Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered targeting OIP5 sensitizes bladder cancer to chemotherapy resistance via TRIP12-PPP1CB-YBX1 axis

Abstract

Chemoresistance is an important cause of treatment failure in bladder cancer, and identifying genes that confer drug resistance is an important step toward developing new therapeutic strategies to improve treatment outcomes. In the present study, we show that gemcitabine plus cisplatin (GEM/DDP) therapy induces NF-κB signaling, which promotes p65-mediated transcriptional activation of OIP5. OIP5 recruits the E3 ubiquitin ligase TRIP12 to bind to and degrade the phosphatase PPP1CB, thereby enhancing the transcription factor activity of YBX1. This in turn upregulates drug-resistance-related genes under the transcriptional control of YBX1, leading to chemoresistance. Moreover, PPP1CB degradation can enhance the phosphorylation activity of IKKβ, triggering the NF-κB signaling cascade, which further stimulates OIP5 gene expression, thus forming a negative feedback regulatory loop. Consistently, elevated OIP5 expression was associated with chemoresistance and poor prognosis in patients with bladder cancer. Furthermore, we used a CRISPR/Cas9-based engineered gene circuit, which can monitor the progression of chemoresistance in real-time, to induce OIP5 knockout upon detection of increased NF-κB signaling. The gene circuit significantly inhibited tumor cell growth in vivo, underscoring the potential for synergy between gene therapy and chemotherapy in the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OIP5 expression is induced by GEM/DDP and correlates with bladder cancer chemoresistance.
Fig. 2: OIP5 promotes resistance to GEM/DDP in vivo and in bladder cancer organoids.
Fig. 3: Binding of PPP1CB by OIP5 promotes proteasome-mediated degradation of PPP1CB.
Fig. 4: OIP5-TRIP12 mediates the ubiquitination-dependent degradation of PPP1CB.
Fig. 5: OIP5, TRIP12, and PPP1CB form a protein complex.
Fig. 6: PPP1CB-mediated YBX1 phosphorylation is controlled by the OIP5-TRIP12 axis.
Fig. 7: PPP1CB/NF-κB axis regulates OIP5 transcription in chemoresistant bladder cancer cells.

Similar content being viewed by others

Data availability

The gene expression data generated in this study are available in the SRA database (SRA: PRJNA1110839).

References

  1. Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: a review. JAMA. 2020;324:1980–91.

    Article  PubMed  CAS  Google Scholar 

  2. van Hoogstraten LMC, Vrieling A, van der Heijden AG, Kogevinas M, Richters A, Kiemeney LA. Global trends in the epidemiology of bladder cancer: challenges for public health and clinical practice. Nat Rev Clin Oncol. 2023;20:287–304.

    Article  PubMed  Google Scholar 

  3. Compérat E, Amin MB, Cathomas R, Choudhury A, De Santis M, Kamat A, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022;400:1712–21.

    Article  PubMed  Google Scholar 

  4. Rouprêt M, Seisen T, Birtle AJ, Capoun O, Compérat EM, Dominguez-Escrig JL, et al. European Association of Urology guidelines on upper urinary tract urothelial carcinoma: 2023 Update. Eur Urolo. 2023;84:9-6.

  5. Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, et al. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat. 2023;68:100938.

    Article  PubMed  CAS  Google Scholar 

  6. Pandit B, Royzen M. Recent development of prodrugs of gemcitabine. Genes 2022;13:466.

  7. Chung DY, Kang DH, Kim JW, Ha JS, Kim DK, Cho KS. Comparison of oncologic outcomes of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin (ddMVAC) with gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy for muscle-invasive bladder cancer: systematic review and meta-analysis. Cancers. 2021;13:2770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Goel S, Sinha RJ, Bhaskar V, Aeron R, Sharma A, Singh V. Role of gemcitabine and cisplatin as neoadjuvant chemotherapy in muscle invasive bladder cancer: experience over the last decade. Asian J Urol. 2019;6:222–9.

    Article  PubMed  Google Scholar 

  9. Zhang JH, Starr SL, Chamie K. Contemporary systemic therapies in urothelial carcinoma. Urology. 2023;174:150–8.

    Article  PubMed  Google Scholar 

  10. Grobet-Jeandin E, Pinar U, Parra J, Rouprêt M, Seisen T. Health-related quality of life after curative treatment for muscle-invasive bladder cancer. Nat Rev Urol. 2023;20:279–93.

