-intline, the top 10 ranking peptides for both MHC-I and MHC-II were linked
with a flexible linker of GGGGSGGGGSGGGGS as two long peptides. The above peptides were expressed on a lentivirus vector for further
evaluation and were marked as MNA-I-10 (MHCI) and MNA-II-10 (MHCII), respectively
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generated as mutation-containing peptides (MCPs). Note that if
the mutation site nears the N-terminal or C-terminal, the peptide
length may be <2n+ 1. Furthermore, core peptides of the 9-mer
for MHC-I and 15-mer for MHC-II involving the mutation sites were
derived from MCPs, which included 4,392 peptides for MHC-I and
7,302 peptides for MHC-II.
After peptide preparation, we prepared the in-silico simulation

mode, which includes (1) preselection according to the gene
expression level of transcripts per kilobase of exon model per
million mapped reads (TPM); (2) derivation of the peptides with a
high probability of being hydrolyzed by the proteasome, for MHC-
I peptide only; (3) calculation of the IC50 value between peptides
and the transporter associated with antigen processing (TAP), for
MHC-I peptide only; (4) prediction of the MHC binding affinity
between peptide and MHC molecules; and (5) combination of the
scores of the above steps with the TCR recognition score to obtain
the final neoantigen probability score (NPS). Then, both the MHC-I
epitopes (MNA-I) and MHC-II epitopes (MNA-II) were ranked
according to NPS.

Preselection of peptides based on the expression level
The expression level of the mutant genes could influence the
immunogenicity of neoantigens. Before peptide selection, the
expression level should be considered as a filtering condition.
From the sequence data, the fragments per kilobase of the exon
model per million mapped fragments (FPKM) were obtained for
each gene. Then, the FPKM score was transformed to transcripts
per kilobase of exon model per million mapped reads (TPM). Next,
the TPM score can be mapped to each peptide according to the
mutation sites and the corresponding located genes. The TPM
score for each MCP was defined using Formula (1):

TS ¼ 1; if TPMi > 3

0; if TPMi � 3

�
(1)

where TS represents the TPM Score, and for each peptide, only
when the TPM of its located gene is >3 will the TS score be 1;
otherwise, it is 0.

Deriving the hydrolysis probability score of each peptide
The proteasome hydrolysis score of each peptide was predicted
through Netchop40 with default parameters. The proteasome
hydrolysis score (PHS) was defined using Formula (2):

PHS ¼ 1; if N0P > 0:7 or C0P > 0:7

0; if N0P � 0:7 and C0P � 0:7

�
(2)

Note that Netchop outputs two different possibility scores,
including the N’ hydrolysis score and C’ hydrolysis score, and in
this study, we defined that if the possibility score is at least over
0.7; this peptide will be presented in the next step.

Predicting the TAP score of each peptide
Here, the TAP binding ability was predicted through Besser H’s
work41 with default parameters. The output IC50 value was used as
the TAP score (T). Notably, low IC50 values represent a high affinity
and a higher likelihood of binding. Thus, the score T is negatively
correlated with the potential to become neoantigen peptides. The
TAP binding score (TBS) was defined as the logarithm value of the
IC50 value in further calculations. The defined TAP score of IC50
was defined as TIC, which is defined as TIC= TBS+ |TBSmin |.

Tumour-specific MHC-I binding peptide prediction
For MHC-I epitope prediction, the binding affinity of all the 45-mer
peptides, including both PWT1 and PM1, was predicted through
NetMHCpan 4.0.11 The segment length of the T-cell epitope was
set as the 9-mer, and mouse MHC alleles of H2-Dd, H2-Kd, H2-Ld,
H2-Db, and H2-Kb were involved. Then, all of the 9-mer segments
SWT1 and SM1 were split from PWT1 and PM1 using a 9-mer length

sliding window, and the binding affinity between each segment
and each MHC allele was predicted according to the default
threshold. Only those SM1 with MHC-I binding affinity <500 nM
were selected as potential neoantigen candidates, and the affinity
ratio A S1ð Þ was calculated using Formula (3):

A S1ð Þ ¼ Aff ðSWT1Þ
Aff ðSM1Þ (3)

where Aff ðSWT1Þ refers to the affinity score of the segment S1 in
PWT1, and Aff ðSM1Þ refers to the affinity score of the segment S1 in
PM1. Here, score A S1ð Þ represents the magnification times of MHC-I
binding caused by the mutation sites.

