Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative splicing of ALDOA confers tamoxifen resistance in breast cancer

Abstract

The cancer-associated alternative splicing (AS) events generate cancer-related transcripts which are involved in uncontrolled cell proliferation and drug resistance. However, the key AS variants implicated in tamoxifen (TAM) resistance in breast cancer remain elusive. In the current study, we investigated the landscape of AS events in nine pairs of primary and relapse breast tumors from patients receiving TAM-based therapy. We unrevealed a notable association between the inclusion of exon 7.2 in the 5’untranslated region (5’UTR) of ALDOA mRNA and TAM resistance. Mechanistically, the inclusion of ALDOA exon 7.2 enhances the translation efficiency of the transcript, resulting in increased ALDOA protein expression, mTOR pathway activity, and the promotion of TAM resistance in breast cancer cells. Moreover, the inclusion of exon 7.2 in ALDOA mRNA is mediated by MSI1 via direct interaction. In addition, elevated inclusion of ALDOA exon 7.2 or expression of MSI1 is associated with an unfavorable prognosis in patients undergoing endocrine therapy. Notably, treatment with Aldometanib, an ALDOA inhibitor, effectively restrains the growth of TAM-resistant breast cancer cells in vitro and in vivo. The present study unveils the pivotal role of an AS event in ALDOA, under the regulation of MSI1, in driving TAM resistance in breast cancer. Therefore, this study provides a promising therapeutic avenue targeting ALDOA to combat TAM resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of TAM resistance-specific AS changes in breast tumors.
Fig. 2: ES in ALDOA mRNA elevates ALDOA protein expression in TAM-resistant breast cancer cells.
Fig. 3: ALDOA is associated with poor prognosis in breast cancer.
Fig. 4: Knockdown of ALDOA inhibits cell proliferation of TAM-resistant breast cancer cells.
Fig. 5: Knockdown of ALDOA inactivates key pathways driving TAM resistance.
Fig. 6: MSI1 mediates the inclusion of exon 7.2 in ALDOA pre-mRNA.
Fig. 7: Targeting ALDOA is a promising therapeutic approach for TAM-resistant breast cancer.

Similar content being viewed by others

Data availability

The data and codes that support the findings of this study can be obtained from the corresponding authors upon reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Herzog SK, Fuqua SAW. ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges. Br J Cancer. 2022;126:174–86.

    Article  CAS  PubMed  Google Scholar 

  3. Early Breast Cancer Trialists’ Collaborative G. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015;386:1341–52.

    Article  Google Scholar 

  4. Early Breast Cancer Trialists’ Collaborative G, Davies C, Godwin J, Gray R, Clarke M, Cutter D, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378:771–84.

    Article  Google Scholar 

  5. Yu S, Wang Y, Gong X, Fan Z, Wang Z, Liang Z, et al. LncRNA AGPG confers endocrine resistance in breast cancer by promoting E2F1 activity. Cancer Res. 2023;83:3220–36.

    Article  CAS  PubMed  Google Scholar 

  6. Ule J, Blencowe BJ. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell. 2019;76:329–45.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17:457–74.

    Article  PubMed  Google Scholar 

  8. Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, et al. Pan-cancer pervasive upregulation of 3’ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24:928–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weber R, Ghoshdastider U, Spies D, Dure C, Valdivia-Francia F, Forny M, et al. Monitoring the 5’UTR landscape reveals isoform switches to drive translational efficiencies in cancer. Oncogene. 2022;42:638–50.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, et al. How VEGF-A and its splice variants affect breast cancer development—clinical implications. Cell Oncol. 2022;45:227–39.