    Article  PubMed  Google Scholar 

  11. Lemiński A, Michalski W, Masojć B, Kaczmarek K, Małkiewicz B, Kienitz J, et al. Combined modality bladder-sparing therapy for muscle-invasive bladder cancer: how (should) we do it? A narrative review. J Clin Med. 2023;12:1560.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  13. Naetar N, Hutter S, Dorner D, Dechat T, Korbei B, Gotzmann J, et al. LAP2alpha-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit. J Cell Sci. 2007;120:737–47.

    Article  PubMed  CAS  Google Scholar 

  14. Pan D, Klare K, Petrovic A, Take A, Walstein K, Singh P, et al. CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary for CENP-A loading. Elife. 2017;6:e23352.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fu H, Liu N, Dong Q, Ma C, Yang J, Xiong J, et al. SENP6-mediated M18BP1 deSUMOylation regulates CENP-A centromeric localization. Cell Res. 2019;29:254–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chun HK, Chung KS, Kim HC, Kang JE, Kang MA, Kim JT, et al. OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers. BMB Rep. 2010;43:349–54.

    Article  PubMed  CAS  Google Scholar 

  17. Wang D, Chen Z, Lin F, Wang Z, Gao Q, Xie H, et al. OIP5 promotes growth, metastasis and chemoresistance to cisplatin in bladder cancer cells. J Cancer. 2018;9:4684–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Xu Y, Xu X, Ni X, Pan J, Chen M, Lin Y, et al. Gene-based cancer-testis antigens as prognostic indicators in hepatocellular carcinoma. Heliyon. 2023;9:e13269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li Y, Xiao F, Li W, Hu P, Xu R, Li J, et al. Overexpression of Opa interacting protein 5 increases the progression of liver cancer via BMPR2/JUN/CHEK1/RAC1 dysregulation. Oncol Rep. 2019;41:2075–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Gong M, Li Y, Song E, Li M, Qiu S, Dong W, et al. OIP5 Is a novel prognostic biomarker in clear cell renal cell cancer correlating with immune infiltrates. Front Immunol. 2022;13:805552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Li Z, Xu H, Gong Y, Chen W, Zhan Y, Yu L, et al. Patient-derived upper tract urothelial carcinoma organoids as a platform for drug screening. Adv Sci. 2021;9:e2103999.

  22. Wang X, Wang B, Li F, Li X, Guo T, Gao Y, et al. The c-Src/LIST positive feedback loop sustains tumor progression and chemoresistance. Adv Sci. 2023;10:e2300115.

  23. Verbinnen I, Ferreira M, Bollen M. Biogenesis and activity regulation of protein phosphatase 1. Biochem Soc Trans. 2017;45:89–99.

    Article  PubMed  CAS  Google Scholar 

  24. Peti W, Nairn AC, Page R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 2013;280:596–611.

    Article  PubMed  CAS  Google Scholar 

  25. Marei H, Tsai WK, Kee YS, Ruiz K, He J, Cox C, et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature. 2022;610:182–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol. 2022;23:350–67.

    Article  PubMed  CAS  Google Scholar 

  27. Prabhu L, Hartley AV, Martin M, Warsame F, Sun E, Lu T. Role of post-translational modification of the Y box binding protein 1 in human cancers. Genes Dis. 2015;2:240–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal. 2021;85:110073.

    Article  PubMed  Google Scholar 

  29. Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci. 2019;110:1536–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, et al. Multidrug resistance of cancer cells and the vital role of P-glycoprotein. Life. 2022;12:897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming cancer multi-drug resistance (MDR): reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother. 2023;162:114643.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y, Zhan Y, Chen Z, He A, Li J, Wu H, et al. Directing cellular information flow via CRISPR signal conductors. Nat Methods. 2016;13:938–44.

    Article  PubMed  CAS  Google Scholar 

  33. Kanmalar M, Abdul Sani SF, Kamri N, Said N, Jamil A, Kuppusamy S, et al. Raman spectroscopy biochemical characterisation of bladder cancer cisplatin resistance regulated by FDFT1: a review. Cell Mol Biol Lett. 2022;27:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kaiho-Soma A, Akizuki Y, Igarashi K, Endo A, Shoda T, Kawase Y, et al. TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Mol Cell. 2021;81:1411–24.e1417.