Tumour-specific MHC-II binding peptide prediction
For MHC II binding peptides, the 55-mer peptides at correspond-
ing positions in wild-type samples and tumour samples were
marked as PWT1 and PM1, respectively. The binding affinity score of
all the 55-mer peptides was predicted through NetMHCIIpan.11,42

Different from MHC-I, the segment length of MHC-II peptides was
set as the 15-mer, and MHC alleles of H2-IAb and H2-IAd were
selected. Then, all of the 15-mer segments SWT2 and SM2 were split
from PWT2 and PM2 using a 15-mer length sliding window, and the
binding affinity between each segment and each MHC allele was
predicted according to the default threshold. Similarly, only those
SM2 with MHC-I binding affinity <500 nM were selected as
potential neoantigen candidates, and the affinity ratio A S2ð Þ was
calculated using Formula (4):

A S2ð Þ ¼ Aff ðSWT2Þ
Aff ðSM2Þ (4)

where Aff ðSWT2Þ refers to the affinity score of the segment S2 in
PWT2, and Aff ðSM2Þ refers to the affinity score of the segment S2 in
PM2. Here, score A S2ð Þ represents the magnification times of MHC-
II binding caused by the mutation sites.

TCR recognition probability
To test the ability of the predicted MHC-binding peptide to be
recognized by the TCR, the probability score of R was calculated.
Typically, for a given neoantigen peptide S, the TCR-recognition
score R represents the probability that S is recognized by the T-cell
receptor repertoire. The value of R was estimated based on the
evaluation of similarities between experimentally determined
MHC-binding peptides and predicted peptides. First, the epitope
peptides determined by the T-cell binding test were collected
from the public database of the Immune Epitope Database and
Analysis Resource (IEDB).27 The sequence similarity between
predicted MHC binding peptides and IEDB-determined peptides
was calculated by BLASTp using BLOSUM62 as the substitution
matrix with a gap opening penalty of -11 and a gap extension
penalty of -1. The sequence similarity score was defined as |s,e| in
Formulas (5) and (6), and the T-cell recognition probability R was
calculated.

R ¼ ZðkÞ�1
X
e2IEDB

exp½�kða� js; ej� (5)

ZðkÞ ¼ 1þ
X
e2IEDB

exp½�kða� js; ej� (6)

where R represents the probability score of T-cell recognition, a
represents the horizontal displacement of the binding curve, and k
is the slope of the curve at a. Here, a was set as 26, and k was set
as 1 according to a previous study.5

Neoantigen probability score
For each of the target peptides, the final neoantigen probability
score (NPS) for immunogenicity was calculated using Formula (7)
for MHC-I binding peptides and Formula (8) for MHC-II binding
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peptides. The MHC-binding peptides with the top-ranking NPS
were selected for further experimental validation.

NPSMHC�I ¼ TS � PHS � A S1ð Þ � R=TIC (7)

NPSMHC�2 ¼ TS � A S2ð Þ � R (8)

where NPSMHC�I represents the neoantigen probability score for
MHC-I and NPSMHC�2 represents the neoantigen probability score
for MHC-II.

Model comparison
The prediction of four approaches (Neo-intline, MuPeXi, Neopep-
see, and pTuneos) will provide a list of all possible peptides in 8-
mer, 9-mer, 10-mer and 11-mer, with the ranking score (Fig. 1a).
Further, according to the 100% identity of peptides matched in
the experimentally validated peptides from the above three
papers and from IEDB27 (Fig. 1b), a total number of 53 peptides
(Supplementary Table 4) were derived as the benchmark
validation dataset for model comparison (Fig. 1c). We obtained
the first rank values of matched peptides with a unique MHC
allele. Then, the rank coverage score (RCS) from pTuneos was
adopted as evaluation parameters, which was shown in formula
(S1) and formula (S2) illustrated:26

RankCoverageScore ¼
P

n2negative rankn
T ´ numðnÞ ´ coverage nð Þ

�
P

p2positive rankp
T ´ num pð Þ ´ coverage pð Þ

(9)

coverage kð Þ ¼ maxðrankkÞ
T

k 2 n; pð Þ (10)

The RCS ranges between -1 and 1, where larger RCS represents
better ranking performance.
Moreover, we defined the ranking score (RS) for each peptide in

the prediction list of all four tools, which was defined as the
ranking of the corresponding peptides divided by the total
number of all the peptides in the ranking list. The value range of
RS is between 1/n (the total number in the ranking list) and 1
(ranked as the last one), where 1/n means top 1 ranking and 1
means the last ranking. In an ideal way, the positive samples
should achieve lower RS than the negative ones. According to the
above, the RS of all the experimentally validated positive peptides
were calculated and the peptide didn’t been detected in each
algorithm was marked as 1.
The prediction of Neo-intline compare with DeepNeo, Seq2Neo

and TSNAD v2.0 were using the binary classification parameters
including AUC value, balanced accuracy, sensitivity and specificity,
which were given as formula (11) to (13) illustrated.

