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Cyclin L1 controls cardiomyocyte proliferation and heart
repair after injury
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Dear Editor,
Myocardial infarction (MI) is characterized by the loss of

functional cardiomyocyte (CM) in the heart, resulting in cardiac
systolic dysfunction and heart failure.1,2 Increasing evidence
suggested that in the heart of neonatal mice after apical resection
(AR), the CM can proliferate and regenerate myocardium to repair
the heart. While in the heart of adult mice after MI, the CM loses
the ability to re-enter the cell cycle but undergoes hypertrophic
growth, which contributes to cardiac pathological remodeling.3,4

Thus, inducing adult CM cell cycle re-entry is a novel strategy to
promote the repair of damaged hearts and improve cardiac
function. It has been reported that the cyclin family plays an
important role in cell cycle regulation.5 However, it was not known
whether Cyclin L1 (CCNL1), a member of the cyclin family,
regulates CM proliferation and heart repair after injury.
Here, we performed immunofluorescence staining on CM and

found that CCNL1 is mainly expressed in the nucleus (Supple-
mentary Fig. 1a), and its expression was markedly upregulated in
the mouse heart tissue after birth (Fig. 1a). While 7 days after AR in
1-day-old mice, the expression of CCNL1 was significantly
decreased in heart tissue of mice (Supplementary Fig. 1b, c).
Additionally, CCNL1 expression was markedly enhanced in heart
tissue of mice with MI (Supplementary Fig. 1d). These data
strongly implies that CCNL1 may be involved in the regulation of
cardiomyocyte proliferative potential after injury. To investigate
the regulatory effect of CCNL1 on CM proliferation, we performed
immunofluorescence staining and found that CCNL1 negatively
regulates CM proliferation in vitro (Fig. 1b and Supplementary Fig.
1e–i). The similar results were obtained in HL-1 cell line as well
(Supplementary Fig. 2). We next constructed cTnT-CCNL1 shRNA
adeno-associated virus 9 (AAV-9 CCNL1 shRNA) to explore
whether CCNL1 silencing could promote heart repair after injury.
As expected, after AAV-9 CCNL1 shRNA was administered to MI
mice, the pre-existing CM re-entered the cell cycle, the CM size
and infarct size were decreased, and the damaged cardiac
function was significantly improved (Fig. 1c, d and Supplementary
Fig. 3). The above data indicate that the silencing of CCNL1
promotes CM proliferation and heart repair after MI.
Furthermore, we performed immunofluorescence staining of

CCNL1 on the CM isolated from postnatal mice, and found that
CCNL1 in the CM nucleus of 7-day-old mice exhibited larger
“puncta” than that of 1-day-old mice (Fig. 1e). Meanwhile, we
found that the full length CCNL1 protein contains many
intrinsically disordered regions (IDRs) (Supplementary Fig. 4).
Given that proteins with IDRs that may participate in the
interaction of multivalent proteins tend to undergo liquid–liquid
phase separation (LLPS),6 we speculated that CCNL1 may undergo
LLPS in the CM of postnatal mice. It was reported that sphericity,
ability to split and fuse, and rapid and spontaneous fluorescence
recovery after photobleaching (FRAP) are key features of phase-
separated condensates.7 Thus, we conducted FRAP analysis and