    Article  CAS  Google Scholar 

  11. Gokmen-Polar Y, Neelamraju Y, Goswami CP, Gu Y, Gu X, Nallamothu G, et al. Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep. 2019;20:e46078.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Huangyang P, Wang Y, Xue L, Devericks E, Nguyen HG, et al. ERalpha is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell. 2021;184:5215–29.e5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohe K, Miyajima S, Abe I, Tanaka T, Hamaguchi Y, Harada Y, et al. HMGA1a induces alternative splicing of estrogen receptor alpha in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol. 2018;182:21–26.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Brown RL, Wei Y, Zhao P, Liu S, Liu X, et al. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev. 2019;33:166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye LP, Lin CY, Wang X, Li QJ, Li Y, Wang M, et al. Epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer. EMBO Mol Med. 2019;11:e10638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN, et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell. 2018;34:939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q, et al. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res. 2012;14:R45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee S, Liu B, Lee S, Huang SX, Shen B, Qian SB. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci USA. 2012;109:E2424–2432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, Emanuel PD, et al. The ELAV RNA-stability factor HuR binds the 5’-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res. 2005;33:2962–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, et al. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal. 2020;18:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Durie D, Lewis SM, Liwak U, Kisilewicz M, Gorospe M, Holcik M. RNA-binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene. 2011;30:1460–9.

    Article  CAS  PubMed  Google Scholar 

  23. Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, et al. Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Gene Dev. 2017;31:2235–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caldon CE, Sergio CM, Kang J, Muthukaruppan A, Boersma MN, Stone A, et al. Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells. Mol Cancer Ther. 2012;11:1488–99.

    Article  CAS  PubMed  Google Scholar 

  25. Hultsch S, Kankainen M, Paavolainen L, Kovanen RM, Ikonen E, Kangaspeska S, et al. Association of tamoxifen resistance and lipid reprogramming in breast cancer. BMC Cancer. 2018;18:850.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Turner NC, Slamon DJ, Ro J, Bondarenko I, Im SA, Masuda N, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med. 2018;379:1926–36.

    Article  CAS  PubMed  Google Scholar 

  27. Bardia A, Hurvitz SA, DeMichele A, Clark AS, Zelnak A, Yardley DA, et al. Phase I/II trial of exemestane, ribociclib, and everolimus in women with HR(+)/HER2(−) advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1). Clin Cancer Res. 2021;27:4177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–U174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu SY, Gong X, Ma ZF, Zhang M, Huang L, Zhang J, et al. Endocrine resistant breast cancer cells with loss of ERα expression retain proliferative ability by reducing caspase7-mediated HDAC3 cleavage. Cell Oncol. 2020;43:65–80.

    Article  CAS  Google Scholar 

  30. Weber R, Ghoshdastider U, Spies D, Dure C, Valdivia-Francia F, Forny M, et al. Monitoring the 5’UTR landscape reveals isoform switches to drive translational efficiencies in cancer. Oncogene. 2023;42:638–50.

    Article  CAS  PubMed  Google Scholar 

  31. Veiga DFT, Nesta A, Zhao Y, Deslattes Mays A, Huynh R, Rossi R, et al. A comprehensive long-read isoform analysis platform and sequencing resource for breast cancer. Sci Adv. 2022;8:eabg6711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leppek K, Das R, Barna M. Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19:158–74.

    Article  CAS  PubMed  Google Scholar 

  33. Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N. Translation deregulation in human disease. Nat Rev Mol Cell Biol. 2018;19:791–807.

    Article  CAS  PubMed  Google Scholar 

  34. Osma-Garcia IC, Capitan-Sobrino D, Mouysset M, Bell SE, Lebeurrier M, Turner M, et al. The RNA-binding protein HuR is required for maintenance of the germinal centre response. Nat Commun. 2021;12:6556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Lin DH, Yan Y, Wang AH, Liao J, Meng Q, et al. The PIWI-specific insertion module helps load longer piRNAs for translational activation essential for male fertility. Sci China Life Sci. 2023;66:1459–81.

    Article  CAS  PubMed  Google Scholar 

  36. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology. 2021;74:1461–79.