    Article  PubMed  CAS  Google Scholar 

  35. Xiong Y, Wang L, Xu S, Fu B, Che Y, Zaky MY, et al. Small molecule Z363 co-regulates TAF10 and MYC via the E3 ligase TRIP12 to suppress tumour growth. Clin Transl Med. 2023;13:e1153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Molkentine DP, Molkentine JM, Bridges KA, Valdecanas DR, Dhawan A, Bahri R, et al. p16 Represses DNA damage repair via a novel ubiquitin-dependent signaling cascade. Cancer Res. 2022;82:916–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. The ubiquitin ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. Cell Rep. 2020;32:107985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Challa K, Schmid CD, Kitagawa S, Cheblal A, Iesmantavicius V, Seeber A, et al. Damage-induced chromatome dynamics link Ubiquitin ligase and proteasome recruitment to histone loss and efficient DNA repair. Mol Cell. 2021;81:811–29.e816.

    Article  PubMed  CAS  Google Scholar 

  39. Brunet M, Vargas C, Larrieu D, Torrisani J, Dufresne M. E3 ubiquitin ligase TRIP12: regulation, structure, and physiopathological functions. Int J Mol Sci. 2020;21:8515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Aerden M, Denommé-Pichon AS, Bonneau D, Bruel AL, Delanne J, Gérard B, et al. The neurodevelopmental and facial phenotype in individuals with a TRIP12 variant. Eur J Hum Genet. 2023;31:461–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gudjonsson T, Altmeyer M, Savic V, Toledo L, Dinant C, Grøfte M, et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell. 2012;150:697–709.

    Article  PubMed  CAS  Google Scholar 

  42. Keppler BR, Archer TK. Ubiquitin-dependent and ubiquitin-independent control of subunit stoichiometry in the SWI/SNF complex. J Biol Chem. 2010;285:35665–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nguyen H, Kettenbach AN. Substrate and phosphorylation site selection by phosphoprotein phosphatases. Trends Biochem Sci. 2023;48:713–25.

  44. Lajarín-Cuesta R, Arribas RL, De Los Ríos C. Ligands for Ser/Thr phosphoprotein phosphatases: a patent review (2005-2015). Expert Opin Ther Pat. 2016;26:389–407.

    Article  PubMed  Google Scholar 

  45. Ferreira AF, Santiago J, Silva JV, Oliveira PF, Fardilha M. PP1, PP2A and PP2B interplay in the regulation of sperm motility: lessons from protein phosphatase inhibitors. Int J Mol Sci 2022;23:15235.

  46. DeMarco AG, Hall MC. Phosphoproteomic approaches for identifying phosphatase and kinase substrates. Molecules. 2023;28:3675.

  47. Cossa G, Parua PK, Eilers M, Fisher RP. Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes Dev. 2021;35:658–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Roy S, Batra L. Protein phosphatase 2A: role in T cells and diseases. J Immunol Res. 2023;2023:4522053.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ronk H, Rosenblum JS, Kung T, Zhuang Z. Targeting PP2A for cancer therapeutic modulation. Cancer Biol Med. 2022;19:1428–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: a promising approach in cancer treatment. Drug Discov Today. 2021;26:2680–98.

    Article  PubMed  CAS  Google Scholar 

  51. Lemaire S, Bollen M. Protein phosphatase-1: dual activity regulation by Inhibitor-2. Biochem Soc Trans. 2020;48:2229–40.

    Article  PubMed  CAS  Google Scholar 

  52. Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. Adv Protein Chem Struct Biol. 2020;122:231–88.

    Article  PubMed  CAS  Google Scholar 

  53. Rebelo S, Santos M, Martins F, da Cruz e Silva EF, da Cruz e Silva OA. Protein phosphatase 1 is a key player in nuclear events. Cell Signal. 2015;27:2589–98.

    Article  PubMed  CAS  Google Scholar 

  54. Felgueiras J, Jerónimo C, Fardilha M. Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochimt Biophys Acta Rev Cancer. 2020;1874:188433.

    Article  CAS  Google Scholar 

  55. Ruvolo PP. Role of protein phosphatases in the cancer microenvironment. Biochim Biophys Acta Mol Cell Res. 2019;1866:144–52.

    Article  PubMed  CAS  Google Scholar 

  56. Dedinszki D, Kiss A, Márkász L, Márton A, Tóth E, Székely L, et al. Inhibition of protein phosphatase-1 and -2A decreases the chemosensitivity of leukemic cells to chemotherapeutic drugs. Cell Signal. 2015;27:363–72.

    Article  PubMed  CAS  Google Scholar 

  57. Berndt N, Ludlow JW. Interaction between the retinoblastoma protein and protein phosphatase 1 during the cell cycle. Methods Mol Biol. 2004;281:17–32.