Sensitivity ¼ TP
TP þ FN

(11)

Specificity ¼ TN
TN þ FP

(12)

Balanced Accuracy ¼ Sensitivity þ Specificity
2

(13)

Where TP stands for true positive samples, TN stands for true
negative samples, FP stands for false positive samples and FN
stands for false negative samples.

Mouse models
All animal experiments were approved by the Animal Ethics
Committee of Tongji University. Female C57BL/6 J mice
(6–8 weeks old) were purchased from SLRC Laboratory Animal

Co., Ltd. (Shanghai, China) and were housed in a pathogen-free
animal facility at the experimental animal center. Mice were fed
standard chow and provided with distilled water ad libitum.
Sanitized cages with fresh bedding were provided weekly. After
the experiments, the mice were anesthetized with pentobarbital
sodium (60 mg/kg) and euthanized using 100mg/kg sodium
pentobarbital. Appropriate efforts were made to minimize animal
suffering.
C57BL/6 J mice bearing a total of 2.5 ×105 subcutaneous (s.c.)

B16F10 tumour cells were randomly assigned to treatment groups
(6–8 mice per group), with the mean tumour volume for each
group being 100–150mm3. Then, the DNA vector (neoantigen,
MHCI or MHCII-GMCSF) was injected subcutaneously (sc.) at a
dosage of 20 μg twice a week from Day 0. Tumour sizes were
measured with a digital caliper every other day and calculated as
length × width2 × 0.5.
For combination therapy, mice were s.c. injected with B16F10

tumour cells and i.v. injected on the same day with DNA vector
(20 μg), alone or combined with anti-mPD-1 antibody (10 mg/kg),
anti-mPD-L1 antibody (10 mg/kg) or Poly(I:C) (i.t. injected) 50 µg
twice a week. Tumour growth was monitored every other day.

Generation of BM-derived DCs
BM cells were flushed from femurs and plated in a 6-well plate at
2 × 106 cells in 3–6mL of medium comprised of RMPI-1640 (Gibco,
Bleiswijk, The Netherlands) supplemented with 10% FBS (Gibco),
25 nM β-mercaptoethanol (Sigma), 100 U/mL penicillin (Eureco
Pharma), 100 µg/mL streptomycin (Sigma) and 20 ng/mL GM-CSF
(PeproTech, Hamburg, Germany) for 8 days, with a medium
change on Day 4 and Day 7. Subsequently, nonadherent GMDCs
were used for various assays.

T-Cell priming assay
Top 10 ranking MHC-I peptides of 45-mer length (Supplementary
Table 1) and Top 10 ranking MHC-II peptides of 55-mer length
(Supplementary Table 2) were synthesized by the Sangon Biotech
Co., Ltd. We concatenated the DNA sequences of each top 10
neoantigens together, with a GS-linker in between. For in-vitro T-
cell priming assay, we added 50 μl of undiluted supernatant
containing the expressed neoantigen to the plate, which was
plated with both DC cells and T cells, the peptide concentration of
neoantigen peptides is 10 μM. For in-vivo study, we selected a
20 μg DNA plasmid for administration. For in-vitro T-cell priming
assays, 105 DC cells were cocultured with OVA and neoantigen in
serum-free RPMI medium for 3 h at 37 °C. T cells were isolated
using biotinylated anti-CD3 antibodies, followed by enrichment
with antibiotin magnetic beads (Miltenyi Biotec). Then,
1 × 106 T cells were added to neoantigen-treated DCs for 4 h.
CD86 and CD11C positive DCs were analysed by flow cytometry.
TNF-α and IFN-γ produced during the priming of T cells were
measured by flow cytometry.

Analysis of tumour-infiltrating lymphocytes (TILs) and MDSCs
After treatment with the vaccine, tumours were collected and
dissociated using a mouse tumour dissociation kit with a gentle
MACS Octo Dissociator (Miltenyi Biotec) according to the
manufacturer’s protocol. Tumour-infiltrating cells were analysed
by flow cytometry. CD11b+Gr-1+ cells were labelled with APC-
conjugated Gr-1 and FITC-conjugated CD11b antibodies.
Single-cell suspensions (106 cells/100 μl) were preincubated

with a purified rat anti-mouse CD16/CD32 monoclonal antibody
(Fc block, clone 2.4 G, BD Biosciences) and then stained with one
of the following fluorescently labelled antibodies at 4 °C for
30min: anti-CD45-AF 700 (clone 30-F11), anti-CD3-APC (clone 145-
2C11), anti-CD4-PE-Cy7 (clone RM4-5), anti-CD8-Percp-Cy5.5 (clone
53-6.7), anti-Foxp3-FITC (clone FJK-16s), anti-GR-1-APC (clone RB6-
8C5), and anti-CD11b-FITC (clone M1/70) antibodies purchased
from BD Biosciences.
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