    Article  CAS  PubMed  Google Scholar 

  37. Grandjean G, de Jong PR, James B, Koh MY, Lemos R, Kingston J, et al. Definition of a novel feed-forward mechanism for glycolysis-HIF1alpha signaling in hypoxic tumors highlights aldolase A as a therapeutic target. Cancer Res. 2016;76:4259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li M, Zhang CS, Feng JW, Wei X, Zhang C, Xie C, et al. Aldolase is a sensor for both low and high glucose, linking to AMPK and mTORC1. Cell Res. 2021;31:478–81.

    Article  CAS  PubMed  Google Scholar 

  39. Chang YC, Yang YC, Tien CP, Yang CJ, Hsiao M. Roles of aldolase family genes in human cancers and diseases. Trends Endocrinol Metab. 2018;29:549–59.

    Article  CAS  PubMed  Google Scholar 

  40. Song Y, Guerrero-Juarez CF, Chen Z, Tang Y, Ma X, Lv C, et al. The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget’s disease. Cell Res. 2020;30:854–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Yao X, Zhou H, Wu X, Tian J, Zeng J, et al. OncoSplicing: an updated database for clinically relevant alternative splicing in 33 human cancers. Nucleic Acids Res. 2022;50:D1340–D1347.

    Article  CAS  PubMed  Google Scholar 

  42. Urbanski L, Brugiolo M, Park S, Angarola BL, Leclair NK, Yurieva M, et al. MYC regulates a pan-cancer network of co-expressed oncogenic splicing factors. Cell Rep. 2022;41:111704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Gribskov M. IRESpy: an XGBoost model for prediction of internal ribosome entry sites. BMC Bioinform. 2019;20:409.

    Article  Google Scholar 

  44. Liu Q, Peng X, Shen MY, Qian Q, Xing JL, Li C, et al. Ribo-uORF: a comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling. Nucleic Acids Res. 2023;51:D248–D261.

    Article  CAS  PubMed  Google Scholar 

  45. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31:3429–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uren PJ, Vo DT, de Araujo PR, Potschke R, Burns SC, Bahrami-Samani E, et al. RNA-binding protein Musashi1 is a central regulator of adhesion pathways in glioblastoma. Mol Cell Biol. 2015;35:2965–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank patients for their contribution to the current study. We thank Liping Ye for providing transcriptome data of breast tumors.

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China (82371877 to HS; 32270513 to WD). This study was funded in part by the Dalian Science and Technology Innovation Fund (2021RJ04, WD), the Startup Foundation for Advanced Talents and Science and Technology Innovation Foundation at Yangzhou University (137011856, HS), the Distinguished Doctoral Program of Green Yang Golden Phoenix of Yangzhou City (137012751, SY), the Talent Introduction Fund of Yangzhou University (137012455, SY), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1831 to NW; SJCX23_2043 to XL), the Undergraduate Innovation and Entrepreneurship Program of Nation (X20220739, XCX20230814, YX), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (23KJD310006, SY), and the Jiangsu Provincial Natural Science Foundation (SBK2024040451, SY).

Author information

Authors and Affiliations

Authors

Contributions

HS and SY conceived and coordinated the project. SY, YY, RW, WD, ZF, YS, ZW, NW, CB, XL, and ZL performed experiments and analyzed data. YW, SD, WD, RS, CY, and YY collected clinical samples and performed relevant experiments. SY, YX, and YC acquired bioinformatic data and performed bioinformatic analysis. SY wrote the manuscript which was discussed and edited by all authors.

Corresponding authors

Correspondence to Yi Yang, Weibing Dong or Haibo Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The human subjects, human materials, human data, and the protocol of animal experiments in this study follow the guidelines of the Declaration of Helsinki. The study was approved by and performed under the supervision of the Ethic Committee of Yangzhou University (approval number: YXYLL-2021-08). All patients provided written informed consent.

Consent for publication

All authors agree with the content of the manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Wu, R., Si, Y. et al. Alternative splicing of ALDOA confers tamoxifen resistance in breast cancer. Oncogene (2024). https://doi.org/10.1038/s41388-024-03134-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03134-w

Search

Quick links