found that the puncta of EGFP-CCNL1 in the nucleus of CM and
HL-1 cell line exhibited rapid fluorescence recovery after photo-
bleaching (Fig. 1f and Supplementary Fig. 5a, b). Live-cell imaging
showed that the nuclear puncta of EGFP-CCNL1 would gradually
fuse and become larger (Fig. 1g and Supplementary Fig. 5c). These
results suggest that the puncta of EGFP-CCNL1 in the CM nucleus
is dynamic and exhibit liquid properties. In addition, the puncta of
EGFP-CCNL1 in the CM nucleus was destroyed after treatment
with 1,6-hexanediol (which disrupted droplet aggregation by
disrupting hydrophobic interactions) (Fig. 1h). The purified CCNL1
(containing IDRs) protein formed droplets spontaneously in salt
solutions and in solutions containing crowding agent, and most
droplet formation was inhibited by treatment with 1,6-hexanediol
(Fig. 1i). The above data suggest that CCNL1 has the ability to
phase separate into condensate in the CM. Then, we tested the
effect of CCNL1 undergoing LLPS on CM proliferation. Live-cell
imaging showed that the EGFP-CCNL1 without IDRs (EGFP-
CCNL11–300) was expressed in the whole CM, and no obvious
puncta similar to EGFP-CCNL1 was observed in the CM nucleus
(Fig. 1j). Notably, transfection with EGFP-CCNL11–300 did not
inhibit CM proliferation compared with EGFP-CCNL1 (Supplemen-
tary Fig. 6a). Meanwhile, the proliferation ability of CM was
enhanced after LLPS of CCNL1 was destroyed by 1,6-hexanediol
(Supplementary Fig. 6b). These results indicate that the inhibitory
effect of CCNL1 on CM proliferation is at least partially associated
with its LLPS behavior.
To further elucidate how CCNL1 affects CM proliferation, the

proteins interacting with CCNL1 were determined by Co-
immunoprecipitation/liquid chromatography mass spectrometry
(Co-IP/LC-MS). A total of 65 proteins were identified in the
immunoprecipitated CCNL1 complex and the Co-IP/LC-MS analysis
data were classified according to biological function (Fig. 1k, l).
Cluster of Orthologous Groups (COG) analysis and protein
enrichment analysis suggested that the proteins are highly
enriched in the category of “signal transduction” (Supplementary
Fig. 7). The above data showed that CCNL1 may play a crucial role
in regulating CM proliferation through intracellular signal trans-
duction. Among the candidate proteins immunoprecipitated by
CCNL1 in the category of “signal transduction mechanisms” (Fig.
1l), PPP1CA, a protein phosphatase involved in the depho-
sphorylation of key factors of Hippo signaling pathway, such as
yes-associated protein (Yap), played a role in regulating CM
proliferation.8,9 The expression of PPP1CA was obviously elevated
in the nucleus of mouse heart tissue after birth, which was
consistent with CCNL1 (Fig. 1m). To test whether CCNL1 could
interact with PPP1CA, we performed Live-cell imaging and Co-IP
and found that CCNL1 does interact with PPP1CA (Fig. 1n, o and
Supplementary Fig. 8a). Furthermore, we found that overexpres-
sion of CCNL1 significantly increases the nuclear expression of
PPP1CA and decreases the cytoplasm expression of PPP1CA (Fig.
1p). Our previous study has found that PPP1CA silencing inhibits
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the dephosphorylation of phosphorylated Yap and reduces Yap
nuclear translocation, thereby depressing CM proliferation.9 Thus,
we further analyzed the effect of CCNL1 on the expression of Yap
in CM. The results showed that the nuclear translocation of Yap

was decreased after CCNL1 overexpression, while CCNL1 siRNA
promoted Yap nuclear translocation, which was partially blocked
by PPP1CA siRNA (Fig. 1q and Supplementary Fig. 8b). Moreover,
we found that knockdown of PPP1CA and Yap partially attenuates
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the effects of CCNL1 silencing and PPP1CA overexpression on CM
proliferation, respectively (Supplementary Fig. 8c–e).
The above results suggest that elevated concentration of CCNL1

can undergo LLPS in the CM nucleus of postnatal mice and inhibit
CM proliferation, which is at least partially associated with CCNL1/
PPP1CA nuclear accumulation and the less nuclear translocation
of Yap (Supplementary Fig. 8f). Of course, the connection between
the regulatory effect of CCNL1 on CM proliferation and heart
repair after injury and its LLPS behavior still needs to be further
explored. Additionally, it is reported that CDK/cyclin-dependent
phosphorylation control alternative splicing, such as CDK11/cyclin
L complexes.10 So, the CDK11/CCNL complexes might also be
involved in the regulation of CM proliferation and heart repair
after injury by affecting alternative splicing of mRNAs. Taken
together, we confirmed that CCNL1 plays a regulatory role in CM
proliferation and heart repair after MI, which may be a potential
regulatory target for heart repair after MI.
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