  58. Vietri M, Bianchi M, Ludlow JW, Mittnacht S, Villa-Moruzzi E. Direct interaction between the catalytic subunit of Protein Phosphatase 1 and pRb. Cancer Cell Int. 2006;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bertran MT, Mouilleron S, Zhou Y, Bajaj R, Uliana F, Kumar GS, et al. ASPP proteins discriminate between PP1 catalytic subunits through their SH3 domain and the PP1 C-tail. Nat Commun. 2019;10:771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lu Z, Wan G, Guo H, Zhang X, Lu X. Protein phosphatase 1 inhibits p53 signaling by dephosphorylating and stabilizing Mdmx. Cell Signal. 2013;25:796–804.

    Article  PubMed  CAS  Google Scholar 

  61. Llanos S, Royer C, Lu M, Bergamaschi D, Lee WH, Lu X. Inhibitory member of the apoptosis-stimulating proteins of the p53 family (iASPP) interacts with protein phosphatase 1 via a noncanonical binding motif. J Biol Chem. 2011;286:43039–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bianchi M, De Lucchini S, Marin O, Turner DL, Hanks SK, Villa-Moruzzi E. Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. Biochem J. 2005;391:359–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Fresu M, Bianchi M, Parsons JT, Villa-Moruzzi E. Cell-cycle-dependent association of protein phosphatase 1 and focal adhesion kinase. Biochem J. 2001;358:407–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Eto M, Kirkbride J, Elliott E, Lo SH, Brautigan DL. Association of the tensin N-terminal protein-tyrosine phosphatase domain with the alpha isoform of protein phosphatase-1 in focal adhesions. J Biol Chem. 2007;282:17806–15.

    Article  PubMed  CAS  Google Scholar 

  65. Hall EH, Daugherty AE, Choi CK, Horwitz AF, Brautigan DL. Tensin1 requires protein phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem. 2009;284:34713–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023;379:eadd8643.

    Article  PubMed  CAS  Google Scholar 

  67. Hendriks D, Brouwers JF, Hamer K, Geurts MH, Luciana L, Massalini S, et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat Biotechnol. 2023;41:1567–81.

  68. Allen AG, Khan SQ, Margulies CM, Viswanathan R, Lele S, Blaha L, et al. A highly efficient transgene knock-in technology in clinically relevant cell types. Nat Biotechnol 2023;42:458–469.

  69. Xu Y, Viswanatha R, Sitsel O, Roderer D, Zhao H, Ashwood C, et al. CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor. Nature. 2022;610:349–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357:1303–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl J Med. 2021;385:493–502.

    Article  PubMed  CAS  Google Scholar 

  72. Wang X, Hu X, Song W, Xu H, Xiao Z, Huang R, et al. Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Res. 2021;31:664–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang X, Li X, Niu L, Lv F, Guo T, Gao Y, et al. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene. 2024;43:1669–87.

  74. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71.

    Article  PubMed  Google Scholar 

  75. Xing YH, Yao RW, Zhang Y, Guo CJ, Jiang S, Xu G, et al. SLERT regulates DDX21 rings associated with Pol I transcription. Cell. 2017;169:664–78.e616.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2019YFA0906000), Shenzhen Portion of Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HTHZQSWS- KCCYB-2023060). National Natural Science Foundation of China (82203459), Guangdong Special Support Program (2021JC06Y578), Fundamental Research Funds for the Central Universities, Sun Yat-sen University (59000-31610020), Shenzhen Municipal Government of China (CJGJZD20200617102403009), Sanming Project of the Shenzhen Health and Family Planning Commission (SZSM202011017), Shenzhen High-Level Hospital Construction Fund and the Shenzhen Institute of Synthetic Biology Scientific Research Program (ZTXM20214005), Shenzhen Key Medical Discipline Construction Fund (No. SZXK020), China Postdoctoral Science Foundation (2023T160436), Shenzhen High-Level Hospital Construction Fund, The research fund from Synthetic Biology Research Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Contributions

XTW, and TG contributed equally to this study. WRH, XTW, and TG conducted experiments and wrote the manuscript. LMN, and BBZ prepared and processed the clinical samples. HBX, and WH performed the data analyses. WRH, and XTW conceived of the study. WRH, supervised the study and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Weiren Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted with the informed consent of all patients and in accordance with the guidelines of the Regional Research Ethics Committee (Shenzhen Second People’s Hospital Research Ethics Committee).

Consent for publication

All authors read this manuscript and approve for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, T., Niu, L. et al. Engineered targeting OIP5 sensitizes bladder cancer to chemotherapy resistance via TRIP12-PPP1CB-YBX1 axis. Oncogene (2024). https://doi.org/10.1038/s41388-024-03136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03136-8

Search

Quick links